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Abstract

UIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Initial Synchronisation in the Multiple-Input Multiple-Output Aided Single- and

Multi-Carrier DS-CDMA as well as DS-UWB Downlink

by SeungHwan Won

In this thesis, we propose and investigate code acquisition schemes employing both co-

located and cooperative Multiple Input/Multiple Output (MIMO) aided Single-Carrier (SC)

and Multi-Carrier (MC) Code Division Multiple Access (CDMA) DownLink (DL) schemes.

We study their characteristics and performance in terms of both Non-Coherent (NC) and

Differentially Coherent (DC) MIMO scenarios. Furthermore, we also propose iterative code

acquisition schemes for the Direct Sequence-Ultra WideBand (DS-UWB) DL.

There is a paucity of code acquisition techniques designed for transmit diversity aided

systems. Moreover, there are no in-depth studies representing the fundamental characteris-

tics of code acquisition schemes employing both co-located and cooperative MIMOs. Hence

we investigate both NC and DC code acquisition schemes in the co-located and cooperative

MIMO aided SC and MC DS-CDMA DL, when communicating over spatially uncorrelated

Rayleigh channels. The issues of NC initial and post-initial acquisition schemes as well as

DC schemes are studied as a function of the number of co-located antennas by quantifying

the attainable correct detection probability and mean acquisition time performances.

The research of DS-UWB systems has recently attracted a significant interest in both

the academic and industrial community. In the DS-UWB DL, initial acquisition is required

for both coarse timing as well as code phase alignment. Both of these constitute a chal-

lenging problem owing to the extremely short chip-duration of UWB systems. This leads

to a huge acquisition search space size, which is represented as the product of the number

of legitimate code phases in the uncertainty region of the PN code and the number of le-

gitimate signalling pulse positions. Therefore the benefits of the iterative code acquisition

schemes are analysed in terms of the achievable correct detection probability and mean
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acquisition time performances. Hence we significantly reduce the search space size with

the aid of a Tanner graph based Message Passing (MP) technique, which is combined with

the employment of beneficially selected generator polynomials, multiple receive antennas

and appropriately designed multiple-component decoders. Finally, we characterise a range

of two-stage iterative acquisition schemes employing iterative MP designed for a multiple

receive antenna assisted DS-UWB DL scenario.
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List of Symbols

• A symbol having the subscript (·, ..., ·) which encompasses at least two param-

eters, represents ’per-path’ element, for instance α(l,m,n,u).

• A symbol having (·) which includes a single parameter, represents either a time

instant or a chip sampling instant depending on the scenarios.

• Alphabetical order having upper characters, followed by lower characters is used.

• Then greek alphabetical order having upper characters, followed by lower char-

acters.

• ‖·‖2 stands for the Eucledian norm of the complex-valued argument.

• The superscript (·)∗ is used to indicate complex conjugation.

• Re[·] represents the real operation of the complex value.

• Exact notations used in both MIMO Aided SC- and MC DS-CDMA as well as

in the SIMO Aided DS-UWB systems are only provided once.
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HM(z) : Overall miss probability of a search run carried out across the

entire uncertainty region

H
′
x(z): Derivative of Hx(z)|x=D, M or 0

h(·) : Impulse response of the pulse shaping filter

I0 : One-sided power spectral density of the AWGN

I0(x) : The zeroth-order modified Bessel function

IOC : Other-cell interference imposed by the remaining sectors (56 sectors)

ISC1 : Serving-cell interference imposed by the multi-path signals

ISC2 : Serving-cell interference imposed by the other channels

ISC(Total) : Serving-cell interference on the DL

I(Total) : Total amount of channel-induced impairments on the DL

I
(i)
ζ : Imaginary part of Iζ

I
(i)
(ζ−N) : Imaginary part of N -chip delayed Iζ

I
(r)
ζ : Real part of Iζ

I
(r)
(ζ−N) : Real part of N -chip delayed Iζ

I(·,...,·)(t) : Complex-valued AWGN having a double-sided power spectral density

of I0 at the per-path

Iζ(·,...,·) : Complex-valued AWGN having zero means and variances of σ2=2

for both real and imaginary parts

Iζ(·,...,·)(t) : Complex-valued AWGN having a double-sided power spectral density

of I0 at the per-path

I(ζ−N)(·,...,·) : N -chip delayed Iζ(·,...,·)

K : False locking penalty factor

Ka(·) : Modified Bessel function of the second kind and of order a

L : Number of multi-path components

L1 : Link loss

M2 : Square of the mean values of Y (I) and Y (Q)

M2 : Square of the mean values of Y (I) and Y (Q) weighted the

fading signal power



xii

m : The exponent of z in the verification mode

N : A coherent integration interval of chip durations

N0 : Thermal noise spectral power density

Ni : A coherent integration interval of chip durations for ith dwell

n(·) : Additive White Gaussian Noise

P : Number of transmit antennas (Co-located scenario)

P : Number of relay stations and base station (Cooperative scenario)

P
(1)
Dj : Correct detection probability associated with the j th

testing of the first integration dwell interval

P
(2)
Dj : Correct detection probability associated with the j th
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R(τ) : Autocorrelation function of the timing error

R̃ : Radius of a circle which connects the six vertices of the hexagon

rtot(·) : Signal at receiver that is a composite of L multi-path signals having

a time delay of τl

rMF
ζ : Output of the MF assigned to each path

rMF
(ζ−N) : N -chip delayed rMF

ζ

r(·) : Received signal of the user

S : Number of LFSR stages uniquely and unambiguously describing the

m-sequence

S(·) : Signal transmitted of the user
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Tm : Delay spread corresponding to an environment having the shortest

delay spread considered (experienced, e.g., in an indoor environment)

Ts : Symbol duration

Tsym : Number of symbols over which integration is carried out

t : Time instant of the user at the Base Station

U : Number of subcarriers

U(z) : Total transfer function averaged over all the (ν − 2l) starting node

Ui(z) : Transfer function from an initial mode that is i branches
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Y (Q) : Energy accumulated in the integral dwell time of τD for Q-phase outputs

y : (Maybe multi-dimensional) data point
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Z1 : Decision variable of the search mode

Z2 : Decision variable of the verification mode

Ztot : Final output variable generated by the outputs of correlators combined

Z(·,...,·) : Output variable assigned to per-path

Zζ : Decision variable at chip sampling instant

z : Unit-delay operator
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α1 : Orthogonality factor (0.4 – 1)

αl : Envelope at the lth path signal obeying the Rayleigh distribution of the

user

α(·,...,·) : Envelope of the per-path signal obeying the Rayleigh distribution

β : A chi-square distribution having two degrees of freedom

β1 : Fraction of the first received path’s power

∆ : Sampling inaccuracy caused by having a finite search step size

∆fd : Frequency mismatch caused by the Doppler shift

∆fm : Clock-drift-induced frequency mismatch between the BS’s transmitter

and the MS’s receiver

∆ft : Total frequency mismatch on the received signal

Φ : Reduced length chip sequence defined by Ξ/Ψ

φ : Carrier phase of the user’s modulator

φl : Carrier phase at the lth path signal of the user

φu : uth subcarrier phase of the modulator

φ(·,...,·) : Signal phase of the per-path having a uniform distribution over

(0, 2π)

Γ(·) : Gamma function

λx : Zζ’s noncentrality parameter

λx : Noncentrality parameter corresponding to (Ec/I0)
′

µx : A new biased noncentrality parameter

ν : Total uncertainty region, namely the number of phases to be tested

θ : Decision threshold

θ1 : Threshold of the search mode

θ2 : Threshold of the verification mode

θi : Decision threshold for ith dwell

σ2 : Variance of the constituent Gaussian distribution

ςp : Fraction of the transmitted pilot power with respect to the total

allocated transmit power
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τD Integral dwell time

τD1 : The first integer dwell time

τD2 : The second integer dwell time

τl : A time delay having a tap spacing of one chip-duration Tc

τp : Relative time difference of the signal received from a RS

with respect to the signal received from the BS

τR : Memory of the fading channel’s multi-path components

τS : Memory of the fading channel’s shadowing components

Ξ : Chip duration of an m-sequence

± ξ : Reduced uncertainty region for the post-initial acquisition

procedure

Ψ : Number of non-coherent Inphase (I)- Quadrature phase (Q) MFs

ψ : Probability of false alarm being kept at the given value

ζ : Chip sampling instant of the user at the Base Station
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List of Symbols for SIMO Aided DS-UWB

CN(i) : Set of VNs connected to the ith CN

d : Unknown time shift jointly imposed by the oscillator’s frequency drift

as well as the receiver’s mobility

D : Delay unit

g(D) : Generator Polynomial

h(t) : CIR of the S-V model

Hi(z) : Transfer function derived for exiting the ith H1 cell

Hx : Hypothesis of the desired signal

I1 : Number of the maximum iterations assigned

IA : Average number of iterations

IM : Maximum allowable number of iterations

Ir(t) : AWGN having a variance of I0
2

in the rth path

KK : Number of bins to be searched

max [·] : An operator, which selects the largest value between two arguments

N : Number of chips over which the correlator output is accumulated

N1 : Number of P-C connections in the PCM when considering NI = 1024

N2 : Number of P-C connections in the PCM when considering NI = 512

NI : Truncated PN sequence-length

⌊NI/S⌋ : Number of non-overlapping segments of

S consecutive chips in the NI-chip truncated PN sequence

Ns : Number of chips over which the correlator output

is accumulated in the TA stage

Nv : Number of chips in the verification mode

NV : Number of chips used for the verification mode

N [µη, ση] : Normal distribution

p0(rn) : Likelihood functions of each sample when the signal is absent

p1(rn) : Likelihood functions of each sample when the signal is present

p0(Y ) : Likelihood functions conditioned on the hypothesis of the desired

signal being absent
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p1(Y ) : Likelihood functions conditioned on the hypothesis

of the desired signal being present

P : MLSR sequence of period

PDl(θ) : Probability of correct detection at lth path

PDltot : Probability of correct detection for the CD method

PF (θ) : Probability of false alarm

PFtot : Probability of false alarm for the CD method

PL(d) : Path-loss at a distance d

PL(do) : Average path-loss at the so-called reference point

just outside the antenna’s near-field

PM : Missed detection probability

P (v ·) : Probability of encountering v additional clusters at time instant T

P (βu,v) : PDF of the Nakagami-m distribution

P (τu,v|τu−1,v) : Inter-arrival time of two adjacent rays

Q(x) : Q function

r(j) : Soft signal received from the channel

rn : Each sample

S : Number of stages in LFSR

sgn [·] : ’signum’ function assuming values of either 1 or -1

T : Time instant

Tc : Chip-duration

TCPA : Another threshold assigned to the verification mode of

the CPA stage

TD : Processing time of a correct detection event

Tf : Frame duration, which is defined as the pulse repetition period

TF : Processing time for a false alarm event,

which is also equivalent to the false locking penalty time

Tm : Maximum delay-spread of the communication channel

TM : Processing time of a missed detection event

Tp : A signalling impulse

TTA : A threshold value assigned to the TA stage
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Tv : Arrival time of the vth cluster (Chapter 5.2)

Tv : A threshold value assigned to the verification mode (Chapter 5.4)

uγ : A factor accounting for the increase of the decay rate as a function of

the delay

U : Number of resolvable multi-path components in a cluster

U(Z) : Transfer function of the CPA stage

v : Additional clusters

V : Number of clusters

V N(j) : Set of CNs linked to the jth VN

W : Signal bandwidth

xn : Chip pattern of the PN sequence at the nth position

X(j) : LLR of the soft value received from the AWGN channel

X(j, i) : Message passed from the jth VN to the ith CN

X(j, i)
′
: Message passed from the jth VN to the ith CN

during the offset-based MSA of CN processing

Xσ : Shadow fading term

Xσ : A Gaussian distributed Random Variable (RV) having

a standard deviation of σ (in dB)

Y : Likelihood functions based on the absolute value of the sum

Y (i, j) : Message passed from the ith CN to the jth VN
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α : Probability of the lower-arrival-rate clusters

β : A nonnegative number selected by optimising a threshold of

the offset-based MSA

βu,v : Amplitude of the uth multi-path component within the vth cluster

β2
1,1 : Expected power of the first resolvable path of the received UWB signal

β2
u,v : Average power of a multi-path component at a given delay Tv + τu,v

η : Path-loss exponent

η1 : A Gaussian RV having a mean of zero and a unit variance

η2 : Zero mean RV

η3 : Zero mean RV

γ : Ray-decay factor within a cluster

Γ : Cluster-decay factor

Γ(m) : Gamma function

λ : Ray-arrival rate within a cluster

λ1 : Ray-arrival rate of the first Poisson process

λ2 : Ray-arrival rate of the second Poisson process

λv : Mean multi-path arrival rate within the vth cluster

λ
′
: Resultant logical value after a hard decision was performed

Λ : Cluster-arrival rate

Λ
′
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ν : Number of chips in the entire uncertainty region to be searched

θ : A normalised threshold value associated with Th being TTA

σ : Standard deviation

σσ : A unit-variance normal RV

τ : Integral dwell time over which the received samples are accumulated

during the correlation operation

τu,v : Arrival time of the uth multi-path component within the vth cluster

ωr(t) : A chip waveform having a duration of Tp

Ωu,v : Second moment of the amplitude of the uth multi-path component

in the vth cluster
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• AF Amplify-and-Forward

• AFC Automatic Frequency Control

• AWGN Additive White Gaussian Noise

• BP Belief Propagation

• BS Base Station

• CD Coincidence Detection
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Chapter 1

Introduction

1.1 Overview of Code Acquisition

Code Division Multiple Access (CDMA) [1] based mobile communication systems have

been widely advocated by the standardisation bodies, leading to the IS-95 [1] and the

Third-Generation (3G) [2] systems. In the inter-cell synchronous CDMA-2000 system, the

Mobile Station’s (MS) receiver must be capable of coarsely synchronously aligning a locally

generated Pseudo-Noise (PN) code with the received composite multi-user signals containing

the desired user’s PN sequence [3, 4, 5, 6] before the transmission of the desired signal. This

process is referred to as ’initial acquisition’, followed by optimum post-initial acquisition

[7, 8], where the term ’post-initial acquisition’ [7] refers to identifying the timing instants

of the affordable-complexity-dependent number of delayed received signal paths, which will

be combined by Rake receiver.

In general, code synchronisation is achieved in two consecutive steps. Code acquisition is

invoked first for coarse code alignment and code phase tracking for fine alignment [3, 5, 9].

We focus our attention on code acquisition in this thesis. Substantial research efforts have

been devoted to the design of code acquisition techniques [4, 5, 6]. A variety of serial

search [3, 4], parallel search [10, 11], as well as sequential estimation [12, 13] based code

acquisition techniques have been proposed in the literature. In order to achieve a high

performance, numerous detector structures such as multiple dwell based search schemes

[3, 4, 5], Post-Detection Integration (PDI) [3, 14, 15] and Differentially Coherent (DC)

[16, 17, 18] schemes have also been studied in the literature. The performance of code

acquisition systems has been widely investigated when communicating over Additive White

1
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Gaussian Noise (AWGN) channels [10, 19, 20] and frequency nonselective, as well as fre-

quency selective Rayeligh or Rician fading channels [10, 19, 20, 21, 22]. Moreover, Yang

and Hanzo investigated the performance of code acquisition systems for transmission over

Nakagami-m fading channels [23], since this model is versatile and often fits the experi-

mental data generated in a variety of fading environments encompassing urban as well as

indoor radio propagation channels at a higher confidence level than the Rayleigh and Rice

distribution [24]. Furthermore, the Nakagami-m distribution function models a continu-

ous transition from a Rayleigh fading channels to a Gaussian channel by varying fading

parameter, m from unity to infinity.

Employing multiple subcarriers in the DownLink (DL) of wireless systems exhibits signifi-

cant benefits in terms of an increased flexibility, as argued in [6, 25, 26]. Furthermore, diverse

combinations of Single-Carrier Direct Sequence (SC DS) -CDMA and Orthogonal Frequency

Division Multiplexing (OFDM) [27] have attracted research efforts [6, 25, 26, 28, 29, 30, 31].

The code acquisition performance of Multi-Carrier (MC) DS-CDMA evaluated with the aid

of serial and parallel search based schemes has been investigated in [6, 23] and [32], respec-

tively. A variety of schemes employing multiple antennas in the DL of wireless systems

constitute an attractive technique of reducing the detrimental effects of time-variant multi-

path fading environments [33, 34]. The substantial appeal of MIMOs is that their capacity

increases linearly with the SINR, as opposed to the more modest logarithmic increase of the

classic Shannon-Hartley law, which may be simply exemplified by assigning the increased

transmit power to an additional antenna and hence linearly increasing the throughput [35].

However, most of code acquisition schemes have been designed for Single-Input Single-

Output (SISO) systems [3, 15, 22] and hence there is a paucity of code acquisition tech-

niques designed for transmit diversity aided systems [8]. Moreover, there are no in-depth

studies in the open literature representing the fundamental characteristics of code acquisi-

tion schemes, regardless whether co-located or cooperative Multiple Input/Multiple Output

(MIMO) scenarios considered. On the other hand, there have been numerous contributions

on code acquisition techniques designed for receive diversity aided systems [36, 37, 38].

Again, since there are no in-depth studies representing the fundamental characteristics of

code acquisition schemes assisted by either co-located or cooperative MIMOs, even though

there are thousands of papers on showing the performance improvements of diverse MIMOs

in perfect initial synchronisation scenarios, this is the first objective of the thesis.

Furthermore, the research of Ultra WideBand (UWB) systems has recently attracted a
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significant interest in both the academic and industrial research community [39, 40, 41].

The emerging UWB systems are capable of supporting both wireless personal computers

and home entertainment equipment, both requiring high data rates. Similarly, UWB sys-

tems may also be used in a variety of sensor networks operating at low data rates and

at a low power consumption. Direct Sequence-Ultra WideBand (DS-UWB) techniques are

characterised by low-duty-cycle pulse trains having a very short impulse duration [42, 43].

In the DS-UWB DL, initial acquisition is required for both coarse timing as well as for code

phase alignment and both of these constitute a challenging problem owing to the extremely

short signalling chip-duration [42, 43]. This leads to a huge timing- and code-phase search

space size, which is represented as the product of the number of legitimate code phases

in the uncertainty region of the PN code and the number of legitimate signalling pulse

positions. For the sake of significantly reducing the search space size, we will investigate

two-stage code acquisition schemes employing an iterative Message Passing (MP) algorithm

designed for a multiple receive antenna assisted DS-UWB DL scenario, which constitutes

the second objective of the thesis. Figure 1.1 highlights the various design factors affecting

the performance of code acquisition schemes, most of which have to be carefully balanced

against each other for the sake of finding attractive design trade-offs.

Code Acquisition Schemes

Initial and Post−Initial
Characteristics

Channel 
Transmit/Receive Antennas

Number of Multiple

Acquisition

T−domain and/or F−domain
Spreading

Coarse and Fine
Acquisition

Search Strategy

Subcarriers
Number of

Detector Structure

Figure 1.1: Design factors affecting the performance of code acquisition schemes.

Before proceeding further, the generic structure of the synchronisation module and of the

Rake receiver at the MS is highlighted in Figure 1.2. Explicitly, the synchronisation module

at the top of Figure 1.2 is constituted by the combined operations of initial acquisition, fine

timing tracking and post-initial acquisition, which is also associated with the Automatic

Frequency Control (AFC). On the other hand, the Rake receiver module at the bottom of
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Figure 1.2 incorporates the Rake finger manager, each Rake finger’s correlator, the Rake

combiner and the channel estimator. In the inter-cell synchronous CDMA-2000 system, the

 Fine timing tracking 
Initial code and  

 coarse timing acquisition

 Post−initial timing acquisition

 (Multi−path searcher)

Timing/ 
energy

Timing/ 
energy

Timing/ 
energy

Timing/ 
energy

Timing/ 
energy

Channel status
information 

Timing/ 
energy

 Channel
 estimator

Timing/ 
energy

Timing/ 
energy

 Rake finger manager

 Correlator of 
 each Rake finger  Rake combiner

 Rake receiver

 Automatic frequency control

 Synchronisation Module 

Figure 1.2: Generic structure of the synchronisation module and Rake receiver of the mobile
station.

MS’s receiver must be capable of coarsely aligning a locally generated PN code with the

received composite multi-user signals containing the desired user’s PN sequence [3, 4, 5, 6]

before the transmission of the desired signal. This process is referred to as ’initial acqui-

sition’. After code acquisition, which ensures the above-mentioned coarse code alignment,

timing tracking invoked for fine code alignment commences [3, 5, 9]. Following the success-

ful initial acquisition the AFC operation has to be activated for the sake of mitigating the

total frequency mismatch, which represents the sum of the clock-drift-induced frequency

mismatch between the Base Station’s (BS) transmitter as well as the MS’s receiver, and

of the effect of the Doppler shift. Finally, the post-initial acquisition procedure follows [7],

in order to identify the timing instants of the affordable-complexity-dependent number of
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delayed received signal paths, which will be combined by the Rake receiver. The ’Rake

finger manager’ is capable of controlling the allocation and deallocation of Rake fingers

based on both the timing and energy of the resolvable paths provided by the post-initial

acquisition stage. Based on the decisions of the Rake finger manager, all the Rake receiver’s

resolvable paths are coherently combined in order to achieve the best possible performance.

The operational procedure of the DS-UWB system is also similar to that of the inter-cell

synchronous CDMA-2000 system, except for the AFC operation, because the transmitted

signal of the DS-UWB is constituted by an impulse train, which is not affected by the

frequency mismatch.

1.2 Code Acquisition Procedures in the Downlink and Up-

link

The initial processing stage of CDMA systems is the acquisition of the correct timing of

the incoming signals received both in the DownLink (DL) and UpLink (UL). The code

acquisition in the DL is the first operation that has to be carried out, as soon as the MS

is switched on. The operation is carried out by processing an unmodulated pilot signal,

which is spread according to the the chip rate and is broadcast over the entire cell. There

is no power control during this stage. In the DL, the uncertainty region (or search window

width) corresponds to the entire duration of the PN sequence, which tends to be quite wide,

for example (215 − 1) chip intervals in the DL of the inter-cell synchronous CDMA-2000

system [3, 15, 44] 1. Hence the Mean Acquisition Time (MAT) is minimised in the context

of serial search techniques by achieving the best possible correct detection probability, while

maintaining as low a value of the false alarm probability and false locking penalty as possible.

The effect of the above-mentioned high uncertainty region of the DL could be potentially

mitigated by testing the correct spreading code alignment hypotheses using parallel search

techniques 2. However, given the wide uncertainty region of the DL, the implementation of

the parallel search based hardware often becomes impractical due to its high complexity.

1After the Base Station (BS) transmitted the pilot to the MS, the MS responds with a preamble and
hence the BS becomes aware of the system’s turn-around delay, which determines the MS’s distance from
the BS. This technique allows the MS to advance its transmission instant by the estimated amount of the
propagation delay, which in turn allows the BS to shorten its search window duration. This also allows
the BS to detect immediately after the elapse of code phase verification, if a false alarm locking event was
encountered.

2In [21] the classic parallel acquisition arrangement was referred to as the Maximum Likelihood (ML)
technique.
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On the other hand, in the UL code acquisition scenario, the MS transmits a short pream-

ble in response to the Base Station (BS)’s pilot signal. Again, this preamble is short in

order to avoid consuming a high amount of energy. The MS’s preamble is then aligned

in time - using classic correlation techniques - with the pilot signal transmitted by the BS

after the previously mentioned code acquisition in the DL. The MS is capable of invoking

an open-loop power control procedure by estimating the received pilot signal power in the

DL and then adjusting its transmitted power. In this case no acknowledgment is received

from the BS and hence, repeated transmission attempts are made by the MS using an in-

creased transmitted power at random time instants [44]. Based upon the above-mentioned

procedure, the BS instructs the MS to advance its transmission instant in order to prec-

ompensate the effect of the propagation delay imposed on the spreading code phase. The

duration of the uncertainty region within which the code phase of the received preamble

has to be located depends on the maximum distance between the BS and MS. Accordingly,

the uncertainty region in the UL corresponds to a fraction of the entire duration of the

(215 − 1)-chip PN sequence. For example, it is less than 200 PN chip intervals in the UL

of the inter-cell synchronous CDMA-2000 system [21]. The BS has to recognise the correct

timing of the MS’s transmitted signal within the given search window duration and col-

lect all the multi-path components available in order to achieve the highest possible Rake

combining gain. Finally, it is worth emphasising that in the context of the UL the MAT is

more critically dominated by achieving the best possible correct detection probability than

by attaining the lowest possible false locking probability, since the detrimental effect of a

false locking event is deweighted by the short duration of the UL uncertainty region [21].

Hence the correct detection probability is typically increased with the aid of a sufficiently

low detection threshold at the cost of an increased false alarm probability.

1.3 Search Strategy

1.3.1 Serial Search Based Code Acquisition

One of the widely used initial acquisition techniques is constituted by the serial search based

scheme [3, 4, 5, 45]. The classic serial search technique has been employed in scenarios, where

the uncertainty region (also referred to as the search window width) is quite wide and hence

in the context of serial search the MAT is the vital performance criterion, as argued for

the DL of the inter-cell synchronous CDMA-2000 system in [3, 15]. In this scheme, all
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the potential initial code phase-related time-offsets are serially searched until the correct

phase is found. The correct code phase is deemed to be found, when a sufficiently high

energy correlator output exceeding a threshold value optimised in terms of the achievable

MAT performance is found. If the estimated code phase is deemed correct, direct-sequence

despreading will be carried out. Figure 1.3 depicts the schematic diagram of the Non-

Coherent (NC) Matched-Filter (MF) based receiver designed for serial search based code

acquisition.

MF correlator

MF correlator

r(t) √
2cos(f0t)

√
2sin(f0t)

(·)2

(·)2

Figure 1.3: Schematic diagram of the serial search based receiver.

1.3.2 Parallel Search Based Maximum-Likelihood Code Acquisition

One of the natural acquisition scheme extensions invoked for the sake of accomplishing an

improved correct phase acquisition is to utilise a bank of Ψ parallel non-coherent Inphase

(I)- Quadrature phase (Q) MFs [6, 10, 11], which are capable of searching Ψ code phase

positions simultaneously. As a result of employing the Ψ parallel branches, the achievable

MAT may be expected to decrease by a factor of Ψ at the cost of a higher hardware

complexity. Figure 1.4 portrays the schematic diagram of the resultant parallel search

based receiver employing Ψ parallel NC I-Q MFs [10]. Each of the Ψ parallel NC I-Q MFs

obeys the structure of Figure 1.3 [10].

The Ξ-chip duration of an m-sequence is divided into Ψ shorter sequences, each having a

length of Φ = Ξ/Ψ chips and then each NC I-Q MF branch is configured to acquire one of

the Ψ shorter sequences. The best code-phase is found for each of the Ξ number of Φ-chip

shorter sequences and the best code-phase of the original Ξ-chip sequence is decided on the

basis of the most reliable, i.e. highest-output Φ-chip correlator of Figure 1.4. To elaborate a

little further, the code phase associated with the highest energy correlator output among all

the Ψ outputs is compared to an optimised threshold value. Then, if the largest correlator
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output exceeds the optimised threshold value, the acquisition system declares that the code-

phase of the corresponding Φ-chip reduced-length sequence is indeed the correct code phase

of the original Ξ-chip sequence. If the threshold value is not exceeded, the above-mentioned

process will be repeated, until a reliable Φ-chip code-phase is found. It is worth noting

that the shorter the reduced-length Φ-chip sequences are, the higher the number of parallel

branches becomes. This potentially increases the attainable acquisition speed, but reduces

the reliability of detecting the correct phase of the original full-length Ξ-chip sequence.

Accordingly, there is a trade-off between the increased speed and decreased reliability of

code acquisition.

Selection of
the largest

correlator output

Threshold
Comparison

r(t)
I − Q MF2 correlator

I − Q MF1 correlator

(θ)
I − Q MFΨ correlator

Figure 1.4: Schematic diagram of the parallel search based receiver.

1.3.3 Sequential Estimation Based Code Acquisition

The philosophy of sequential code-phase estimation based code acquisition is similar to

that of the Rapid Acquisition using Sequential Estimation (RASE) scheme of [12] which is

quite attractive in terms of its achievable performance right across Signal-to-Interference

plus Noise Ratio (SINR) range. Moreover, as opposed to the classic serial [3, 4] or parallel

search [10, 11] based schemes, this scheme is quite vulnerable to the effect of AWGN and to

interferening signals, since sequential code-phase estimation does not have an innate inter-

ference rejection capability, This is because the phase acquisition process is accomplished

on the basis of a chip-by chip correlation operation, rather than by exploiting the inher-

ent structure of PN codes. By contrast, both Recursion-Aided RASE (RARASE) [46] and

Majority Logic Decoding (MLD) based RASE [47] constitute well known enhanced versions

of the original RASE scheme [12], although they still exhibit certain performance limita-

tions. For the sake of overcoming these limitations, Recursive Soft Sequential Estimation

(RSSE) based acquisition schemes exploiting the inherent properties of m-sequences and
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based upon the widely known turbo principle [48, 49, 50, 51] were proposed in [13, 52, 53].

Further details on these topics will be provided in the following subsections.

1.3.3.1 Rapid Acquisition Using Sequential Estimation

The concept of sequential estimation based code acquisition was originally proposed by

Ward [12], where a sequential estimation of the Linear Feedback Shift Register (LFSR)

states of the PN code sequence generator is employed. The schematic diagram of the RASE

is provided in Figure 1.5. In this figure, the PN code chip detector estimates the first S

received PN code chips of the (2S − 1)-chip m-sequence, where S is the number of LFSR

stages uniquely and unambiguously describing the m-sequence. Then these chips are loaded

into the LFSR based upon modulo-2 operations for the sake of generating the entire m-

sequence having the correct code-phase. The lock-detector determines, whether the related

decision is deemed correct or not by using the various test statistics of [12] based upon

the correlation between the received signal and the locally generated one. Finally, the

decision concerning the activation of the reloading command or whether to activate the

code tracking loop is controlled by the load/track logic module of Figure 1.5. Both the

estimation and loading processes are performed periodically, until the correct initial LFSR

state is successfully identified.

.Received signal PN code chip

detector

PN code estimate

In−lock
detector

PN code feedback logic and
modulo−2 adder

To code

tracking loop

Clock

Load

Load/track
logic

2 S1 3

Load Track

Track

Figure 1.5: Schematic diagram of the rapid acquisition using sequential estimation [12].
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1.3.3.2 Recursion-Aided Rapid Acquisition using Sequential Estimation

The enhanced versions [46] of the original RASE schemes rapidly discard the majority of the

incorrect code-phase estimation results and hence accelerate the search as well as increase

the reliability of detecting the correct code-phase. Accordingly, this concept is similar to

that of the multiple dwell based search [4, 46]. A modified version of the original RASE

scheme [12], which is known as Recursion-Aided RASE (RARASE) was proposed by Ward

and Yiu [46]. This scheme exploits the fact that knowing S consecutive chips of the PN

sequence to be acquired uniquely and unambiguously describes all the 2S − 1 chips of the

m-sequence, because once the S chips entered the shift-register seen in Figure 1.5, they

determine all the (2S − 1)-chips. Hence based on the initial S chips the receiver is capable

of deciding whether the initial estimate of the entire (2S−1)-chip received signal is correct or

not. By invoking the procedure, a considerable proportion of low-likelihood initial estimate

may be discarded using a relatively simple device, which consists of several adders and an

AND gate.

1.3.3.3 Majority Logic Decoding Based Rapid Acquisition Using Sequential Es-

timation

For the sake of generating the resultant (2S − 1) chips, this scheme makes use of a majority

voting method [54], which collects multiple independent estimates of the consecutive S chips

for the sake of obtaining the considerably higher number of up to (2S−1 − 1) parity-check

sums and then employs a majority logic voting device for the sake of determining the initial

’S’ chips to be loaded into the Linear Feedback Shift Register (LFSR) [47]. The number of

multiple estimates is chosen based upon the achievable target performance, which typically

varies from unity to (2S−1 − 1) [47, 54, 55]. Accordingly, the performance of this scheme is

highly dependent upon the number of estimates used in the majority logic voting device.

Compared to the RASE system of Figure 1.5, the correct detection probability of the scheme

is considerably increased at the expense of an increased hardware complexity.

The detailed procedure of the MLD based rapid code acquisition procedure exploiting

sequential estimation is as follows [47]. The incoming chip is shifted into the majority logic

decoder. When all the SLoad number of chips are fully loaded in the Decoder Shift Register

(DSR), where the parameter SLoad indicates the smallest span of chips required for the sake

of evaluating a specific parity-check sum, a majority vote of the multiple estimates is taken
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Figure 1.6: Schematic diagram of the recursive soft sequential estimator [13].

and then the result is loaded into the local PN code generator as the estimate of the first

initial load value. For the sake of obtaining all the estimates of the remaining chips, the

above-mentioned process is repeated, until S consecutive chips have been identified. Then

the local PN code generator’s outputs are correlated with the received codes over a specific

examination period. During this time new chips are loaded into the majority logic decoder.

If successful acquisition is not achieved at the end of the examination period, the next S

chips have to be determined by the decoder, where the S chips are shifted into the local

code generator, and then the same procedures are repeated again. The entire process is

performed periodically, until the correct initial LFSR state is successfully identified.

1.3.3.4 Recursive Soft Sequential Estimation

The most imperative requirement for the sake of achieving successful acquisition of PN

sequences based upon sequential estimation such as RASE [12] is that S successive chips

of the received noise contaminated PN sequence must be correctly estimated. Hence the
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iterative Soft-In/Soft-Out (SI/SO) decoding principle, may be invoked [56], which was in-

spired by turbo channel decoding [48, 49, 50, 51, 57, 58] in order to enhance the reliabilities

associated with deciding on the S consecutive chips. This Recursive Soft Sequential Esti-

mation (RSSE) acquisition scheme determining the (2s − 1)-chip m-sequence of Figure 1.6

exploits again the inherent properties of m-sequences uniquely and unambiguously deter-

mined by S successive chips output by a recursive SI/SO decoder [13, 43, 52, 53, 59]. The

recursive SI/SO decoder receives both soft information from the channel’s output related

to the current chip as well as soft extrinsic information [48, 49, 50, 51, 58] from the soft

channel outputs related to the previous chips, which convey information dispersed by the

channel encoder, but related to the current chip. The SI/SO decoder then exploits both

the soft channel-output information and the extrinsic information provided by the previous

estimates of the SI/SO decoder in order to calculate a reliable soft output for the sake of up-

dating the contents of the soft-chip register. The soft output of the recursive SI/SO decoder

is then shifted into the so-called soft-chip register of Figure 1.6, which provides extrinsic

information for supporting the forthcoming decoding steps. A cardinal characteristic of the

RSSE acquisition scheme is that it makes use of the real-time knowledge of the reliabilities

associated with the S consecutive chips. The real-time knowledge of the chip reliabilities

can be exploited for the sake of determining the probability of successful acquisition of an

m-sequence of length (2S − 1).

Again, the schematic diagram of the RSSE acquisition scheme is shown in Figure 1.6 [6,

13], which encompasses four constituent building blocks, namely, an m-sequence generator,

a soft-chip register, a SI/SO decoder and a code phase-tracking loop. The soft-chip register

has S number of delay units, which are referred to as soft-chip delay units (SCDUs) of

the m-sequence generator. The SCDUs store the instantaneous log-likelihood ratio (LLR)

values of S consecutive chips. With the aid of these S LLR values, S consecutive chips can

be determined and loaded into the corresponding delay units of the m-sequence generator

of Figure 1.6. The SI/SO decoder estimates the corresponding LLR soft outputs after

obtaining a soft channel output sample related to a given chip of the m-sequence. In

addition to the so-called intrinsic information of this chip, which was received from the

channel, the so-called a priori (extrinsic) information related to the chip, based upon the

previous decoded LLR values stored in the SCDUs of Figure 1.6 is also exploited. The

soft output of the SI/SO decoder is then shifted to the left-most position of the SCDUs

in the soft-chip register, whilst the soft value in the right-most SCDUs is shifted out and

dumped. More explicitly, the soft-chip register always stores the most recent S number
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of soft outputs of the SI/SO decoder, which corresponds to S consecutive chips of the

transmitted m-sequence.

Whenever the amplitude of the most recent S soft outputs of the SI/SO decoder becomes

sufficiently high for the sake of guaranteeing a sufficiently low erroneous loading probability,

a ”loading command” is activated. Then S consecutive chips are decided, employing hard

decisions based upon the most recent S LLR values stored in the soft-chip register of

Figure 1.6. Then, the S successive chips are loaded into the corresponding delay units of the

local m-sequence generator. Once the m-sequence generator is loaded with the initial chip

values, the received spread-spectrum signal can be despread, employing the locally generated

m-sequence replica, provided that the initial chip values of the m-sequence generator have

been correctly loaded. The despread signal is then low-pass filtered and sent to the code

tracking loop. If the code tracking loop is capable of tracking the phase, the entire code

acquisition process is completed. By contrast, unless the tracking loop is capable of tracking

the phase, the code tracking loop activates a ”reloading command” in an effort to load

another group of S successive chips into the delay units of the m-sequence generator. The

above process will be repeated, until code acquisition is successfully accomplished. Finally,

the total mean acquisition time of the RSSE scheme can be approximately determined by

the duration of time required for the RSSE to accomplish recursive SI/SO decoding, so

as to achieve a sufficiently low erroneous loading probability. Table 1.1 shows the history

of a variety of sequential estimation based code acquisition schemes and the evolution of

sequential estimation in spread-spectrum communication systems.

1.3.4 Random Search Based Code Acquisition

When considering a realistic UWB channel, the numerical analysis of serial search based

schemes becomes intractable for the channel impulse response constituted by sparse clumps

of multi-path components [62]. However, recently a random search aided scheme was pro-

posed as a realistic alternative for the analysis of the UWB channel model [63], because the

random search stipulates no particular assumption regarding the channel model and hence

can be applied to arbitrary models. Furthermore, based on the results of Fig.6 in [63], the

performance of the serial search based scheme approaches that of the random search. The

schematic of the random search aided receiver is exactly the same as that of the serial search

based one seen in Figure 1.3, except that the search algorithm shifts the code phase of the
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Table 1.1: Contributions on Sequential Estimation Based Code Acquisition
Year Authors Contribution

1965 R. Ward [12] This scheme employs sequential estimation of the Lin-
ear Feedback Shift Register (LFSR) states of the PN
code sequence generator.

1973 C. Kilgus [47] This arrangement makes use of a majority voting
aided method, which collects multiple independent es-
timation results for each of ‘S’ chips and then employs
a majority logic voting device for the sake of deter-
mining the most reliable initial ’S’ chips to be loaded
into the LFSR.

1977 R. Ward and Y.
Kai [46]

This scheme rapidly discards the majority of the incor-
rect estimation results, therefore accelerates the search
and also increases the reliability of achieving correct
acquisition.

1988 L.S. Lee and J.H.
Chiu [60]

This sequential estimation based PN code acquisition
scheme employs a so-called extended characteristic
polynomial.

1994 R.T. Barghouthi
and G.L. Stüber
[61]

A sequence acquisition scheme based on both se-
quential estimation and soft-decision combining meth-
ods was invoked for DS-CDMA systems, which ex-
ploits the algebraic properties of Kasami sequences
and hence becomes capable of providing a very reli-
able estimate of the correct phase of the local LFSR.

2002 L.L. Yang and L.
Hanzo [52]

The proposed Recursive Soft Sequential Estimation
(RSSE) acquisition scheme exploits the inherent prop-
erties of m-sequences namely that they are uniquely
described by ‘S’ successive chips based upon a recur-
sive SI/SO decoder.

2004 J.H. Lee, I.H.
Song, S.R. Park
and J.M. Lee [55]

This scheme is a majority logic decoding method based
one using a decision logic for the sake of improving
the performance of the majority logic decoding based
RASE of [47].

2004 L.L. Yang and L.
Hanzo [13]

The proposed RSSE acquisition scheme exploits the
inherent properties of m-sequences namely that they
are uniquely described by ‘S’ successive chips based
upon a recursive SI/SO decoder.

2005 L.L. Yang and L.
Hanzo [53]

This Differential Recursive Soft Sequential Estima-
tion (DRSSE) acquisition scheme exploits the inher-
ent properties of m-sequences namely that they are
uniquely described by ‘S’ successive chips based upon
a recursive SI/SO decoder.

2005 K.M. Chugg and
M. Zhu [43]

Iterative message passing algorithms are applied to PN
code acquisition problems for the sake of approach-
ing the achievable maximum-likelihood synchronisa-
tion performance.

2006 O. W. Yeung and
K.M. Chugg [59]

A new iterative algorithm and its hardware architec-
ture are proposed based on iterative message pass-
ing algorithms which are applied in the context of an
ultra-wideband system.
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local sequence by a random amount selected between 0 and (ν − 1), where ν represents the

number of chips in the entire uncertainty region to be searched.

1.4 Detector Structure

1.4.1 Non-Coherent Code Acquisition

√
2cos(f0t)

√
2sin(f0t)

∫ τd
0

∫ τd
0 (·)2

(·)2

Figure 1.7: Schematic diagram of the non-coherent receiver.

Initial acquisition is incapable of employing any prior information concerning the trans-

mitter’s carrier phase. Therefore, during initial acquisition either Non-Coherent (NC)

[3, 4, 5, 6] or Differentially Coherent (DC) [17, 18] schemes have to be used. The sys-

tem seen in Figure 1.7 explicitly shows an example of the NC scheme’s structure. Observe

in Figure 1.7 that the chip energy accumulated during a predetermined integration dwell

time is squared and then the accumulated energies of both the I and Q branches are summed

in order to generate a final decision variable.

1.4.2 Differentially Coherent Code Acquisition

Similarly to the NC code acquisition scheme of Figure 1.7, DC code acquisition [17] does

not require any prior information concerning the transmitter’s carrier phase. An additional

benefit of employing the DC code acquisition scheme of Figure 1.8 is that it is capable of

providing a better performance than using a NC one [17, 18]. This is, because the DC

scheme has a performance gain of just under 3 dB in comparison to the NC one in terms of

a pair of the correct detection and false alarm probabilities. There are two types of DC code

acquisition schemes in the literature [16, 17]. First of all, Chung [16] proposed the chip-based

DC detection scheme of Figure 1.8 that employs a differential receiver having a one-chip
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Figure 1.8: Schematic diagram of the chip based-differentially-coherent acquisition scheme
[16].

time delay, which has the potential of mitigating the typical code acquisition performance

degradation experienced in fast-fading mobile channels, where Tc is the chip duration, the

integral dwell time represents τD, c(t) denotes the unique user-specific PN sequence and

f0 is the carrier frequency. The chip based-DC receiver of Figure 1.8 first evaluates the

modulo-2 function of the current and previous chip values for both the received m-sequence

and the locally generated m-sequence. As mentioned before, at this stage no knowledge of

the transmitter’s carrier phase is available at the receiver, but it is reasonable to assume

that the channel-induced magnitude and phase changes of two consecutive chips are similar.

Hence, by exploiting this assumption, the differential detector of Figure 1.8 eliminates the

effects of the channel-induced as well as carrier-drift-induced phase changes and despite the

absence of a coherent detector, it has a good chance of correctly detecting the transmitted

m-sequence. Then, as seen in Figure 1.8, the differentially encoded received as well as

locally stored m-sequences are compared, i.e. correlated with each other and the correlator

output is compared to the decision threshold of θ. As also shown in Figure 1.8, there are

two hypotheses, namely H1 and H0, which correspond to the desired signal being either

present or absent, respectively. For further details please refer to [16].

Secondly, instead of squaring the energy accumulated over N chips as suggested by the

principle of the NC receiver of Figure 1.7, the channel’s chip-based output samples are

summed over either fraction of or over the entire duration of a full m-chip spreading code

period, which are then multiplied by the conjugate of the N -chip-delayed samples [17],
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3 according to the philosophy of the Partial-Period-Correlation (PPC) [17] or the Full-

Period Correlation [17] (FPC) based schemes, 4 respectively. The schematic diagram of the

(·)∗τd

∫ τd

0

c(t)

Re[·]

Figure 1.9: Schematic diagram of the differentially-coherent acquisition based receiver em-
ploying FPC.

DC acquisition based receiver employing FPC is shown in Figure 1.9. It is interesting to

note in [17] that the achievable detection performance of the partial and full correlation

based methods becomes similar in the context of NC acquisition schemes, as the length

of the integration used by the correlation of Figure 1.7 is gradually increased, whilst their

performances are rather different in the context of DC schemes [17]. The superiority of

the DC schemes is a consequence of the statistical characteristics of the noise samples

contaminating the successive channel output samples in the low SINR region. Namely, the

DC scheme is more efficient in terms of reducing the effects of AWGN and interference

than the NC one in the low SINR ranges. To elaborate on the above fact a little further,

in the low SINR region, the false alarm probabilities of the DC and NC schemes differ by

a factor of two. This result leads to the superiority of the DC scheme over the NC one

[17]. DC schemes outperform the corresponding NC arrangements in terms of both their

correct detection probability and false alarm probability, 5 and hence they also exhibit a

considerably better achievable MAT performance. Table 1.2 outlines the history of DC

acquisition schemes.

3Selection of the optimised N value is highly dependent upon the performance degradation of the carrier
frequency mismatch between the base-station’s transmitter and the mobile station’s receiver.

4The main philosophical difference of the PPC and FPC techniques is that the correlation is performed
over a predefined segment of the total PN code sequence in conjunction with PPC, whereas the correlation
is carried out over a full m-chip spreading code period when exploiting FPC.

5The false alarm probability is defined as the probability of mistakenly deciding on which specific spread-
ing sequence was used at the desired user’s transmitter, which is a direct consequence of the channel-induced
impairments imposed by fading, noise and inteference.
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Table 1.2: Contributions on Differentially Coherent Code Acquisition
Year Authors Contribution

1994 H.S. Liaw and
C.D. Chung [64]

A chip based differentially coherent (DC) detection
scheme was proposed, which employs a differential re-
ceiver having one-chip time delay in an effort to miti-
gate the code acquisition performance degradation in-
flicted by fast fading mobile channels.

1995 C.D. Chung [16] A chip based DC detection scheme was proposed,
which employs a differential receiver having one-chip
time delay in an effort to mitigate the code acquisition
performance degradation inflicted by high-Doppler
fading mobile channels. The proposed serial search
based code acquisition scheme using chip based DC
detection outperforms its parallel search based coun-
terpart in terms of the achievable mean acquisition
time.

1997 M.H. Zarra-
bizadeh, and E.S.
Sousa [17]

In this scheme, the channel’s output samples are
summed over either a fraction or the entire duration of
a full spreading code period and they are multiplied
by the conjugate of the τD-chip-delayed samples for
the sake of achieving a better performance over the
noncoherent counterpart, as seen in Figure 1.9.

2001 T. Ristaniemi
and J. Joutsen-
salo [65]

Coarse delay estimates are obtained by both a differ-
ential correlation based matched filter (DC-MF) and
a differential correlation based multi-class signal clas-
sifier (DC-MUSIC) in order to efficiently mitigate the
effects of both noise and interferers.

2002 Y.K. Jeong, O.S.
Shin and K.B. Lee
[66]

Slot synchronisation designed for fast and reliable cell
search was proposed for inter-cell asynchronous DS-
CDMA systems employing a DC combining scheme,
using multiple observations over a number of slots in
order to increase the reliability of code acquisition.

2002 J.C. Lin [18, 67] DC PN code acquisition using full-period corre-
lation (FPC) in both chip-synchronous and chip-
asynchronous direct sequence/spread spectrum re-
ceivers was designed and analyzed.

2003 O.S. Shin and
K.B. Lee [68]

The employment of DC combining was proposed for
improving the performance of a double-dwell acquisi-
tion system by increasing the reliability of the code-
phase verification stage.

2005 L.L. Yang and L.
Hanzo [53]

The proposed Differential Recursive Soft Sequential
Estimation (DRSSE) acquisition scheme exploits the
inherent properties of m-sequence estimates, namely
that they are uniquely and unambiguously described
by ‘S’ successive chips based upon a recursive SI/SO
decoder invoking differential pre-processing.
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1.4.3 Single-Dwell and Multiple-Dwell Time

In single-dwell search based systems [3] the receiver examines all the possible chip-delayed

code phases in either a serial or parallel fashion, until the correct code phase is identified.

In this scenario, the achievable Mean Acquisition Time (MAT) is typically quite high due

to the full hypothesis-testing of all possible code phase.

Accordingly, the achievable MAT performance of both serial search based and parallel

search based code acquisition may be substantially improved by performing tests assuming

multiple dwell times [3, 4, 5]. Since most of the so-called cells associated with specific chips

correspond to incorrect code-phase alignments, their rapid elimination leads to a significant

reduction of the MAT. The multiple-dwell based search may be viewed as a generalisation

of the single-dwell based scheme. Figure 1.10 illustrates the flowchart of the multiple-

dwell based search scheme, where the detector’s dwell-intervals are ordered for the sake of

improving the correct detection probability on the basis of how high the correlation R(Ni)

recorded for dwell-interval Ni was, yielding R(N1)≤R(N2)≤. . . R(Nn). The predetermined

correlation threshold values θ1. . .θn constitute important system parameters, which have to

be increased for the sake of decreasing the associated false alarm probability. It is worth

noting that in practice the optimum MAT value is typically achieved in the false alarm

probability range spanning from 10−3 to 10−4 in conjunction with the best possible correct

detection probability, given a specific length of the coherent summation. In practice, double-

dwell based search schemes are widely used [3, 15], since they constitute an attractive

tradeoff between the achievable MAT performance and the affordable hardware complexity.

Further details on these topics will be provided in Chapter 2.

1.4.4 Post-Detection Integration

The Post-Detection Integration (PDI) technique of Figure 1.11 [3, 14, 15] is widely used in

initial acquisition and/or post-initial acquisition modules of the commercial CDMA based

systems, such as the CDMA-2000 [1] and WCDMA systems [2]. 6 The underlying philoso-

phy is that a decision variable is generated by accumulating T consecutive N-spaced signal

samples observed over multiple N-spaced time intervals to improve the correct detection

probability in the mobile channel imposing both fading and poor SINR conditions. In order

6The so-called post-initial acquisition procedure defined in [7, 8] extracts the accurate timing positions of
the typically reduced-power delayed paths and identifies the appropriate paths earmarked for processing by
the Maximum Ratio Combining (MRC) scheme of the Rake receiver. Accordingly, the post-initial acquisition
performance has a major impact on the performance of the Rake receiver [8].
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Figure 1.10: Schematic diagram of multiple dwell based search system.
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to improve the correct detection probability at the cost of a minor hardware increase com-

pared to the complexity of acquisition modules using no PDI, more explicitly, the number of

PDI stages must be increased, requiring the summation of a specific number of consecutive

N-chip-spaced integrator outputs for the sake of generating the final decision statistics. 7

The number of PDI stages should be determined depending on whether initial acquisition or

post-initial acquisition is considered, as well as depending on the number of both transmit

and receive antennas for the sake of achieving the minimum required acquisition perfor-

mance. There is a tradeoff between the number of the PDI stages and the attainable MAT

performance. Figure 1.11 depicts the schematic of a serial search based receiver employing

the PDI technique of [3, 14, 15].

MF correlator

MF correlator

√
2sin(f0t)

(·)2

(·)2

√
2cos(f0t)

#ofPDI∑

1

Figure 1.11: Schematic diagram of the serial search based receiver employing post-detection
integration.

1.5 Code Acquisition in MC-DS-CDMA

During the early 1990s, MC-DS-CDMA transmission schemes have been proposed in [28],

in order to achieve further advantages in terms of bandwidth efficiency, frequency diversity,

reduced-complexity parallel signal processing and interference rejection capability in high

data-rate transmissions [29, 30, 31]. The parallel code acquisition performance of a MC-DS-

CDMA system has been analysed in [32], when communicating over AWGN or flat Rayleigh

fading channels. In the MC-DS-CDMA system considered in [32], the authors characterised

various code acuqisition scenarios in the context of a MC-DS-CDMA system based upon

both Equal Gain Combining (EGC) and Selection Combining (SeC). The performance of

both scenarios was examined in both AWGN and Rayleigh fading channels. To elaborate

7This specific number must be determined by satisfying a pair of targeted correct detection and false
alarm probabilities in terms of minimised MAT.
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a little further, it was stated in [32] that the performance of using EGC is better than that

when exploiting SeC in the context of an MC-DS-CDMA or Single-Carrier system. These

conclusions were applicable to the UL case, i.e. the MS to BS link of both MC- and SC-

DS-CDMA systems. A parallel search based maximum-likelihood code acquisition scheme

was adopted at the receiver. On the other hand, the code acquisition performance of MC-

DS-CDMA attained with the aid of a serial search based scheme has been investigated in

[6, 23].

.

.

.

.

.

(SP) converter

Serial−to−parallel

1

U

1

Uc(t)

exp(2πf1t + φ1)

exp(2πfut + φu)

U∑

1

Figure 1.12: Transmitter schematic of the MC-DS-CDMA downlink having U subcarriers.

Figure 1.12 illustrates the schematic diagram of the transmitter used in the generalised

MC-DS-CDMA system of [23], where u = 1, ...U denotes the number of subcarriers, c(t) is

the unique user-specific PN sequence, fu denotes the uth subcarrier frequency and φu is the

uth subcarrier phase of the modulator. Furthermore, Tb indicates the bit duration of the

data sequence before Serial-to-Parallel (SP) conversion, whilst Ts represents the symbol du-

ration after SP conversion. In the MC-DS-CDMA system considered the input bit sequence

is SP converted and each of the parallel sequences is then transmitted on a separate sub-

carrier. Consequently, we have Ts = U ·Tb. Furthermore, SF = Ts/Tc denotes the spreading

factor of the subcarrier signals in the MC-DS-CDMA system, whilst the spreading factor of

a corresponding identical-bandwidth SC-DS-CDMA system is SF1 = Tb/Tc1, where Tc1 rep-

resents the chip duration of the corresponding SC-DS-CDMA signal. For simplicity, in our

forthcoming discourse we assume that there is no overlap between the main spectral lobes

of two adjacent subcarriers in the MC-DS-CDMA system considered [23]. Furthermore, we

postulate that each subcarrier signal occupies an identical bandwidth and the total band-

width is equally divided among the U number of subcarriers. Hence, the relationships of

Tc = U ·Tc1 and SF1 = SF hold, since we have Ts = U ·Tb. Based upon the above assump-

tions, both the MC- and the corresponding SC-DS-CDMA systems maintain an identical
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bandwidth of 2/Tc1, as proposed in [23]. It is also worth noting that the PN sequence’ chip

duration Tc1 of the SC-DS-CDMA system is U times lower than that of the MC-DS-CDMA

arrangement. Hence we have Tc1 = Tc/U . This is because given the same allocated band-

width and the same total transmitted energy per chip, the bandwidth of the SC-DS-CDMA

signal is U times higher than that of the subcarrier signals in the MC-DS-CDMA system

using U subcarriers. Moreover, in an effort to maintain a constant integral dwell time of τD,

the chip energy summed by the SC-DS-CDMA receiver during the period of τD is U times

higher than that collected by the MC-DS-CDMA correlator of each subcarrier, since the

number of chips within the period of τD is U times higher for the SC-DS-CDMA system than

that of the MC-DS-CDMA system [23]. The receiver structure of a serial search based NC

o
o
o

1

U(·)2

(·)2

Ztot

∫ τd
0

∫ τd
0

c(t)

U∑

1

c(t)

Figure 1.13: Receiver structure of a noncoherent code acquisition system employing U
subcarriers.

code acquisition scheme employing U subcarriers is portrayed in Figure 1.13. The received

signal is first down-converted to each subcarrier. For each subcarrier the corresponding

correlator evaluates the correlation between the locally generated PN sequence and the re-

ceived baseband signal, while integration takes place over the duration of the dwell time of

τD seconds. Then the output of each correlator is squared and accumulated. Finally, the

outputs of the U NC subcarrier correlators are combined, in order to generate the output

variable, Ztot seen in Figure 1.13. Observe in Figure 6 (a) of [23] that the code acquisition

performance of a MC-DS-CDMA system using EGC significantly improves, as the number

of subcarrier signals combined increases, over the Signal-to-Interference plus Noise Ratio

(SINR) per chip (Ec/I0) range considered. Moreover, the code acquisition performance of

the MC-DS-CDMA system employing EGC was formed to be better in Figure 6 of [23] than

that of the corresponding MC-DS-CDMA system employing SeC and also better than that

of the identical bandwidth SC-DS-CDMA system. The major trend is that the character-

istics of the serial search based code acquisition arrangements are similar to these of the
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parallel search based one.

1.6 Code Acquisition in DS-UWB

The research of UWB systems has recently attracted a significant interest in both the

academic and industrial community [39, 40, 41]. The emerging UWB systems are capable

of supporting both wireless personal computers and home entertainment equipment, both

requiring high data rates. Similarly, UWB systems may also be used in a variety of sensor

networks operating at low data rates and at a low power consumption. DS-UWB techniques

are characterised by low-duty-cycle pulse trains having a very short impulse duration [42,

43], because the high bandwidth results in a fine resolution of the timing uncertainty region.

Depending on the logical value to be conveyed, a signalling impulse of Tp width having the

required polarity is allocated at multiples of the frame duration Tf , where Tf is defined as

the pulse repetition period, i.e. the time between two consecutive signalling pulses. In the

DS-UWB DL, initial acquisition is required for both coarse timing as well as for code phase

alignment and both of these constitute a challenging problem owing to the extremely short

chip-duration [42, 43]. Again, this leads to a huge search space size, which is represented as

the product of the number of legitimate code phases in the uncertainty region of the PN code

and the number of legitimate signalling pulse positions. Both the Timing Acquisition (TA)

and PN Code Phase Acquisition (CPA) must be achieved within the allowable time limits.

Most acquisition schemes considered in the literature rely on either serial- or hybrid-search

based acquisition schemes [42, 63, 69]. Relatively short PN codes have to be employed, in

order to avoid having an excessive search space.

The code acquisition schemes typically used in the DS-UWB DL may be categorised into

the following five classes:

1. Detection based approaches: [42]

Some of the acquisition schemes proposed for the DS-UWB DL are reminiscent of

those applied in conventional DS-CDMA systems.

2. Structured search strategies: [42, 63]

A search strategy specifies the order in which the candidate phases in the timing

uncertainty region are evaluated by the acquisition scheme. When there are more
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than one acquisition phases in the uncertainty region, the serial search which sim-

ply searches through the uncertainty region in a consecutive manner is no longer

the optimal search strategy. More efficient non-consecutive search strategies, such as

for example the ’look-and-jump-by-KK-bins’ search and the bit-reversal search were

proposed in [42]. For the scenario, when the acquisition phases to be evaluated are

KK consecutive phases in the uncertainty region, it has been claimed that the ’look-

and-jump-by-KK-bins’ search is the optimal serial search permutation when KK is

known, while the ’bit-reversal’ is the optimal search permutation, when KK is un-

known. Moreover, the random search may also be considered to be an efficient search

strategy, which relies on the specific characteristics of the UWB channel model [63].

3. Search space reduction techniques: [42, 69, 70, 71]

Some of the acquisition techniques have been dedicated to the reduction of the search

space by using two-stage acquisition schemes. More specifically, a two-stage acquisi-

tion scheme obeying a specific signalling format has been characterised in [42, 70] and

as a result, the size of the search space has been reduced to a certain degree.

4. Estimation-based schemes: [42]

Certain solutions designed for code acquisition in DS-UWB systems have employed

estimation theoretic methods to attain the timing information of the received signal.

5. Iterative MP algorithm based schemes: [6, 13]

A variety of sequential estimation based code acquisition schemes have been proposed

in the literature [5, 45]. As another attractive design option, recursive soft sequence

estimation aided acquisition based on the iterative soft-in soft-out decoding princi-

ple has also been proposed in [6, 13]. These iterative acquisition schemes have been

designed for PN codes by exploiting the available a priori knowledge about how PN

codes are generated with the aid of Linear-Feedback Shift Registers (LFSRs). Ex-

plicitly, a (2S − 1)-chip PN code can be generated with the aid of a LFSR using a

specific Primitive Polynomial (PP), once the associated S-stage LFSR was filled with

S number of chip values [59, 72]. This beneficial property can also be exploited by

the initial acquisition scheme at the receiver, because once we estimated S number



1.7. Chapter Summary and Conclusions 26

of channel-contaminated chip values, the acquisition scheme becomes capable of re-

constructing the entire (2S − 1)-chip code. Recently, in [43, 59] the authors proposed

rapid code acquisition schemes based on the iterative MP algorithm, which adopted a

philosophy similar to that used for Low Density Parity Check (LDPC) codes. When

considering high-reliability military systems, where the employment of long PN codes

is necessary for achieving robustness against malicious jamming and interception, the

schemes of [43, 59] are beneficial in terms of reducing the size of the search space.

1.7 Chapter Summary and Conclusions

In this chapter, we have provided a brief overview of a range of code acquisition schemes.

We commenced the chapter with a brief classification of the family of the code phase ac-

quisition techniques and a generic structure of searcher and Rake receiver on the mobile

station in Section 1.1. Then we illustrated procedures of code acquisition in the DL and UL

in Section 1.2. This was followed by a discussion on various search strategies in Section 1.3.

The underlying serial search based code acquisition was presented in Section 1.3.1, followed

by the parallel search (maximum-likelihood) based code acquisition scheme in Section 1.3.2.

Then the set of known sequential estimation based code acquisition schemes were classi-

fied into four categories in Section 1.3.3, which includes rapid acquisition using sequential

estimation, recursion-aided RASE, majority logic decoding based RASE and recursive soft

sequential estimation. Finally, in Section 1.3.4, the random search based code acquisition

was presented.

We introduced a variety of widely used detector structures in Section 1.4. More specifi-

cally, NC code acquisition was highlighted in Section 1.4.1. Specifically, both a chip based-

DC detection scheme and a Full-Period Correlation (FPC) based DC detection scheme were

highlighted in Section 1.4.2. In Section 1.4.3, the concepts of both single-dwell and multiple-

dwell based techniques were presented. The widely-used post-detection integration concept

of practical code acquisition receivers was highlighted in Section 1.4.4. In Section 1.5, we

have briefly summarised the characteristics of various code acquisition schemes designed for

Multi-Carrier DS-CDMA systems. Then, code acquisition schemes designed for the DS-

UWB DL have been briefly presented in Section 1.6. We summarised the historic evolution

of sequential estimation based code acquisition as well as that of DC acquisition schemes in



1.8. Outline of the Thesis 27

Tables 1.1 and 1.2, respectively. Finally, Figure 1.14 also classifies the various schemes used

in the following chapters. More explicitly, in the top trace of Figure 1.14 serial search based

scenarios of the inter-cell synchronous CDMA-2000 system are classified into five categories,

which will be characterised in Chapters 3 and 4. On the other hand, both random search

and iterative MP algorithm based DS-UWB DL scenarios will be investigated in Chapter 6,

which are featured at the bottom of Figure 1.14.

1.8 Outline of the Thesis
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Code Acquisition of DS−UWB DL
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Figure 1.14: Outline of the various schemes used in the following chapters.

This thesis is organised as follows. Chapter 2 provides the necessary preliminaries on co-

located and cooperative MIMO aided code acquisition employing serial search techniques.

More specifically, the channel model, the correct detection and false alarm probabilities of

both NC and DC code acquisition schemes as well as the Mean Acquisition Time (MAT) of

a range of code acquisition schemes are characterised in terms of both Single Dwell Serial

Search (SDSS) and Double Dwell Serial Search (DDSS) arrangements. The definition of

Ec/I0 in the context of a DS-CDMA system is also provided.

Chapter 3 provides the detailed analysis of four associated topics in terms of minimising

the achievable MAT of the NC serial search based acquisition scheme of both the SC- and
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MC-DS-CDMA DL. An in-depth analysis of various cooperative MIMO scenarios is also

provided. More specifically, the topics to be examined are as follows:

• The detection performance of NC serial search based code acquisition applied in the

co-located MIMO aided DS-CDMA DL;

• The initial and post-initial acquisition in the NC serial search based co-located MIMO

aided SC-DS-CDMA DL;

• NC code acquisition in the co-located MIMO aided SC- and MC-DS-CDMA DL;

• NC code acquisition in the cooperative MIMO assisted SC-DS-CDMA DL.

In Chapter 4 the detailed analysis of two associated topics is provided, namely the

minimisation of the achievable MAT of a DC serial search based scheme employed in both

the co-located MIMO aided SC- and MC-DS-CDMA DL with an emphasis on DC code

acquisition in comparison to NC code acquisition used as a benchmark.

In Chapter 5 the necessary preliminaries on the topic of multiple receive antenna assisted

code acquisition in DS-UWB DL are highlighted. More specifically, the channel model,

the correct detection and false alarm probabilities of random search and iterative Message

Passing (MP) based code acquisition schemes as well as the resultant MAT performance

are analysed.

Chapter 6 provides the detailed analysis of iterative code acquisition designed for the

DS-UWB DL using multiple-component decoders and characterises the initial acquisition

performance of the multiple receive antenna assisted DS-UWB DL using both search space

reduction as well as iterative code phase estimation.

Our conclusions and future research ideas are offered in Chapter 7.

1.9 Novel Contributions

Finally, the novel contributions of the thesis are summarised as follows:

• The fundamental characteristics of code acquisition schemes using co-located MIMO

are investigated [73, 74];
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• The performance of DL code acquisition schemes assisted by co-located MIMO is

investigated in the context of both initial and post-initial acquisition schemes [75, 76];

• An in-depth analysis of the achievable diversity gain on serial search based spreading

code acquisition schemes designed for the co-located MIMO aided MC-DS-CDMA DL

is provided [77, 78];

• The characteristics of serial search based DC code acquisition schemes designed for

co-located MIMO aided systems are analysed [79, 80];

• In-depth studies on the fundamental characteristics of code acquisition schemes de-

signed for a co-located MIMO assisted MC-DS-CDMA system are provided in the

context of DC code acquisition schemes [81, 82].

• A detailed analysis of DL code acquisition schemes employing cooperative MIMO is

given [83, 84];

• In-depth studies on the fundamental characteristics of iterative code acquisition based

schemes designed for a DS-UWB DL are provided [85, 86, 87, 88].



Chapter 2

Serial Search Based MIMO Aided

Code Acquisition Preliminaries

2.1 Introduction

In this chapter, we will provide the necessary preliminaries of serial search based code

acquisition schemes for both co-located and cooperative MIMO. We will commence the

chapter with the portrayal of our channel model, when both single- and multi-path scenarios

are considered, and diverse fading conditions as well as the effects of both spatial and inter-

subcarrier fading correlation on the attainable performance are quantified in Section 2.2.

Then the underlying formulas of both the correct detection and false alarm probabilities will

be presented in Section 2.3. More specifically, the Neyman-Pearson criterion is highlighted

in Section 2.3.1, followed by the derivation of the decision variable’s PDFs for co-located

MIMO aided NC code acquisition schemes in both the SC-DS-CDMA and MC-DS-CDMA

DL in Sections 2.3.2 and 2.3.3 in terms of both a direct approach and a PDF-based one,

when considering both the SC-DS-CDMA and MC-DS-CDMA DL. Then, the PDFs of

cooperative MIMO aided NC code acquisition schemes invoked for the SC-DS-CDMA DL

are derived in Section 2.3.4. Based on the above-mentioned facts, the MAT analysis is

provided for both SDSS and DDSS aided code acquisition schemes in co-located MIMO

aided scenarios, when considering both single- and multi-path propagation environments

in Sections 2.4.1 and 2.4.2, respectively. Furthermore, the MAT analysis of DDSS aided

code acquisition schemes operating in cooperative scenarios is also given for a multi-path

propagation environments in Section 2.4.3. Finally, in Section 2.5 the effect of different

30
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Ec/I0 values on the achievable performance of DS-CDMA systems is studied.

2.2 Channel Model

2.2.1 Single-Path versus Multi-Path Scenario

For the sake of simplifying the performance analysis of the code acquisition schemes con-

sidered, numerous papers adopted a Rayleigh-faded single-path model in the literature

[3, 4, 5, 6]. A range of more sophisticated studies considered a multi-path fading channel

[7, 22, 89, 90, 91, 92]. The latter studies may be classified into two different categories.

First of all, most authors simply considered the deleterious effects of multiple-paths, but

in [22, 92], the authors proposed a new code acquisition scheme that goes far beyond this

passive analysis and actively exploits the multiple-paths. More specifically, this scheme

adopted both non-consecutive search and joint triple-cell detection, which takes advantage

of the characteristics of the multi-path phenomenon in the frequency-selective Rayleigh fad-

ing channels encountered. On the other hand, in [7], Glisic and Katz defined the channel’s

multi-path profile characterised by a vector, which hostile delays of all the received paths.

Both a deterministic model and a probabilistic model of the channel’s multi-path profile

are considered. All the transfer functions consisting of the formula for deriving the Mean

Acquisition Time (MAT) were derived based upon the both models. Historically speak-

ing, [22] adopted a tapped delay line model for describing the frequency-selective channel

from [93]. Finally, a range of dispersive channel models, spanning from two-path to L-

path channel models were adopted in [89, 90, 91]. The achievable MAT was derived by

stipulating the assumption of encountering a multi-path scenario associated with either an

equal- or unequal-power assigned to each path. Hence MAT studies in the open litera-

ture [7, 22, 89, 90, 91] except for [92] employed a similar multi-path channel model in their

discourse. Amongst these models, a widely accepted model of the frequency-selective multi-

path fading channel is the finite-length tapped delay line channel model [22, 93] shown in

Figure 2.1. In the model S(t) represents the transmitted signal of a user, Tc is the chip

duration, φl is the carrier phase of the signal received for the lth path of the user, αl rep-

resents the envelope at the lth path obeying the Rayleigh distribution, n(t) represents the

Additive White Gaussian Noise (AWGN) and r(t) denotes the signal of the user received

through the L-tap delay-line channel model. Furthermore the L tap weights αl are assumed

to be independent identically distributed (i.i.d.) Rayleigh-faded multi-path signals, each
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arriving with a time delay τl having a tap spacing of one chip-duration Tc [22], where L

is the number of multi-path components. In this thesis both the single- and multi-path

models are in our performance analysis.

n(t)

Tc TcTcS(t)

r(t)

(α2, φ2)(α1, φ1) (αL, φL)

Figure 2.1: Tapped delay line model of the frequency-selective multi-path fading channel.

2.2.2 Fading Conditions for Our Performance Analysis

As in [44, 94], it is useful to characterise the fading channel’s correlation on the basis of

the memory τR and τS of its multi-path and shadowing components, where the memory is

defined as the temporal span which has to be exceeded by the multi-path components, in

order to ensure the statistical independence of the fading samples. Let TH1 be the minimum

time interval between two consecutive H1 hypothesis tests [44], where the H1 hypothesis

test indicates a test of whether the currently hypothesised signal is present or not. We opt

for the following basic assumptions for our analytical studies:

(1) Static shadowing is deemed to be encountered, whenever we have τS >> TH1 ; the

shadow-fading envelope is constant during the entire code acquisition process.

(2) Fast multi-path fading is assumed to be present, whenever we have τR < TH1; the

multi-path fading envelope is considered to be independent between the current H1 hypoth-

esis testing and the next one.

(3) As a subclass of the rapidly fading multi-path case, we consider the fading to be

UnCorrelated (UC), whenever we have N ·Tc < τR; In this scenario, the fading envelope is
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considered to be independent in two consecutive integration intervals, but it is considered

to be constant over N chip intervals.

Our analytical formulation will be based on the above-mentioned scenarios. Accordingly,

we employ the flow-graph based approach of [3, 44, 94], assuming the above-mentioned fast

multi-fading scenario associated with UC fading, namely that the fading is independent

between the current H1 hypothesis testing and the next. The analytical derivation of both

the correct detection and false-alarm probabilities applies strictly to the UC case, for which

a fully analytical approach is possible. Moreover, [94] confirmed that the scenario considered

in [3] corresponds to the UC case.

For the sake of further emphasising the validity of our analytical formulation, the sim-

ulation results of [94] demonstrate that accurate results were obtained by using the ap-

proximation that σ2 is a constant [3, 44, 94], where σ2 is the variance of the constituent

Gaussian distribution. Similarly to our assumptions in this thesis, the fast-fading envelope

is modeled as a Rayleigh process in [3, 44, 94]. Furthermore, it may be inferred by the

inspection of Figures 5 and 6 in [94], which show the impact of the fading envelope’s cor-

relation on the system’s performance, that different fading characteristics lead to different

levels of performance, although we will demonstrate that the difference in terms of the

Signal-to-Interference plus Noise Ratio (SINR) per chip (Ec/I0) required for maintaining a

specific MAT is generally less than 1 dB. In conclusion, even though we only consider the

specific scenario of an UC fading channel, the results generated by our analytical approach

are valid for both the full correlation and partial correlation scenarios defined in [44]. Hence

the impact of the fading channel’s correlation on the systems attainable performance, de-

pends on the system’s characteristics, such as for example the number of dwell intervals,

as well as on the (Ec/I0) value encountered when a Constant False-Alarm Rate (CFAR) 1

based approach is adopted.

2.2.3 Effects of Spatial and Inter-Subcarrier Fading Correlation

In recent years various smart antenna designs have emerged, which have found application

in diverse scenarios and the four most wide-spread MIMO types are briefly summarised in

Table 2.1. These four MIMO schemes were designed for achieving various design goals. The

family of Spatial Division Multiplexing (SDM) [27, 95] schemes aims for maximising the

1The definition of CFAR will be explained in depth in the next section
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SDM Systems [95] SDM systems employ multiple antennas, but in contrast to
SDMA arrangements, not for the sake of supporting multiple
users. Instead, they aim for increasing the throughput in the
DL of wireless systems in terms of the number of bits per sym-
bol that can be transmitted by a given user in a given band-
width at a given integrity.

SDMA [27] SDMA exploits the unique, user-specific “spatial signature”,
i.e. the CIRs of the individual users for differentiating amongst
them. This allows the UL system to support multiple users
within the same frequency band and/or time slot, provided that
their CIRs are sufficiently different and are accurately mea-
sured.

Spatial Diversity
(STBC [96, 97],
STTC [97, 98])
and Space-Time
Spreading (STS)
[6]

In contrast to the λ/2-spaced phased array elements of beam-
forming, in spatial diversity schemes, such as space-time block
or trellis codes [98] the multiple antennas are positioned as far
apart as possible, so that the transmitted signals of the differ-
ent antennas experience independent fading, resulting in the
maximum achievable diversity gain.

Beamforming [99] Typically λ/2-spaced antenna elements are used for the sake of
creating a spatially selective transmitter/receiver beam. Smart
antennas using beamforming have been employed for mitigating
the effects of cochannel interfering signals and for providing
beamforming gain.

Table 2.1: The four main applications of MIMOs in wireless communications.

attainable multiplexing gain, i.e. the throughput of a single user by exploiting the unique,

antenna-specific Channel Impulse Responses (CIRs) of the array elements. By contrast,

Space Division Multiplexing Access (SDMA) arrangements [27] are close relatives of SDM

schemes, but they maximise the number of users supported, as opposed to maximising

the throughput of a single user by sharing the total system throughput amongst the users

supported. Alternatively, attaining the maximum possible diversity gain is the objective of

the family of Space-Time Block Coding (STBC) [96] as well as Space-Time Trellis Coding

(STTC) [97] schemes found in the literature [98]. Finally, beamforming mitigates the effects

of interfering users roaming in the vicinity of the desired user [99], provided that their

received signals are angularly separable. In this treatise code acquisition schemes designed

for both SDM [27, 95] and Space-Time Coding [96, 97] schemes will be considered in detail.

However beamforming based schemes will not be considered in this treatise.

When considering the effects of spatial fading correlation among either the multiple trans-

mit antennas or the multiple receive antennas, based on the results of [100], we would like
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to underline the following facts:

When the spatial correlation is sufficiently low, the performance attained in the case of

moderately correlated antenna signals is similar to that obtained in the case of entirely

uncorrelated antennas. In [100], the effects of spatial correlation recorded as a function of

the antenna spacing and azimuth were considered. The results of both Figures 6 and 7

in [100], demonstrate that partially correlated antennas provide a similar performance to

that of entirely uncorrelated antennas. This fact is directly related to our scenarios, when

deriving the correct detection probability formula. In typical mobile communication sce-

narios the BS antennas are situated on a rooftop and the MS is surrounded by numerous

obstacles. The spacing of the multiple transmit antennas of the BS and the multiple receive

antennas of the MS are assumed to be 10 λ (at least 4 λ) and 0.5 λ, respectively, which may

be considered as practical at a center frequency of 2GHz, where the wavelength is 15 cm.

Hence our results are unlikely to be highly affected by the spatial correlation. Accordingly,

this fact is the rationale for using the phrase ’transmission over a spatially uncorrelated

Rayleigh channel’ in the thesis.

Our system may be deemed reminiscent of the CDMA-2000 3x arrangement, which has

three 1.25 MHz-bandwidth subcarriers, while our MC-DS-CDMA system has four 0.625

MHz-bandwidth subcarriers. Similar to SC-DS-CDMA, the DS-spread subcarrier signals of

our MC-DS-CDMA arrangement experience frequency selective fading. The delay spreads

are assumed to be limited to the range of [Tm,TM ], where Tm corresponds to the environ-

ment having the shortest delay spread considered (as experienced, for example in an indoor

environment). By contrast, TM is associated with an environment having the highest pos-

sible delay spread, as in an urban area. Propagation measurements conducted in typical

wireless environments, including various indoor, open rural, suburban and urban areas show

that the delay spread is typically distributed over the range of [0.1µs,3µs] [25, 101]. Ac-

cordingly, when communicating over various fading channels having delay spreads in the

range of [0.1µs,3µs], flat fading is experienced by each subcarrier signal, if the chip duration

Tc is higher than the highest delay spread TM (i.e., when Tc > TM ). Mobile communica-

tion studies often implicitly assume encountering urban, suburban or rural areas, unless

indoor environments are explicitly stipulated. Furthermore, it is usually assumed that the

BS antennas are positioned on a rooftop. When considering both indoor environments and

teletraffic hot spots in an urban area, due to the reflections and refractions imposed by the

propagation channel between the MS and BS, the delay spreads imposed on the transmit-

ted signals are typically longer than the chip duration encountered by our MC-DS-CDMA
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systems, where the chip duration is Tc=1/0.6144µs = 1.6276µs. Hence, typically frequency

selective fading would be encountered. Furthermore, a bandwidth of 0.625 MHz per subcar-

rier is allocated, which is significantly wider than those of typical MC-DS-CDMA systems,

where the latter assume frequency non-selective flat fading channels, when a significantly

higher number of the subcarriers was assigned. As a result of our assumptions, the fading

coefficient of the adjacent subcarriers may be considered to be uncorrelated.

2.3 Detection and False Alarm Probabilities

2.3.1 Neyman-Pearson Criterion

There are a number of ways to describe the best decision strategy in terms of the correct

detection and false alarm probabilities [102]. One of the most useful strategies is constituted

by the Neyman-Pearson criterion [102], which is likely to be the most important criterion in

both radar and sonar detection problems. The hypothesis testing adopted in our system is

based on the Neyman-Pearson criterion, which seeks to minimise the probability of choosing

’0’ when ’1’ is true (a ’miss’), while maintaining an acceptable probability of choosing a

’1’ when a ’0’ is true (a ’false alarm’) [3, 102]. More explicitly, this strategy chooses the

decision rule by ensuring that the false alarm probability PF is no higher than some specified

upper bound and within this constraint, maximises the probability of the correct detection.

Furthermore, an important benefit of this criterion is that it yields a Constant False-Alarm

Rate (CFAR) [44, 102].

Let us now assume that an ’experiment’ is carried out in order to determine, which of

two events generated the data considered. More explicitly, we have two of hypotheses Hi,

i = 0, 1, and one of them represents the outcome of the experiments at the time instant,

when the data were generated. Given that only two hypotheses are legitimate, which

are denoted by H0, H1, we have a binary hypothesis-testing problem. Traditionally the

hypothesis H0 is referred to as the null hypothesis and H1 is the alternative hypothesis

[102]. The space is divided into the regions R0 and R1, where R0 represents the acceptance

region, when H0 is accepted, while in the so-called critical region R1, H0 is rejected and H1

is considered to be true [102]. To elaborate a little further, the acquisition scheme makes

the decision D0 that hypothesis H0 is true if and only if the data point y lies in the decision

region R0 and opts for decision D1 otherwise. In the binary hypothesis testing scenario
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these two regions must encompass every legitimate point of the y-space. Hence the regions

R0 and R1 dichotomise the data space.

Let us now continue our discourse by defining a number of mathematical terms, which

will be used in our forthcoming discussions. Let us now define the null hypothesis H0 as

the one that the desired user’s spreading code is absent, while H1 represents the hypothesis

that is present. Naturally, we would always like to arrive at the correct decision D0 when

H0 is tested and D1, when Hi is being tested. However, we also have to consider the

two erroneous decisions, namely when H0 is being tested and we arrive at the decision D1

in vice versa. More explicitly, the probability of the erroneous decision D1 encountered,

when we are testing the hypothesis H0 that the desired user’s signal is absent is referred

to as a false alarm event, because the channel impairments resulted in a high correlator

output - despite the absence of the desired user. Similarly, when the hypothesis H1 is being

tested - namely that of the desired user’s spreading sequence being present - but we arrive

at the decision D0 owing to experiencing a low correlator output due to severe channel

impairment, we refer to this event as a ’miss’. The corresponding erroneous decisions are

termed as the ’false alarm’ and ’miss’ probabilities, which are denoted by PF = P (D1|H0)

and PM = P (D0|H1), respectively. Finally the correct decision probability is given by

PD = P (D1|H1) = 1 − P (D0|H1).

Again, the Neyman-Pearson criterion is used, in order to maximise the probability of

correct detection, whilst maintaining as low a false alarm probability, as possible, which is

formulated as

maxP (D1|H1) = max

[ ∫

R1

p1(y)dy

]

and P (D1|H0) =

[ ∫

R1

p0(y)dy

]

≤PF , (2.1)

where y indicates the data available for example at the correlator’s output, while R1 symbol-

ises the particular region of the correlator output space, where the decision D1 is inferred.

The variables p0(y) and p1(y) represent the PDF of y conditioned on H0 and H1, respec-

tively. Since the entire correlator output space has to be separated into the critical region

R1 and the acceptance region R0, the first stage is to find the optimum partitioning. Those

points y in R1 are determined by employing a log likelihood ratio test [3, 102]. This test

is expressed as ln[p1(y)/p0(y)] (> or <) θ, where a predetermined threshold, namely θ is

obtained from the Neyman-Pearson constraint associated with a specific probability of false

alarm, which is kept constant at the given value of ψ. More specifically, ψ is calculated by

ψ = Pr(z > θ|H0) =
∫∞
θ p0(y)dy. Now an experiment based upon the Neyman-Pearson

criterion may be analysed in terms of both the probabilities of the correct detection and
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false alarm. Finally, the criterion guarantees that any forms of both p1(y) and p0(y) are

available and specifying the a priori probabilities of the two hypotheses is not necessary. In

the following subsections we will employ the aforementioned criterion in an effort to derive

both the probabilities of the correct detection and false alarm in the MIMO Aided SC- and

MC- CDMA DownLink (DL).

According to references [3, 44, 94], code acquisition can be considered to be a classical

binary hypothesis testing problem, namely that of testing, whether the desired signal is

deemed to be present (an H1 hypothesis), whilst eliminating all incorrect hypotheses de-

noted by H0 and at the same time trying to avoid any missed detection and false alarm

events. In our system a correlator output threshold-based decision criterion has been cho-

sen. The correlator’s decision threshold value has been optimised in the literature based

upon a whole host of criteria [3, 45, 102]. The above-mentioned Neyman-Pearson criterion

[3, 102] has often found favour in mobile environments [3, 44, 94], since it constitutes a

CFAR based approach. According to the CFAR technique [44], the decision variables are

appropriately normalised by the estimate of the background noise plus interference vari-

ance. Hence, in case of using a CFAR technique, the various probabilities associated with

the code acquisition process, including those associated with H0 hypothesis testing do not

depend on the distribution of the fading. The adoption of the CFAR based approach is

particularly desirable in the specific family of code acquisition arrangements, which have to

be robust against fading. In fact, it was shown in [3, 44, 94] that in hypothesis testing based

upon the CFAR technique, the effects of fading channels on the code acquisition process

are restricted to the testing related to the H1 hypothesis. Furthermore, in the presence of

fading, it is important to adopt the CFAR based approach for the sake of decision threshold

optimisation, in order to achieve the best possible acquisition performance. As a benefit

of the above-mentioned normalisation associated with the CFAR-based approach [44], the

fading channel does not affect the testing of the H0 hypotheses. The resultant scenario and

the related test becomes reminiscent of an AWGN scenario. As a consequence, the fading

envelope only affects the correct detection probability. The exploitation of the statistical

independence of the decision variables, which is a consequence of using sufficient statistics

under the assumption of employing a CFAR technique allow us to generate the analytical

expressions of both the correct detection and false-alarm probabilities.
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2.3.2 PDF of Co-located MIMO Aided Non-Coherent Code Acquisition

2.3.2.1 Direct Analysis of SC-DS-CDMA

Here we derive the Probability Density Function (PDF) of a Non-Coherent (NC) scheme

communicating over a spatially uncorrelated Rayleigh-faded channel in the MIMO Aided

SC-DS-CDMA DL by exploiting the expression of its output PDF formulated in the context

of an AWGN channel, in order to further interpret the Neyman-Pearson criterion based

hypothesis testing [3, 102].

The signal transmitted at the ζth chip sampling instant of the desired user at the Base

Station (BS) of a multiple transmit antenna aided system can be expressed as

Stot(ζ) =
P
∑

m=1

[

√

Ec

P
b(ζ)C(ζ)wm(ζ)h(t− ζTc)

√
2 cos(2πft+ φ)], (2.2)

where P is the number of transmit antennas, b(ζ) represents the binary input data sequence

assuming values of +1 or -1, C(ζ) denotes a common PN sequence having a cell-specific

code-phase offset, wm(ζ) identifies the specific Walsh code assigned to the mth transmit

antenna, Ec denotes the pilot signal energy per PN code chip, h(t) is the impulse response

of the pulse shaping filter, Tc is the chip duration, f is the carrier frequency and φ is the

carrier phase of the user’s modulator. The total allocated power is equally shared by the

P transmit antennas. The spacing of the multiple transmit antennas at the BS and the

multiple receive antennas at the MS are assumed to be 10 λ and 0.5 λ, respectively. It is also

assumed that the BS antennas have a high elevation. The tapped-delay line channel model

generates L multi-path signals arriving with a time delay of τl [15, 22] in Section 2.2.1,

where L is the number of multi-path signals received. Therefore, the signal rtot(ζ) at the

receiver is a composite of L multi-path signals having a time delay of τl, which is expressed

in the form of

rtot(ζ) =

L
∑

l=1

P
∑

m=1

R
∑

n=1

[α(l,m,n)

√

Ec

P
b(ζ)c(ζ)wm(ζ)h(t− ζTc − τl)

√
2 cos(2πf

′
t+ φ(l,m,n))],

(2.3)

where R is the number of receive antennas, and α(l,m,n) represents the envelope of the

(l,m, n)th path signal obeying the Rayleigh distribution, while f
′

is the carrier frequency

distorted by the clock-drift-induced frequency mismatch and the Doppler shift. Further-

more, φ(l,m,n) denotes the signal phase of the (l,m, n)th path having a uniform distribution

over (0, 2π).
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Figure 2.2: Receiver structure of NC scheme in the MIMO aided SC-DS-CDMA DL.

Figure 2.2 depicts the block diagram of the NC receiver designed for our code acquisition

scheme using MIMO, where the timing hypothesis test is carried out for binary spreading.

As seen in Figure 2.2, we generate a decision variable by accumulating P ·R independently

faded signals observed over a time interval to improve the correct detection probability

in the mobile channel, which imposes both fading and poor SINR conditions, where the

integral dwell time represents τD = N ·Tc and N is defined as τD/Tc. In order to derive

the output PDF of the NC scheme considered for a Rayleigh-faded channel in this section

we assume encountering a single-path model. The effects of a multi-path channel on the

achievable Mean Acquisition Time will be considered in Section 2.4. Before deriving the

PDF of the decision variable, let us now consider the effects of both the timing errors, τ and

of the total frequency mismatch, ∆ft on the received signal. The timing errors are imposed

by both the different delays of the signal received via a mobile channel and the sampling

inaccuracy caused by having a finite - rather than infinitesimally low - search step size of

∆ = 1/2Tc. The total frequency mismatch is the sum of the clock-drift-induced frequency

mismatch ∆fm between the BS’s transmitter and the Mobile Station (MS)’s receiver as well

as the contribution imposed by the Doppler shift, ∆fd.

Following the procedures outlined in [3], the mean values of the I- and Q- channel outputs



2.3.2. PDF of Co-located MIMO Aided Non-Coherent Code Acquisition 41

in Figure 2.2, are given by

E[Y
(I)
tot ] ≈

P
∑

m=1

R
∑

n=1

α(m,n)

√

Ec

P
R(τ)







N
∑

ζ=1

cos[2πζ(∆fm + ∆fd)Tc + φ(m,n)]







(2.4)

=

P
∑

m=1

R
∑

n=1

α(m,n)

√

Ec

P
R(τ)

{

A·cos(φ(m,n)) − B·sin(φ(m,n))
}

,

E[Y
(Q)
tot ] ≈

P
∑

m=1

R
∑

n=1

α(m,n)

√

Ec

P
R(τ)







N
∑

ζ=1

sin[2πζ(∆fm + ∆fd)Tc + φ(m,n)]







(2.5)

=

P
∑

m=1

R
∑

n=1

α(m,n)

√

Ec

P
R(τ)

{

B· cos(φ(m,n)) + A· sin(φ(m,n))
}

,

where we have A =
N
∑

ζ=1

cos[2πζ(∆ft)Tc ] , B =
N
∑

ζ=1

sin[2πζ(∆ft)Tc ] , while the autocorre-

lation function of the timing error is given by R(τ) =
∫∞
−∞ |H(f)2| cos(2πfτ)df and ∆ft

is defined as ∆fm + ∆fd. If we take into account a strictly band-limited filter [3], R(τ) is

expressed as 2

R(τ) =
sin (πτ/Tc)

(πτ/Tc)
≡ sinc (τ/Tc) . (2.6)

Then, the output variable Z(m,n) assigned to each path is expressed as

Z(m,n) = (E[Y
(I)
(m,n)])

2 + (E[Y
(Q)
(m,n)])

2 (2.7)

= N2(
Ec

P
)sinc2(

τ

Tc
)sinc2(N∆ftTc).

Hence, taking Equation. 2.7 into account, the square of the mean values of Y (I) and Y (Q)

formulated in Equation. 2.7 is given by

M2 = N2(
Ec

P
)sinc2(

τ

Tc
)sinc2(N∆ftTc). (2.8)

Thus, the signal energy reduction expressed as a function of the frequency mismatch be-

comes:

D(∆ft) ≈ sinc2(N∆ftTc). (2.9)

2The timing error effects imposed are highly dependent on the type of the linear waveform-shaping filter
transfer function used, rather than on the type of the spreading codes considered, since without shaping they
all exhibit rectangular chips. In our scenario we opted for a strictly bandlimited Frequency-Domain (FD)
chip-shaping filter transfer function expressed as H(f) = 1√

W

ˆ

u(f + W
2

) − u(f − W
2

)
˜

, where u(·) denotes

the unit step function, f is the frequency in H(f) and W represents the total DS-spread bandwidth [3].

The resultant impulse response, h(t) is given by h(t) =
R W/2

−W/2
H(f)exp(2πift)df =

√
Wsin(πWt)/(πWt),

where W ≡ 1/Tc. Therefore without loss of generality, when using the squaring operation seen in Figure 2.2,
we have Xn = +1, where n = 1, 2, ..., N and Xn represents a squared chip value at the nth chip position,
which effectively eliminates the influence of the polarity on the chip-waveform. When we define the ACF R(τ )
as

R ∞
−∞ |H(f)|2 cos 2πfτdf , based upon our assumption of the FD chip-shaping filter, we have Equation 2.6.
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As a result of the above formulation, the effects of both timing errors and those of the

frequency mismatch are encapsulated by the definition of the mean square, M2 formulated

in Equation. 2.8. This means that the effects of both of these detrimental factors are directly

involved in the measured energy value. The other parameters remain the same as in the

case of considering either timing or frequency errors in isolation.

In order to derive the PDF conditioned on both the hypotheses of the desired signal

being present H1 and absent H0, let us assume that the amplitude is fixed, but that the

phase is taken to be a uniformly distributed random variable. For simplicity, we omitted

the subscripts of all the symbols used, which denoted each path. The vectors hosting the

I- and Q- phase outputs assigned to each path may be expressed as

y(I) = (y
(I)
1 , y

(I)
2 , ...y

(I)
N ) and y(Q) = (y

(Q)
1 , y

(Q)
2 , ...y

(Q)
N ) . (2.10)

Then we obtain the PDFs of both outputs conditioned on φ. The PDFs of the signals being

absent and present are expressed as

p0(y
(I), y(Q)) =

N
∏

ζ=1

exp[−(y
(I)
ζ )2/I0]· exp[−(y

(Q)
ζ )2/I0]/πI0 , (2.11)

p1(y
(I), y(Q)|φ) =

N
∏

ζ=1

exp[−(y
(I)
ζ −

√

Ec

P
R(τ) {cosφ})2/I0] (2.12)

· exp[−(y
(Q)
ζ −

√

Ec

P
R(τ) {sinφ})2/I0]/πI0,

respectively, where I0 denotes the one-sided power spectral density of the AWGN. By in-

troducing the following notation, the expressions of both Y (I)and Y (Q) are defined by

Y (I) =
∑N

ζ=1 y
(I)
ζ and Y (Q) =

∑N
ζ=1 y

(Q)
ζ , respectively, which are physically propor-

tional to the energy accumulated in the integral dwell time of τD. The variances of Y (I)

and Y (Q) are defined as V/2, where we have V ≡ NI0, whilst their means are given by

N
√

Ec
P R(τ)cosφ and N

√

Ec
P R(τ)sinφ, respectively. Accordingly, we formulate the PDF of

Y (I)and Y (Q) at each branch, which may be expressed in the context of an AWGN channel

[3] as

p0(Y
(I), Y (Q)) = exp[−((Y (I))2 + (Y (Q))2)/V ]/πV, (2.13)

p1(Y
(I), Y (Q)|φ) = exp[−(Y (I) −

√

Ec

P
R(τ) {A cos φ − B sinφ})2/V ] (2.14)

· exp[−(Y (Q) −
√

Ec

P
R(τ) {B cosφ + A sinφ})2/V ]/πV,

where we have A =
N
∑

ζ=1

cos[2πζ(∆ft)Tc ] and B =
N
∑

ζ=1

sin[2πζ(∆ft)Tc ] . Since the carrier
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phase is modelled by a uniform random variable, we represent the unconditional PDF in

the presence of the desired signal by averaging Equation. 2.14 over φ, yielding

p1(Y
(I), Y (Q)) =

1

2π

∫ 2π

0
p1(Y

(I), Y (Q)|φ) dφ (2.15)

=
1

2π

∫ 2π

0
exp{−[(Y (I))2 + (Y (Q))2 +

N2Ec

P
R2(τ)sinc2(N∆ftTc)]/V } (2.16)

· exp{2
√

Ec

P
R(τ)[Y (I){A cosφ−B sinφ} + Y (Q){B cosφ+A sinφ}]/V } 1

πV
dφ

=
1

πV
exp

(

−[(Y (I))2 + (Y (Q))2]

V

)

· exp

(

−N
2Ec

P
R2(τ)sinc2(N∆ftTc)/V

)

· I0





2
√

N2Ec
P R2(τ)sinc2(N∆ftTc)[(Y (I))2 + (Y (Q))2]

V



 , (2.17)

where I0(x) ≡
∫ 2π
0 exp(x · cosφ)dφ/2π is the zeroth-order modified Bessel function.

By using the Jacobian transformation [103], we arrive at the PDFs conditioned on both

the hypothesis p0(Z) and p1(Z) of the desired signal being absent and present, respectively,

in the context of an AWGN channel:

p0(Z) = exp[−Z/V ]/V, Z > 0, (2.18)

p1(Z) =
exp[−(Z +M2)/V ]

V
I0

(

2
√
M2Z

V

)

. (2.19)

For the sake of expressing the PDF p1(Z) conditioned on the presence of the desired signal

derived for transmission over an uncorrelated Rayleigh channel, first the PDF p1(Z, β)

corresponding to the SINR β conditioned on the hypothesis of the desired signal being

transmitted over an AWGN channel is weighted by the probability of occurrence p(β) of

encountering the SINR β, as quantified by the PDF and then averaged over its range of

−∞ ∼ ∞, yielding:

p1(Z) =

∫ ∞

−∞
p(β)p1(Z, β)dβ (2.20)

=

∫ ∞

0

(

e−β/σ2

σ2

)

· exp[(−Z + βM2)/V ]

V
· I0
(

2
√

βM2Z

V

)

dβ (2.21)

=
exp[−Z/(V +M2σ2)]

(V +M2σ2)
(2.22)

≡ exp[−Z/(V +M2)]
(

V +M2
) , (2.23)
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where we have M2 ≡ M2σ2 = N2Ec. Upon defining VF = V +M2 = N(I0 +NEc), and

Ec = σ2(Ec/P )sinc2(τ/Tc)sinc
2(N∆ftTc), we arrive at

p0(Z) =
1

V
e−Z/V , (2.24)

p1(Z) =
1

VF
e−Z/VF . (2.25)

The total amount of channel-induced impairments in the DL is constituted by the super-

position of the background noise, plus the serving-cell’s own interference imposed by the

multi-path signals as well as the other-cell interference. Further details on the calculation

of the total interference may be found in [3, 15]. In this thesis we essentially limit our-

selves to considering MIMO without Post-Detection Integration (PDI), noting that PDI is

capable of improving the achievable performance upon generating the decision variable by

accumulating T consecutive signals observed over multiple time intervals, which improves

the correct detection probability in mobile channels imposing both fading and poor SINR

conditions [3, 15, 8]. Nonetheless, we will briefly highlight the beneficial effects of addi-

tionally using MIMO in conjunction with PDI. Here we assume that the signals collected

in multiple time intervals are independent in both the spatial and the time domain, which

leads to a straightforward extension of the formulas to the more general scenarios of invok-

ing MIMO. Since the final decision variable is constituted by the sum of (P ·R · T ) number

of independent variables according to Ztot =
P
∑

m=1

R
∑

n=1

T
∑

k=1

Zm,n,k, each of which has a PDF

given by Equation. 2.24 or Equation. 2.25, we can determine the Laplace transform of each,

by raising them to the (P · R · T )th power and then carrying out the inverse transform for

the sake of generating the desired PDF [3].

Assuming that the number of PDI stages is T , in the case of MIMO using PDI, we arrive

at

p0(Z) =
Z(PRT−1)e−Z/V

(PRT − 1)!V PRT
, (2.26)

p1(Z) =
Z(PRT−1)e−Z/VF

(PRT − 1)!V PRT
F

. (2.27)

Using the procedures outlined above, the probability of correct detection is obtained as

follows:

PD =

∞
∫

θ

p1(Z)dZ = exp(− θ

VF
)

(PRT−1)
∑

k=0

(θ/VF )k

k!
. (2.28)

Similarly, the probability of false alarm is expressed as

PF =

∞
∫

θ

p0(Z)dZ = exp(− θ

V
)

(PRT−1)
∑

k=0

(θ/V )k

k!
, (2.29)
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where θ is a threshold value.

2.3.2.2 Direct Analysis of MC-DS-CDMA

Here we derive the PDF of the NC scheme considered for transmission over Rayleigh-faded

channels in the MIMO aided MC-DS-CDMA DL by exploiting the expression of its output

PDF formulated in the context of an AWGN channel, in order to further interpret the

Neyman-Pearson Criterion based hypothesis testing [3, 102]. In the following subsections

a method of deriving the PDF of the NC MC-DS-CDMA DL based upon the chi-square

distributed random variable [18, 93] is formulated.

The transmitted signal at the ζth chip sampling instant of the desired user at the BS of

both the multiple transmit antenna and multiple subcarrier aided system can be expressed

as

Stot(ζ) =

P
∑

m=1

U
∑

u=1

[

√

Ec

P
b(ζ)C(ζ)wm(ζ)h(t− ζTc)

√
2 cos(2πfut+ φu)], (2.30)

where P is the number of transmit antennas, U is the number of subcarriers, b(ζ) represents

the binary input data sequence assuming values of +1 or -1, C(ζ) denotes a common PN

sequence having a cell-specific code-phase offset, wm(ζ) identifies the specific Walsh code

assigned to the mth transmit antenna, Ec denotes the pilot signal energy per PN code

chip, h(t) is the impulse response of the pulse shaping filter, Tc is the chip duration, fu is

the carrier frequency of the uth subcarrier and φu is the uth subcarrier phase of the user’s

modulator. Figure 2.3 depicts the schematic diagram of the transmitter used in the MC-

.
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Figure 2.3: Transmitter schematic of the MC-DS-CDMA DL having both P antennas and
U subcarriers.

DS-CDMA DL having both P antennas and U subcarriers, where the timing hypothesis
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test is carried out for binary spreading. The total allocated power is equally shared by

the P transmit antennas. The spacing of the multiple transmit antennas at the BS and

the multiple receive antennas at the MS are assumed to be 10 λ and 0.5 λ, respectively.

It is also assumed that the BS antennas have a high elevation. In the MC-DS-CDMA

system considered the input bit sequence is Serial-to-Parallel (SP) converted and each of

the parallel sequences is transmitted on a separate subcarrier. Furthermore, Tb represents

the bit duration of the data sequence before SP conversion, while Ts indicates the symbol

duration after SP conversion. Accordingly, we have Ts = U ·Tb. The spreading factor

of the subcarrier signals in the MC-DS-CDMA system SF is Ts/Tc, while SF1 = Tb/Tc1

denotes the spreading factor of Tc1 chip duration and the corresponding SC-DS-CDMA

system. For simplicity, we postulate in our forthcoming analysis that the main spectral

lobes of two adjacent subcarriers do not overlap in the MC-DS-CDMA system considered

[23]. Furthermore, we assume that each subcarrier signal occupies an identical bandwidth

and the total bandwidth is equally divided among the U number of subcarriers. Therefore,

the relationships of Tc = U ·Tc1 and SF1 = SF hold, since we have Ts = U ·Tb. According to

the above assumption, both the MC- and the corresponding SC-DS-CDMA systems have

the same bandwidth of 2/Tc1, as suggested in [23], which allows their direct comparison in

our forthcoming discourse. The tapped-delay line channel model generates L multi-path

signals arriving with a time delay of τl [15, 22] in Section 2.2.1, where L is the number

of multi-path signals received. Therefore, the signal rtot(ζ) at receiver is a composite of L

multi-path signals having a time delay of τl expressed in the form of

rtot(ζ) =

L
∑

l=1

P
∑

m=1

R
∑

n=1

U
∑

u=1

[α(l,m,n,u)

√

Ec

P
b(ζ)C(ζ)wm(ζ)h(t− ζTc − τl)

√
2 cos(2πf

′
t+φ(l,m,n,u))],

(2.31)

where R is the number of receive antennas and α(l,m,n,u) represents the envelope of the

(l,m, n, u)th path signal obeying the Rayleigh distribution, while f
′
u is the carrier frequency

of the uth subcarrier distorted by both the clock-drift-induced frequency mismatch and

the Doppler shift. Furthermore, φ(l,m,n,u) denotes the signal phase of the (l,m, n, u)th

path having a uniform distribution over (0, 2π). Figure 2.4 depicts the receiver’s schematic

designed for our MC-DS-CDMA code acquisition scheme using MIMO. As seen in Figure2.4,

we generate the decision variable by accumulating (P ·R·U) number of independently faded

signals observed over a time interval to improve the correct detection probability in the

mobile channel imposing both received signal fading and poor SINR conditions, where the

integral dwell time represents τD = N ·Tc and N is defined as τD/Tc. Similarly, by using
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Figure 2.4: Receiver structure of NC scheme in the MIMO aided MC-DS-CDMA DL.
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the procedures of the SC-DS-CDMA code acquisition scheme outlined in Section 2.3.2.1, in

the case of MIMO using PDI, we arrive at

p0(Z) =
Z(PRUT−1)e−Z/V

(PRUT − 1)!V PRUT
, (2.32)

p1(Z) =
Z(PRUT−1)e−Z/VF

(PRUT − 1)!V PRUT
F

. (2.33)

The probability of correct detection is obtained as follows:

PD =

∞
∫

θ

p1(Z)dZ = exp(− θ

VF
)

(PRUT−1)
∑

k=0

(θ/VF )k

k!
. (2.34)

Similarly, the probability of false alarm is expressed as

PF =

∞
∫

θ

p0(Z)dZ = exp(− θ

V
)

(PRUT−1)
∑

k=0

(θ/V )k

k!
, (2.35)

where θ is a threshold value.

It is worth noting that the PN sequence’ chip duration Tc1 for the SC-DS-CDMA system

is U times lower than that of the MC-DS-CDMA arrangement, namely we have Tc1 = Tc/U .

This is because given the same allocated bandwidth and the same total transmitted energy

per chip, the bandwidth of the SC-DS-CDMA signal is U times higher than that of the

subcarrier signals in the MC-DS-CDMA system using U subcarriers. Moreover, for the sake

of maintaining a constant integral dwell time of τD, the chip energy accumulated by the

SC-DS-CDMA receiver during the period of τD is U times higher than that collected by the

MC-DS-CDMA correlator of each subcarrier, since the number of chips within the period of

τD is U times higher for the SC-DS-CDMA system than that of the MC-DS-CDMA system

[23]. Finally, it is also worth mentioning that for SC-DS-CDMA, the coherent integration

interval of N chip durations in the above formula should be substituted by N1 = NU , since

in this scenario N1 = τD/Tc1 = NU indicates the number of chips accumulated within the

integral dwell time τD.

2.3.2.3 PDF Based Approach in SC-DS-CDMA

The signal transmitted by the BS having P transmit antennas can be expressed as

Stot(t) =

P
∑

m=1

[

√

Ec

PTc
b(t) C(t) wm(t) · exp(2πft+ φ)], (2.36)
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where we have P , which indicates the number of transmit antennas, b(t) represents the

pilot data sequence assuming a value of binary ’1’ [3], C(t) denotes a common PN sequence

having a cell-specific code-phase offset, wm(t) identifies the specific Walsh code assigned to

the mth transmit antenna, Ec denotes the pilot signal energy per PN code chip, Tc indicates

the chip duration, f is the carrier frequency and φ is the carrier phase of a specific user’s

modulator. The signal of the MIMO-aided NC DS-CDMA DL received over the multi-path

Rayleigh fading channel in Section 2.3.1 may be expressed as

rtot(t) =

L
∑

l=1

P
∑

m=1

R
∑

n=1

[α(l,m,n)

√

Ec

PTc
b(t+ dTc + τl)C(t+ dTc + τl) wm(t+ dTc + τl)(2.37)

· exp(2πf
′
t+ φ(l,m,n)) + I(l,m,n)(t)],

where L is the number of multi-path signals received, R is the number of receive antennas,

α(l,m,n) represents the envelope of the (l,m, n)th path signal obeying the Rayleigh distribu-

tion, d is the code phase offset with respect to the phase of the local code, Tc is the chip

duration and f
′
is the carrier frequency distorted by the clock-drift-induced frequency mis-

match. Furthermore, I(l,m,n)(t) is the complex-valued AWGN having a double-sided power

spectral density of I0 at the (l,m, n)th path. Here the total allocated power is equally

shared by the P transmit antennas. The spacing of the multiple transmit antennas at the

BS and the multiple receive antennas at the MS are assumed to be 10 λ and 0.5 λ, respec-

tively. It is also assumed that the BS antennas have a high elevation. The total amount

of channel-induced impairments imposed on the DL is constituted by the superposition of

the background noise, plus the serving-cell interference imposed by the multi-path signals

and the other users as well as the other-cell interference. Further details on the calculation

of the total interference may be found in [3, 15]. Figure 2.5 depicts the block diagram of

the NC receiver designed for our code acquisition scheme using MIMO, which generates a

decision variable by accumulating (P · R) number of independently faded signals observed

over a time interval for the sake of improving the correct detection probability in the mobile

channel imposing both received signal fading and poor SINR conditions, where the integral

dwell time represents τD = N ·Tc and N is defined as τD/Tc and the timing hypothesis test

is carried out for binary spreading.

By employing the procedures proposed in [18], the outputs of the Matched Filters (MF)

are multiplied by a factor of 1√
2
·
√

4Ec
NI0P in order to normalise the noise variance. In the

context of the receiver structure of Figure 2.5, the final decision variable obeying the AWGN
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Figure 2.5: Receiver schematic of a SC-DS-CDMA code acquisition employing R receive
antennas.

channel may be written as

Zζ =

P
∑

m=1

R
∑

n=1

w

w

w

w

w

1√
2
·
(

√

4Ec

NI0P
· Sζ(m,n) + Iζ(m,n)

)w

w

w

w

w

2

, (2.38)

where ζ denotes the ζth chip’s sampling instant, Sζ(m,n) = 1
Tc

∫ NTc

0 c(t)c(t + dTc + kTc)·
exp(j2πN∆ft)dt. If the PN codes have ideal ACFs, where the ACF has identical side-

lobes to those of maximum length shift register sequences [3], Sζ(m,n) can be expressed as

N ·exp(j2πN∆ft) for the signal being present H1 (x = 1). On the other hand, in case of

the signal being absent H0 (x = 0), it can be shown to be −1·exp(j2πN∆ft). Therefore,

Sζ(m,n) becomes deterministic [18], while Iζ(m,n) is the complex-valued AWGN having zero

means and variances of σ2=2 for both their real and imaginary parts, as shown in [18],

while ‖·‖2 represents the Eucledian norm of the complex-valued argument in Equation 2.38.

The factor of 1/
√

2 is employed in order to normalise according to the noise variance. It is

worth noting that the outputs of the squaring operation invoked for both the in-phase and

the quadrature branch of Zζ(m,n) in Figure 2.5 are modelled as the square of the Gaussian

random variable, respectively. Accordingly, the decision variable Zζ(m,n) of each path obeys

a non-central chi-square PDF with two degrees of freedom [22] and having a non-centrality

parameter of λx, which is either 2N
P (Ec

I0
) for the hypothesis of the desired signal being present

H1 (x = 1) or 2
NP (Ec

I0
) for it being absent H0 (x = 0) [18]. This PDF is given by [93]

pZζ(m,n)(z|Hx) =
1

2
·exp

[

−(z + λx)

2

]

·I0

(

√

z · λx

)

, (2.39)

where we have z ≥ 0, x = 0or 1 while I0(·) is the zeroth-order modified Bessel function.

Our aim is now that of expressing the PDF of a desired user’s signal at the output of the

acquisition scheme conditioned on the presence of the desired signal in pZζ
(z|Hx) derived for
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transmission over a spatially uncorrelated Rayleigh channel. In this scenario Ec is multiplied

by the square of the Rayleigh-distributed fading amplitude, β, which exhibits a chi-square

distribution having two degrees of freedom and it is hence expressed as p(β) = e−β/σ2

σ2 ,

where σ2 is the variance of the constituent Gaussian distribution. Then, the average pilot

signal energy Ec per PN code chip can be expressed as Ec = βEc = σ2Ec [3]. Hence, first

the PDF pZζ(m,n)
(z|Hx, β) corresponding to β conditioned on the hypothesis of the desired

signal being transmitted over an AWGN channel having this specific SINR is weighted

by the probability of occurrence p(β) of encountering β, as quantified by the PDF. The

resultant product is then averaged over its legitimate range of −∞ ∼ ∞, yielding:

pZζ(m,n)
(z|Hx) =

∫ ∞

−∞
p(β) · pZζ(m,n)

(z|Hx, β)dβ (2.40)

=

∫ ∞

0

(

e−β/σ2

σ2

)

· exp[−(z + βλx)/2]

2
· I0

(

2
√
βλxz

2

)

dβ (2.41)

=
exp[−z/(2 + λxσ

2)]

(2 + λxσ2)
(2.42)

≡ exp[−z/(2 + λx)]
(

2 + λx

) , (2.43)

where (Ec/I0)
′
is defined as (Ec/I0)

′
= (Ec/I0)·sinc2( τ

Tc
)·sinc2(N∆ftTc), where the second

multiplicative term of this definition represents the square of the autocorrelation function

of the timing error, τ , while the third multiplicative term of the definition quantifies the

signal energy reduction expressed as a function of the total frequency mismatch, ∆ft after

the squaring operation seen in Figure 2.5. The corresponding non-centrality parameter,

λx ≡ λxσ
2 is either 2N

P (Ec
I0

)
′

when the desired signal is deemed to be present (x = 1) or

2
NP (Ec

I0
)
′
when it is deemed to be absent (x = 0). For notational convenience we also define

µx = (2+λx), which physically represents a new biased non-centrality parameter. Finally,

we arrive at the PDF of Zζ(m,n) conditioned on the presence of the desired signal in the

form of:

pZζ(m,n)
(z|Hx) =

1

µx
e−z/µx . (2.44)

Assuming that the number of PDI stages is T and taking into account that the decision

variables Zζ are constituted by the sum of (P ·R·T ) number of independent variables (Zζ =
P
∑

m=1

R
∑

n=1

T
∑

k=1

Zζ(m,n,k)), which has a PDF given by Equation. 2.44, we can determine the

Laplace transform3 of each by raising them to the (P ·R·T )th power and then carrying out

3Performing Laplace transform generates the characteristic function of each.



2.3.2. PDF of Co-located MIMO Aided Non-Coherent Code Acquisition 52

the inverse transform for the sake of generating the desired PDF [3], leading to:

pZζ
(z|Hx) =

z(PRT−1)e−z/µx

Γ(PRT )·µx
PRT

, (2.45)

where Γ(·) is the Gamma function. In the case of MIMO using PDI, finally, the probability

of correct detection corresponding to x = 1 is obtained as

PD =

∫ ∞

θ
pZζ

(z|Hx)dz|x=1 (2.46)

= exp(− θ

µx
) ·

(PRT−1)
∑

k=0

(θ/µx)
k

k!
|x=1, (2.47)

where θ is a threshold value. Similarly, the probability of false alarm corresponding to

x = 0 is expressed as

PF =

∫ ∞

θ
pZζ

(z|Hx)dz|x=0 (2.48)

= exp(− θ

µx
) ·

(PRT−1)
∑

k=0

(θ/µx)k

k!
|x=0. (2.49)

2.3.2.4 PDF Based Approach in MC-DS-CDMA
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Figure 2.6: Transmitter schematic of the MC-DS-CDMA DL having both P antennas and
U subcarriers.

The assumptions stipulated for the MC-DS-CDMA system considered here are exactly

the same as those of Section 2.3.2.2. The signal transmitted by the BS having P transmit

antennas and U subcarriers can be expressed as

Stot(t) =
P
∑

m=1

U
∑

u=1

[

√

Ec

PTc
b(t) C(t) wm(t) · exp(2πfut+ φu)], (2.50)
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where P indicates the number of transmit antennas, U is the number of subcarriers, b(t)

represents the pilot data sequence assuming a value of binary ’1’ [3], C(t) denotes a common

PN sequence having a cell-specific code-phase offset, wm(t) identifies the specific Walsh

code assigned to the mth transmit antenna, Ec denotes the pilot signal energy per PN code

chip, Tc indicates the chip duration, fu is the uth subcarrier frequency and φu denotes the

uth subcarrier phase of the modulator. Figure 2.6 depicts the schematic diagram of the

transmitter used in the MC-DS-CDMA DL having both P antennas and U subcarriers.

The total allocated power is equally shared by the P transmit antennas. The spacing of

the multiple transmit antennas at the BS and the multiple receive antennas at the MS are

assumed to be 10 λ and 0.5 λ, respectively. It is also assumed that the BS antennas have a

high elevation. Further details on the calculation of the total interference may be found in

[3, 15]. The signal of the MIMO-assisted MC-DS-CDMA DL received over the multi-path

Rayleigh fading channel of Section 2.2.1 may be formulated as

rtot(t) =
L
∑

l=1

P
∑

m=1

R
∑

n=1

U
∑

u=1

[α(l,m,n,u)

√

Ec

PTc
b(t+ dTc + τl)C(t+ dTc + τl) (2.51)

·wm(t+ dTc + τl) exp(2πf
′
ut+ φ(l,m,n,u)) + I(l,m,n,u)(t)],

where L is the number of multi-path signals received, R is the number of receive anten-

nas, α(l,m,n,u) represents the envelope of the (l,m, n, u)th received signal path obeying the

Rayleigh distribution, f
′
u is the uth subcarrier frequency distorted by the clock-drift-induced

frequency mismatch, whilst d is the code phase offset with respect to the phase of the local

code, while the integral dwell time is given by τD=N ·Tc and N is defined as τD/Tc. Further-

more, I(l,m,n,u)(t) is the complex-valued AWGN having a double-sided power spectral den-

sity of I0, which contaminates the (l,m, n, u)th path. The total amount of channel-induced

impairments imposed on the DL is constituted by the superposition of the background

noise, plus the serving-cell interference imposed by the multi-path signals and the other

users as well as the other-cell interference plus the inter-subcarrier interference. Figure 2.7

depicts the receiver’s schematic designed for our MC-DS-CDMA code acquisition scheme

using MIMO, which generates the decision variable by accumulating (P ·R·U) number of

independently faded signals observed over a time interval of τD.

By employing the procedures proposed in [18], the outputs of the MFs are multiplied

by a factor 1√
2
·
√

4Ec
NI0P in order to normalise the noise variance. In the context of the

receiver structure of Figure 2.7, the final decision variable obeying the AWGN channel may



2.3.2. PDF of Co-located MIMO Aided Non-Coherent Code Acquisition 54

R

o
o
o

1

o
o
o

1

U

o
o
o

o
o
o

W1(t)

W1(t)
Ztot

U∑

R∑

(·)2
∫ τD

0

(·)2
∫ τD

0

(·)2
∫ τD

0

(·)2
∫ τD

0

WP (t)

WP (t)

Figure 2.7: Receiver schematic of a MC-DS-CDMA code acquisition employing both R
receive antennas and U subcarriers.

be expressed with the aid of the procedures suggested in [18] as follows

Zζ =
P
∑

m=1

R
∑

n=1

U
∑

u=1

w

w

w

w

w

1√
2
·
(

√

4Ec

NI0P
· Sζ(m,n,u) + Iζ(m,n,u)

)w

w

w

w

w

2

, (2.52)

where ζ denotes the ζth chip’s sampling instant, Sζ(m,n,u) = 1
Tc

∫ NTc

0 c(t)c(t + dTc +

kTc)·exp(j2πN∆ft)dt. If the PN codes have ideal ACFs, where the ACF has identical

sidelobes to those of maximum length shift register sequences [3], Sζ(m,n,u) can be expressed

as N ·exp(j2πN∆ft) for the signal being present H1 (x = 1). On the other hand, in case of

the signal being absent H0 (x = 0), it can be shown to be −1·exp(j2πN∆ft). Therefore,

Sζ(m,n,u) becomes deterministic [18], while Iζ(m,n,u) is the complex-valued AWGN having

zero means and variances of σ2=2 for both their real and imaginary parts, as shown in [18],

while ‖·‖2 represents the Eucledian norm of the complex-valued argument in Equation 2.52.

The factor of 1/
√

2 is employed in order to normalise according to the noise variance. It

is worth noting that the outputs of the squaring operation invoked for both the in-phase

and the quadrature branch of Zζ(m,n,u) in Figure 2.5 are modelled as the square of the

Gaussian random variable, respectively. Accordingly, the decision variable Zζ(m,n,u) of each

path obeys a non-central chi-square PDF with two degrees of freedom [22] and having a
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non-centrality parameter of λx, which is either 2N
P (Ec

I0
) for the hypothesis of the desired

signal being present H1 (x = 1) or 2
NP (Ec

I0
) for it being absent H0 (x = 0) [18]. This PDF

is given by [93]

pZζ(m,n,u)(z|Hx) =
1

2
·exp

[

−(z + λx)

2

]

·I0

(

√

z · λx

)

, (2.53)

where we have z ≥ 0, x = 0or 1, while I0(·) is the zero-order modified Bessel function.

Our aim is now that of expressing the PDF of a desired user’s signal at the output of the

acquisition scheme conditioned on the presence of the desired signal in pZζ
(z|Hx) derived for

transmission over a spatially uncorrelated Rayleigh channel. In this scenario Ec is multiplied

by the square of the Rayleigh-distributed fading amplitude, β, which exhibits a chi-square

distribution having two degrees of freedom and it is hence expressed as p(β) = e−β/σ2

σ2 ,

where σ2 is the variance of the constituent Gaussian distribution. Then, the average pilot

signal energy Ec per PN code chip can be expressed as Ec = βEc = σ2Ec [3]. Hence, first

the PDF pZζ(m,n,u)
(z|Hx, β) corresponding to β conditioned on the hypothesis of the desired

signal being transmitted over an AWGN channel having this specific SINR is weighted

by the probability of occurrence p(β) of encountering β, as quantified by the PDF. The

resultant product is then averaged over its legitimate range of −∞ ∼ ∞, yielding:

pZζ(m,n,u)
(z|Hx) =

∫ ∞

−∞
p(β) · pZζ(m,n,u)

(z|Hx, β)dβ (2.54)

=

∫ ∞

0

(

e−β/σ2

σ2

)

· exp[−(z + βλx)/2]

2
·I0

(

2
√
βλxz

2

)

dβ (2.55)

=
exp[−z/(2 + λxσ

2)]

(2 + λxσ2)
(2.56)

≡ exp[−z/(2 + λx)]
(

2 + λx

) , (2.57)

where (Ec/I0)
′
is defined as (Ec/I0)

′
= (Ec/I0)·sinc2( τ

Tc
)·sinc2(N∆ftTc), where the second

multiplicative term of this definition represents the square of the autocorrelation function

of the timing error, τ , while the third multiplicative term of the definition quantifies the

signal energy reduction expressed as a function of the total frequency mismatch, ∆ft after

the squaring operation seen in Figure 2.5. The corresponding non-centrality parameter

of λx ≡ λxσ
2 is either 2N

P (Ec
I0

)
′

for the hypothesis of the desired signal being present H1

(x = 1) or 2
NP (Ec

I0
)
′

for it being absent H0 (x = 0). For notational convenience we also

define µx = (2 + λx), which physically represents a new biased non-centrality parameter.

Finally, we arrive at the PDF of Zk(m,n,u) conditioned on the presence of the desired signal



2.3.3. PDF of Co-located MIMO Aided DC Code Acquisition Scheme 56

in the form of:

pZζ(m,n,u)
(z|Hx) =

1

µx
e−z/µx . (2.58)

Assuming that the number of PDI stages is T , since the decision variable Zζ is constituted

by the sum of (P ·R·U ·T ) number of independent variables

(Zζ =
P
∑

m=1

R
∑

n=1

U
∑

u=1

T
∑

k=1

Zζ(m,n,u,k)), which has a PDF given by Equation. 2.58, we can de-

rive the Laplace transform of each by raising them to the (P ·R·U ·T )th power and then

performing the inverse transform in order to generate the resultant PDF [3], leading to:

pZζ
(z|Hx) =

z(PRUT−1)e−z/µx

Γ(PRUT )·µx
PRUT

, (2.59)

where Γ(·) is the Gamma function. In the case of MIMO using PDI, finally, the probability

of correct detection corresponding to x = 1 is obtained as

PD =

∫ ∞

θ
pZζ

(z|Hx)dz|x=1 (2.60)

= exp(− θ

µx
) ·

(PRUT−1)
∑

k=0

(θ/µx)k

k!
|x=1, (2.61)

where θ is a threshold value. Similarly, the probability of false alarm corresponding to

x = 0 is expressed as

PF =

∫ ∞

θ
pZζ

(z|Hx)dz|x=0 (2.62)

= exp(− θ

µx
) ·

(PRUT−1)
∑

k=0

(θ/µx)
k

k!
|x=0. (2.63)

2.3.3 PDF of Co-located MIMO Aided DC Code Acquisition Scheme

2.3.3.1 PDF Based Approach in SC-DS-CDMA

The transmitted signal of the BS having P transmit antennas can be expressed as

Stot(t) =

P
∑

m=1

[

√

Ec

PTc
b(t) C(t) wm(t) · exp(2πft+ φ)], (2.64)

where P indicates the number of transmit antennas, b(t) represents the pilot data sequence

assuming a value of binary ’1’ [3], C(t) denotes a common PN sequence having a cell-

specific code-phase offset, wm(t) identifies the specific Walsh code assigned to the mth

transmit antenna, Ec denotes the pilot signal energy per PN code chip, Tc indicates the

chip duration, f is the carrier frequency and φ is the carrier phase of a specific user’s
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modulator. The signal of the MIMO-aided DS-CDMA DL received over the multi-path

Rayleigh fading channel considered in Section 2.2.1 may be expressed as [18]

rtot(t) =

L
∑

l=1

P
∑

m=1

R
∑

n=1

[α(l,m,n)

√

Ec

PTc
b(t+ dTc + τl)C(t+ dTc + τl) wm(t+ dTc + τl)(2.65)

· exp(2πf
′
t+ φ(l,m,n)) + I(l,m,n)(t)],

where L is the number of multi-path signals received, R is the number of receive antennas,

α(l,m,n) represents the complex-valued envelope of the (l,m, n)th signal path obeying the

Rayleigh distribution, d is the code phase offset with respect to the phase of the local

code, f
′
is the carrier frequency distorted by the clock-drift-induced frequency mismatch.

Furthermore, I(l,m,n)(t) is the complex-valued AWGN having a double-sided power spectral

density of I0 at the (l,m, n)th path. Here the total allocated power is equally shared by

the P transmit antennas. The spacing of the multiple transmit antennas at the BS and the

multiple receive antennas at the MS are assumed to be 10 λ and 0.5 λ, respectively. It is also

assumed that the BS antennas have a high elevation. The total amount of channel-induced

impairments imposed on the DL is constituted by the superposition of the background

noise, plus the serving-cell interference imposed by the multi-path signals and the other

users as well as the other-cell interference. Further details on the calculation of the total

interference may be found in [3, 15]. Figure 2.8 portrays the Differentially Coherent (DC)

receiver’s schematic designed for our code acquisition scheme using MIMO, where the timing

hypothesis test is carried out for binary spreading. In the DC scheme of Figure 2.8, instead

of squaring the summed energy as suggested by the procedures outlined in Section 2.3.2,

the channel’s output samples accumulated over a full spreading code period are multiplied

by the conjugate of the N -chip-delayed samples [17, 18] and the integral dwell time is

represented by τD = N ·Tc, whilst N is defined as τD/Tc. A decision variable is generated

by accumulating (P ·R) number of independently faded received signals observed over a time

interval for the sake of improving the correct detection probability in the mobile channel

imposing both received signal fading and poor SINR conditions.

By employing the procedures proposed in [18], the outputs of the MFs are multiplied by

a factor of
√

4Ec
NI0P in order to normalise the noise variance. The output rMF

ζ of the MF

assigned to each path is as follows:

rMF
ζ =

√

4Ec

NI0P
Sζ(m,n)e

(jφ(m,n)) + Iζ(m,n), (2.66)

where ζ denotes the ζth chip’s sampling instant, Sζ(m,n) = 1
Tc

∫ NTc

0 C(t)·C(t+ dTc + ζTc)dt

and Iζ(m,n) =
√

4
NI0Tc

∫ NTc

0 C(t)·I(t+ ζTc)dt. Both Iζ(m,n) and Iζ−N(m,n) are independent
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∫ τD
0

WP (t)

Figure 2.8: DC receiver schematic of a SC-DS-CDMA code acquisition employing R receive
antennas.

complex-valued Gaussian random variables with zero means and variances of 2 for both

their real and imaginary parts [18]. Here we assume that the autocorrelation function of

the spreading sequences is the same as those of the sequences generated by maximum length

shift register [3]. The value of Sζ(m,n) is either N for the hypothesis of the desired signal

being present H1 (x = 1) or -1 for it being absent H0 (x = 0). Therefore both Sζ(m,n) and

S(ζ−N)(m,n) are considered to be a deterministic value, which depends on whether a signal

is present or absent [18]. For notational simplicity we omit the subscripts of S, I and W .

The decision variable Zζ , which is constituted by the real part of (rMF
ζ ·rMF

(ζ−N)
∗
) might be

expressed as

Zζ = Re[(

√

4Ec

NI0P
Sζe

(jφ) + Iζ)·(
√

4Ec

NI0P
S(ζ−N)e

(jφ) + I(ζ−N))
∗]. (2.67)

By absorbing the multiplicative factor of e(jφ) in the complex noise components, Sζ is

simplified to

Zζ = (

√

4Ec

NI0P
Sζ + I

(r)
ζ )·(

√

4Ec

NI0P
S(ζ−N) + I

(r)
(ζ−N)) + I

(i)
ζ I

(i)
(ζ−N) (2.68)

Equation.2.68 may also be rewritten as

Zζ = [

√

4Ec

NI0P
Sζ + W1,ζ ]

2 + W 2
3,ζ ] − [W 2

2,ζ + W 2
4,ζ ], (2.69)

where we have I
(r)
ζ = Re(Iζ), I

(i)
ζ = Im(Iζ), I

(r)
(ζ−N) = Re(I(ζ−N)), I

(i)
(ζ−N) = Im(I(ζ−N)),

W1,ζ = 1
2(I

(r)
ζ + I

(r)
(ζ−N)

), W2,ζ = 1
2(I

(r)
ζ − I

(r)
(ζ−N)

), W3,ζ = 1
2(I

(i)
ζ + I

(i)
(ζ−N)

) and W4,ζ =

1
2(I

(i)
ζ − I

(i)
(ζ−N)). Then, in the context of the DC receiver structure of Figure 2.8 employing

MIMO, the final DC decision variable obeying the AWGN channel may be written as [18]

Zdc
ζ =

P
∑

m=1

R
∑

n=1

[(

√

4Ec

NI0P
· Sζ(m,n) + W1,ζ(m,n))

2 (2.70)
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+W 2
3,ζ(m,n)] −

P
∑

m=1

R
∑

n=1

[W 2
2,ζ(m,n) + W 2

4,ζ(m,n)],

where Sζ(m,n) is assumed to be deterministic [18] and the definition of W1,ζ(m,n), W2,ζ(m,n),

W3,ζ(m,n) and W4,ζ(m,n) is also the same as in [18], which are mutually independent Gaus-

sian random variables having zero means and unit variances [18]. Let us now introduce a

shorthand for the first and second terms of Equation. 2.70 as follows:

Xζ =

P
∑

m=1

R
∑

n=1

[(

√

4Ec

NI0P
· Sζ(m,n) + W1,ζ(m,n))

2 + W 2
3,ζ(m,n)] (2.71)

and

Yζ =

P
∑

m=1

R
∑

n=1

[

W 2
2,ζ(m,n) + W 2

4,ζ(m,n)

]

. (2.72)

Then the final decision variable of Equation.2.70 is obtained as Zdc
ζ = Xζ − Yζ

=
P
∑

m=1

R
∑

n=1
Xζ(m,n) −

P
∑

m=1

R
∑

n=1
Yζ(m,n), where Xζ obeys a noncentral chi-square PDF with

(2P · R) degrees of freedom and having a non-centrality parameter of λx, which is either

4N
P (Ec

I0
)
′
, when the desired signal is deemed to be present (x = 1) or 4

NP (Ec
I0

)
′
, when it is

deemed to be absent (x = 0) [18]. The effects of both timing errors and the total frequency

mismatches are encapsulated by the definition of (Ec/I0)
′
. In the spirit of [3], (Ec/I0)

′

is defined as (Ec/I0)
′

= (Ec/I0)·sinc2( τ
Tc

)·sinc2(N∆ftTc), where the second term of the

definition is the square of the autocorrelation function imposed on the timing error, τ , the

third term of the definition is the signal energy reduction expressed as a function of the total

frequency mismatch, ∆ft after the squaring operation and N represents the number of chips

accumulated over the duration of τD. Finally, Yζ is centrally chi-square distributed with

2P ·R degrees of freedom. It is also worth noting that the outputs of the squaring operation

invoked for both the in-phase and the quadrature branches in Figure 2.8 are modelled

as squares of Gaussian random variables, respectively. Accordingly, the decision variable

Xζ(m,n) of each path obeys a non-central chi-square PDF with two degrees of freedom [22],

whereas Yζ(m,n) is centrally chi-square distributed with two degrees of freedom. These PDFs

are given by [93] as follows:

pXζ(m,n)
(z|Hx) =

1

2
·exp

[

−(z + λx)

2

]

·I0

(

√

z · λx

)

, (2.73)

and

pYζ(m,n)
(z|Hx) =

1

2
·exp

[

−z
2

]

, (2.74)

respectively, where z ≥ 0, x = 0or 1, I0(·) is the zero-order modified Bessel function of

the first kind. Let us now express the PDF of the desired user’s signal at the output of the
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DC acquisition scheme conditioned on the presence of the desired signal in pXζ(m,n)
(z|Hx),

when communicating over a spatially uncorrelated Rayleigh channel. In this scenario Ec

is multiplied by the square of the Rayleigh-distributed fading amplitude, namely β, which

exhibits a chi-square distribution having two degrees of freedom and it is hence expressed as

p(β) = e−β/σ2

σ2 , where σ2 is the variance of the constituent Gaussian distribution. Then the

average pilot signal energy Ec per PN code chip can be expressed as Ec = βEc = σ2Ec [3].

Therefore first the PDF pZζ(m,n)
(z|Hx, β) corresponding to β conditioned on the hypothesis

of the desired signal being transmitted over an AWGN channel having this specific SINR is

weighted by the probability of occurrence p(β) of encountering β, as quantified by the PDF.

The resultant product is then averaged over its legitimate range of −∞ ∼ ∞, yielding:

pXζ(m,n)
(z|Hx) =

∫ ∞

−∞
p(β) · pXζ(m,n)

(z|Hx, β)dβ (2.75)

=

∫ ∞

0

(

e−β/σ2

σ2

)

· exp[−(z + βλx)/2]

2
· I0

(

2
√
βλxz

2

)

dβ (2.76)

=
exp[−z/(2 + λxσ

2)]

(2 + λxσ2)
(2.77)

≡ exp[−z/(2 + λx)]
(

2 + λx

) , (2.78)

where the corresponding non-centrality parameter of λx ≡ λxσ
2 is either 4N

P (Ec
I0

)
′
when the

desired signal is deemed to be present (x = 1) or 4
NP (Ec

I0
)
′
when it is deemed to be absent

(x = 0). For notational convenience we also define a new biased non-centrality parameter

µx = (2 + λx). Further details on the related calculations are found in [3, 18]. Finally, we

arrive at the PDF of Xζ(m,n) conditioned on the presence of the desired signal in the form

of:

pXζ(m,n)
(z|Hx) =

1

µx
e−z/µx . (2.79)

By contrast, the PDF of pYζ(m,n)
(z|Hx) may be readily derived from Equation. 2.74, yielding

pYζ(m,n)
(z|Hx) =

1

2
e−z/2. (2.80)

The decision variables, Xζ and Yζ are constituted by the sum of (P ·R) number of indepen-

dent variables (Xζ =
P
∑

m=1

R
∑

n=1
Xζ(m,n) and Yζ =

P
∑

m=1

R
∑

n=1
Yζ(m,n)), each of which has a PDF

given by Equation. 2.79 or Equation. 2.80, respectively. Both decision variables constitute

independent Gamma variables, as mentioned in [3], leading to:

pXζ
(z|Hx) =

z(PR−1)e−z/µx

Γ(PR)·µx
PR

, (2.81)
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pYζ
(z|Hx) =

z(PR−1)e−z/2

Γ(PR)·2PR
, (2.82)

where we have Xtot∼g(P ·R, µx) and Ytot∼g(P ·R, 2). This short-hand indicates that both

Xtot and Ytot follow a Gamma distribution having the shape parameter of (P ·R) and a

scale parameter of either µx or 2, respectively, as outlined in [104]. Then, the PDF of

Zdc
ζ = Xζ − Yζ can be computed by straightforward convolution of the PDFs of both

Xζ and Yζ , which results in the PDF of the difference between two independent Gamma

variables. The convolution of the PDFs pXζ
and pYζ

derived for calculating the PDF of Zdc
ζ

conditioned on the desired signal being present H1 or absent H0 is formulated as [104]:

pZdc
ζ

(z|Hx) =

∫ ∞

−∞
pXζ

(ξ) · pYζ
(ξ − z)dξ (2.83)

=

(

(1 − c2)a+ 1
2 · |z|a√

π · 2a · ba+1 · Γ(a+ 1
2)

)

·exp(−c
b
z) ·Ka

( |z|
b

)

, z 6=0 , (2.84)

where Ka(·) is the modified Bessel function of the second kind and of order a. We note

furthermore that Ka(·) is undefined, when the argument is equal to zero. However, this

fact has a negligible impact on calculating the probability of correct detection and false

alarm. Further details on the associated statements are detailed in [104]. Let us now

define the following three parameters, namely a = P ·R − 0.5, b = (4µx)/(µx + 2) and

c = −(µx − 2)/(µx + 2), which allow us to express the probability of correct detection

according to x = 1, as follows [104]:

P dc
D =

∫ ∞

θ
pZdc

ζ
(z|Hx)dz|x=1, θ 6=0 , (2.85)

where θ is a threshold value. Finally, the false alarm probability in the context of a H0

hypothesis is expressed as

P dc
F =

∫ ∞

θ
pZdc

ζ
(z|H0)dz|x=0, θ 6=0 . (2.86)

2.3.3.2 PDF Based Approach in MC-DS-CDMA

The signal transmitted by the BS having P transmit antennas and U subcarriers can be

expressed as

Stot(t) =
P
∑

m=1

U
∑

u=1

[

√

Ec

PTc
b(t) C(t) wm(t) · exp(2πfut+ φu)], (2.87)

where P denotes the number of transmit antennas, U indicates the number of subcarriers,

b(t) represents the pilot data sequence assuming a value of binary ’1’ [3], C(t) is a common
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PN sequence having a cell-specific code-phase offset, wm(t) identifies the specific Walsh

code assigned to the mth transmit antenna, Ec represents the pilot signal energy per PN

code chip, Tc denotes the chip duration, fu denotes the uth subcarrier frequency, and φu

is the uth subcarrier phase of the modulator. Figure 2.9 depicts the schematic diagram of

the transmitter used in the MC-DS-CDMA DL having both P antennas and U subcarriers.

The total allocated power is equally shared by the P transmit antennas. The spacing of

the multiple transmit antennas at the BS and the multiple receive antennas at the MS are

assumed to be 10 λ and 0.5 λ, respectively. It is also assumed that the BS antennas have

a high elevation.

.

.

.

.

.

.

.

.

1

P

(SP) converter

Serial−to−parallel

1

U

1

U

U∑

1

W1(t)

exp(2πf1t + φ1)

exp(2πfU t + φU)

Figure 2.9: Transmitter schematic of the MC-DS-CDMA DL having both P antennas and
U subcarriers.

The received signal of the MIMO-assisted MC-DS-CDMA DL over the multi-path Rayleigh

fading channel of Section 2.2.1 may be written as

rtot(t) =

L
∑

l=1

P
∑

m=1

R
∑

n=1

U
∑

u=1

[α(l,m,n,u)

√

Ec

PTc
b(t+ dTc) C(t+ dTc) wm(t+ dTc) (2.88)

· exp(2πf
′
ut+ φ(l,m,n,u)) + I(l,m,n,u)(t)],

where L is the number of multi-path signals received, R denotes the number of receive anten-

nas, α(l,m,n,u) is the envelope of the (l,m, n, u)th received signal path obeying the Rayleigh

distribution, f
′
u is the uth subcarrier frequency distorted by the clock-drift-induced fre-

quency mismatch, whilst d indicates the code phase offset with respect to the phase of the

local code. Furthermore, I(l,m,n,u)(t) is the complex-valued AWGN having a double-sided

power spectral density of I0, which contaminates the (l,m, n, u)th path. The total amount

of channel-induced impairments imposed on the DL is constituted by the superposition of

the background noise, plus the serving-cell interference imposed by the multi-path signals
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and the other users as well as the other-cell interference plus the inter-subcarrier interfer-

ence. Further details on the calculation of the total interference may be found in [3, 15].

Figure 2.10 portrays the DC receiver’s schematic designed for our MC-DS-CDMA code

acquisition scheme using MIMO, which generates the decision variable by accumulating

(P ·R·U) number of independently faded signals observed over a time interval, where the in-

tegral dwell time is represented by τD = N ·Tc and N is defined as τD/Tc. In the DC scheme

of Figure 2.10, instead of squaring the summed energy as suggested by the procedures out-

lined in Section 2.3.2, the channel’s output samples accumulated over a full spreading code

period are multiplied by the conjugate of the N -chip-delayed samples [17, 18].

R

o
o
o

1

o
o
o

1

U

o

o

o

o

o

o

Re[·]
τD (·)∗

Re[·]
τD (·)∗

Re[·]
τD (·)∗

Re[·]
τD (·)∗

Ztot

U∑

R∑

W1(t)

∫ τD
0

∫ τD
0

W1(t)

∫ τD
0

∫ τD
0

WP (t)

WP (t)

Figure 2.10: DC receiver schematic of a MC-DS-CDMA code acquisition employing both
R receive antennas and U subcarriers.

Again, the decision variable is generated by accumulating (P ·R·U) number of indepen-

dently faded received signals observed over a time interval of τD in order to improve the

correct detection probability, when the mobile channel imposes both received signal fading

and poor SINR conditions. Here we omitted formulating the final decision variable, which

may be readily derived using the procedures proposed in the Section 2.3.3.1 in the context

of the receiver structure of Figure 2.10. The final DC decision variable obeying the AWGN
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may be expressed as [18]

Zdc
ζ =

P
∑

m=1

R
∑

n=1

U
∑

u=1

[(

√

4Ec

NI0P
· Sζ(m,n,u) + W1,ζ(m,n,u))

2 (2.89)

+W 2
3,ζ(m,n,u)] −

P
∑

m=1

R
∑

n=1

U
∑

u=1

[

W 2
2,ζ(m,n,u) + W 2

4,ζ(m,n,u)

]

,

where ζ indicates the ζth chip’s sampling instant, Sζ(m,n,u) is assumed to be deterministic

[18] and the definition of W1,ζ(m,n,u), W2,ζ(m,n,u), W3,ζ(m,n,u) and W4,ζ(m,n,u) is the same as

in [18], which are mutually independent Gaussian random variables having zero means and

unit variances [18]. Again, the definitions of all the symbols in Equation. 2.89 are readily

inferred from Section 2.3.3.1. Let us now introduce a shorthand for the first and second

terms of Equation. 2.89 as follows:

Xζ =
P
∑

m=1

R
∑

n=1

U
∑

u=1

[(

√

4Ec

NI0P
· Sζ(m,n,u) + W1,ζ(m,n,u))

2 + W 2
3,ζ(m,n,u)] (2.90)

and

Yζ =

P
∑

m=1

R
∑

n=1

U
∑

u=1

[

W 2
2,ζ(m,n,u) + W 2

4,ζ(m,n,u)

]

. (2.91)

Then the final decision variable of Equation 2.89 is expressed as

Zdc
ζ = Xζ − Yζ =

P
∑

m=1

R
∑

n=1

U
∑

u=1
Xζ(m,n,u) −

P
∑

m=1

R
∑

n=1

U
∑

u=1
Yζ(m,n,u), where Xζ is noncentrally

chi-square distributed with (2P ·R·U) degrees of freedom and its non-centrality parameter

λx is either 4N
P (Ec

I0
)
′

for the hypothesis of the desired signal being present H1 (x = 1) or

4
NP (Ec

I0
)
′
for it being absent H0 (x = 0) [18], while Yk follows a central chi-square PDF with

(2P ·R·U) degrees of freedom. The effects of both timing errors and the total frequency

mismatches are encapsulated by the definition of (Ec/I0)
′
. In the spirit of [3], (Ec/I0)

′

is defined as (Ec/I0)
′

= (Ec/I0)·sinc2( τ
Tc

)·sinc2(N∆ftTc), where the second term of the

definition is the square of the autocorrelation function imposed on the timing error, τ , the

third term of the definition is the signal energy reduction expressed as a function of the total

frequency mismatch, ∆ft after the squaring operation and N represents the number of chips

accumulated over the duration of τD. Finally, Yζ is centrally chi-square distributed with

2P ·R degrees of freedom. It is also worth noting that the outputs of the squaring operation

invoked for both the in-phase and the quadrature branches in Figure 2.10 are modelled

as squares of Gaussian random variables, respectively. Accordingly, the decision variable

Xζ(m,n,u) of each path obeys a non-central chi-square PDF with two degrees of freedom [22],

whereas Yζ(m,n,u) is centrally chi-square distributed with two degrees of freedom. These
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PDFs are given by [93] as follows:

pXζ(m,n,u)
(z|Hx) =

1

2
·exp

[

−(z + λx)

2

]

·I0

(

√

z · λx

)

, (2.92)

and

pYζ(m,n,u)
(z|Hx) =

1

2
·exp

[

−z
2

]

, (2.93)

respectively, where z ≥ 0, x = 0or 1, I0(·) is the zero-order modified Bessel function of

the first kind. Let us now express the PDF of the desired user’s signal at the output of the

DC acquisition scheme conditioned on the presence of the desired signal in pXζ(m,n,u)
(z|Hx),

when communicating over a spatially uncorrelated Rayleigh channel. In this scenario Ec

is multiplied by the square of the Rayleigh-distributed fading amplitude, namely β, which

exhibits a chi-square distribution having two degrees of freedom and it is hence expressed

as p(β) = e−β/σ2

σ2 , where σ2 is the variance of the constituent Gaussian distribution. Then,

the average pilot signal energy Ec per PN code chip can be expressed as Ec = βEc = σ2Ec

[3]. Therefore, first the PDF pZζ(m,n,u)
(z|Hx, β) corresponding to β conditioned on the hy-

pothesis of the desired signal being transmitted over an AWGN channel having this specific

SINR is weighted by the probability of occurrence p(β) of encountering β, as quantified by

the PDF. The resultant product is then averaged over its legitimate range of −∞ ∼ ∞,

yielding:

pXζ(m,n,u)
(z|Hx) =

∫ ∞

−∞
p(β) · pXζ(m,n,u)

(z|Hx, β)dβ (2.94)

=

∫ ∞

0

(

e−β/σ2

σ2

)

· exp[−(z + βλx)/2]

2
· I0

(

2
√
βλxz

2

)

dβ (2.95)

=
exp[−z/(2 + λxσ

2)]

(2 + λxσ2)
(2.96)

≡ exp[−z/(2 + λx)]
(

2 + λx

) , (2.97)

where the corresponding non-centrality parameter of λx ≡ λxσ
2 is either 4N

P (Ec
I0

)
′
when the

desired signal is deemed to be present (x = 1) or 4
NP (Ec

I0
)
′
when it is deemed to be absent

(x = 0). For notational convenience we also define a new biased non-centrality parameter

µx = (2 + λx). Further details on the related derivations are provided in [3, 18]. Finally,

we arrive at the PDF of Xζ(m,n,u) conditioned on the presence of the desired signal in the

form of:

pXζ(m,n,u)
(z|Hx) =

1

µx
e−z/µx . (2.98)

By contrast, the PDF of Yk(m,n,u) may be readily derived from Equation. 2.93, leading to

pYζ(m,n,u)
(z|Hx) =

1

2
e−z/2. (2.99)
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The decision variables, Xζ and Yζ are expressed as the sum of (P ·R·U) number of in-

dependent variables (Xζ =
P
∑

m=1

R
∑

n=1

U
∑

u=1
Xζ(m,n,u) and Yζ =

P
∑

m=1

R
∑

n=1

U
∑

u=1
Yζ(m,n,u)), each of

which obeys a PDF given by either Equation. 2.98 or Equation. 2.99, respectively. Both

decision variables constitute independent Gamma variables, as mentioned in [3], yielding:

pXζ
(z|Hx) =

z(PRU−1)e−z/µx

Γ(PRU)·µx
PRU

, (2.100)

pYζ
(z|Hx) =

z(PRU−1)e−z/2

Γ(PRU)·2PRU
. (2.101)

Then, the PDF of Zdc
ζ = Xζ − Yζ can be calculated by straightforward convolution of

the PDFs of both Xζ and Yζ , which leads to the PDF of the difference between two inde-

pendent Gamma variables. To elaborate a little further, we have Xtot∼g(P ·R·U, µx) and

Ytot∼g(P ·R·U, 2), where this shorthand represents that both Xtot and Ytot obey a Gamma

distribution having the shape parameter of (P ·R·U) and the scale parameter of either µx or

2, respectively, as outlined in [104]. The convolution of the PDFs pXζ
and pYζ

formulated

in an effort to compute the PDF of Zdc
ζ conditioned on the desired signal being present H1

or absent H0 is derived as [104]:

pZdc
ζ

(z|Hx) =

∫ ∞

−∞
pXζ

(ξ) · pYζ
(ξ − z)dξ (2.102)

=

(

(1 − c2)a+ 1
2 · |z|a√

π · 2a · ba+1 · Γ(a+ 1
2)

)

·exp(−c
b
z) ·Ka

( |z|
b

)

, z 6=0 , (2.103)

where Ka(·) indicates the modified Bessel function of the second kind and of order a. We

note furthermore that Ka(·) is undefined, when the argument is equal to zero. However,

this fact has a negligible impact on calculating the probability of correct detection and false

alarm. Again, further details on the associated statements are found in [104]. Let us now

define the parameters of a = P ·R·U − 0.5, b = (4µx)/(µx + 2) and c = −(µx − 2)/(µx + 2),

which allow us to express the probability of correct detection according to x = 1, as follows

[104]:

P dc
D =

∫ ∞

θ
pZdc

ζ
(z|Hx)dz|x=1, θ 6=0 , (2.104)

where θ is a threshold value. Finally, the false alarm probability in the context of a H0

hypothesis is expressed as

P dc
F =

∫ ∞

θ
pZdc

ζ
(z|H0)dz|x=0, θ 6=0 . (2.105)

In the following section both the probability of correct detection and false alarm expressions

ill be exploited for creating the corresponding detection transfer functions encompassing all



2.3.4. PDF of Cooperative MIMO Aided Non-Coherent Code Acquisition 67

branches of the relevant state diagram characterising the acquisition scheme in order to

derive a formula for the MAT [3].

2.3.4 PDF of Cooperative MIMO Aided Non-Coherent Code Acquisition

2.3.4.1 PDF Based Approach for SC-DS-CDMA

The fixed Relay Station (RS)-aided DS-CDMA DL signal received over the multi-path

Rayleigh fading channel considered may be expressed as [75]

r(t) =

P
∑

p=1

L
∑

l=1

R
∑

r=1

[α(p,l,r)

√

1

P

√

Ec

Tc
c(t+ dTc + τp + τl) (2.106)

·wp(t+ dTc + τp + τl) · exp(2πft+ φ(p,l,r)) + I(p,l,r)(t)],

where p = P is the number of RSs and BS, r = R is the number of receive antennas,

and α(p,l,r) represents the complex-valued envelope of the (p, l, r)th signal path obeying

the Rayleigh distribution. Furthermore, Ec denotes the pilot signal energy per PN code

chip, c(t) represents a common PN sequence having a cell-specific code-phase offset, while

d is the code phase offset with respect to the phase of the local code. Still considering

Equation 2.106, wp(t) identifies the specific Walsh code assigned to the pth RS, τp indicates

the relative time difference of the signal received from a RS with respect to the signal

received from the BS, f is the carrier frequency and finally, φ is the carrier phase of a

specific user’s modulator. Furthermore, I(p,l,r)(t) is the complex-valued AWGN having a

double-sided power spectral density of I0 at the (p, l, r)th path. It is also noted that in

the normalised-power scenario a factor denoted as
√

1
P must be included in Equation 2.106

due to equally sharing the total allocated power. On the other hand, this factor must be

omitted in the increased-power scenario. For the sake of a fair comparison, it is assumed

that in the absence of link imbalance, the total power received by the MS in RS-aided

scenarios is the same as that of the corresponding multiple transmit antenna aided scenario

for the normalised-power scenario. In the increased-power scenario, it is assumed that in the

absence of a link imbalance, the total power received by the MS in RS-aided scenarios is the

same as that of the corresponding multiple receive antenna assisted scenarios. Figure 2.11

depicts the block diagram of the non-coherent DS-CDMA DL receiver designed for our code

acquisition scheme using R co-located receive antennas. The receiver generates a decision

variable by accumulating R number of independently faded signals observed over a time

interval for the sake of improving the PD in the mobile channel imposing both fading and
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poor SINR conditions. By employing the procedures proposed in Section 2.3.2 in the context

of the receiver structure of Fig. 2.11, the final decision variable may be written as [18]

Z(k,p,l) =

R
∑

r=1

w

w

w

w

w

1√
2
·
(

√

4Ec

NI0
· S(k,p,l)(r) + I(k,p,l)(r)

)w

w

w

w

w

2

, (2.107)

where k denotes the kth chip’s sampling instant, Z(k,p,l) is a decision variable of the (p, l)th

path, which constitutes an element of the final decision variables, Z1, ..., ZP in Fig. 2.11,

and S(k,p,l)(r) = 1
Tc

∫ NTc

0 c(t)c(t+dTc +kTc)· exp(j2πN∆ft)dt as described in Section 2.3.2.

If the PN codes have ideal AutoCorrelation Functions (ACFs), where the ACF has identical

sidelobes to those of maximum length shift register sequences [3], S(k,p,l)(r) can be expressed

as N · exp(j2πN∆ft) for the signal being present. On the other hand, in case of the signal

being absent, it can be shown to be −1· exp(j2πN∆Ft). Therefore, S(k,p,l)(r) becomes

deterministic [18, 75], while I(k,p,l)(r) is the complex-valued AWGN having zero means and

variances of σ2=2 for both their real and imaginary parts. Furthermore, ‖·‖2 represents

the Euclidean norm of the complex-valued argument and the factor of 1/
√

2 is employed to

appropriately normalise the noise variance. Accordingly, the decision variable Z(k,p,l) obeys a

non-central chi-square PDF with 2R degrees of freedom, where the non-centrality parameter

λx is either 2N (Ec
I0

) for the hypothesis of the desired signal being present (Hx, x = 1) or

2
N (Ec

I0
) for it being absent (Hx, x = 0) [75]. The effects of both timing errors and frequency

mismatches are encapsulated by the definition of (Ec/I0)
′
[82] and the corresponding non-

centrality parameter, λx ≡ λxσ
2 is either 2N (Ec

I0
)
′
when the desired signal is deemed to be

present (x = 1) or 2
N (Ec

I0
)
′
when it is deemed to be absent (x = 0). We also define µx = (2+

λx), which physically represents a new biased noncentrality parameter. Further details on

the related calculations and derivations can be found in Sections 2.3.2 and 2.3.3. When using

the procedures outlined in Section 2.3.2, finally, the decision variables Z(k,p,l) are constituted

by the sum of R number of independent variables according to Z(k,p,l) =
R
∑

r=1
Z(k,p,l)(r), whilst

the desired signal’s PDF may be formulated using the procedure outlined in Sections 2.3.2

and 2.3.3 as:

fZ(k,p,l)
(z|Hx) =

z(R−1)e−z/µx

Γ(R)·µx
R

, (2.108)

where Γ(·) is the Gamma function. Then, the PD or PF corresponding to x = 1or 0,

respectively, may be expressed as

P |ξ=D or F |(cooperative) =

∫ ∞

θ
fZ(k,p,l)

(z|Hx)dz (2.109)

= exp(− θ

µx
) ·

R−1
∑

r=0

(θ/µx)
r

r!
, (2.110)
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Figure 2.11: Receiver structure of a non-coherent code acquisition system employing R
receive antennas in RS-aided scenarios

where θ is a threshold value. By employing Equation 2.110, the transfer functions required

for calculating the achievable MAT of the fixed RS-aided scenarios considered will be derived

in the forthcoming section.

2.4 Mean Acquisition Time

2.4.1 Single Dwell Serial Search for Co-located Transmission Scenario

2.4.1.1 Single-path Scenario

In [3, 14, 22], explicit Mean Acquisition Time (MAT) formulae were provided for a single-

antenna aided serial search based code acquisition system. There is no procedural differ-

ence between a single-antenna aided scheme and a multiple-antenna assisted one in terms

of analysing the associated MAT, except for deriving the correct detection and the false

alarm probability based upon MIMO rather than a single transmit/single receive antenna.

We will commence our discourse by illustrating the rudimentary concept of Section 1.4.3

in somewhat depth for the sake of augmenting the concept of Single Dwell Serial Search
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(SDSS). The classic SDSS technique has been employed in scenarios, where the uncertainty

region representing the search window width is quite wide. Hence in the context of SDSS

the MAT is the vital performance criterion, as seen for example in the DL of the inter-cell

synchronous CDMA-2000 system of [3, 15]. In this scheme, in the absence of any prior

information such as a predetermined SDSS starting point, all the potential candidate code

phases are serially searched, until the correct phase is determined. Determination of the

correct code implies registering a sufficiently high correlator energy output exceeding a

threshold value optimised in terms of the best possible MAT performance at the receiver.

The associated trade-off is that a low threshold value may offer result in a high probability

of exceeding the threshold owing to channel impairments or interference, which results in a

so-called false alarm. In this case it takes a long time for the receiver to return to its search

mode, hence substantially degrading the MAT. By contrast, an excessive threshold value

results in a high miss probability, when the channel-contaminated reduced signal does not

pass the correlation test. If the estimated code phase is deemed correct, despreading will

be carried out. For the sake of better understanding the SDSS technique, let us introduce

Successful Dectection

A B

D

C

PD2z

(1 − PD2)z

PD3z

PFz

(1 − PF )z
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PFz
(1 − PF )z

PD1z

zK

H0(z)
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H0(z)

PD(2α)z

(1 − PD(2α))z

Figure 2.12: State diagram of single dwell serial search.

the circular diagram of the SDSS scheme in Figure 2.12, indicating that the code acqui-

sition process will be repeated, when it has proceeded through all of its legitimate states

(hypothesis) without attaining correct code phase acquisition.

We assume that in each chip duration Tc, α number of correct timing hypotheses are

tested, which are spaced by Tc/α, and hence the total uncertainty region ν, namely the
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number of phases to be tested is increased by a factor of α. 4

All the resultant (ν − 2α) states that may lead to a false alarm are expected to increase the

MAT according to the corresponding penalty time, which is often assumed to be 1000·Tc.

The 2α number of legitimate locking states within a lag of one chip duration of the correct

timing instant are taken into account in the MAT analysis. Combining all these 2α number

of legitimate locking states into the total or accumulated correct detection transfer function,

which encompasses all branches of the relevant state diagram seen in Figure 2.12 leads to

the correct detection probability and the corresponding transfer function expressed as

HD(z) =
2α
∑

j=1

PDjz

j−1
∏

i=1

[(1 − PDi)z], (2.111)

where PDj represents the probability of correct detection associated with testing the corre-

lator’s output for the j th occasion, following (j − 1) failed trials each resulting in a miss

owing to the channel-impairments and where each probability of a miss in the corresponding

total miss transfer function is given by (1 − PDi). Furthermore, z indicates the unit-delay

operator, where the unit-delay is determined by the time required by the correlator for

testing a specific hypothesis and the exponent of z represents the time delay. Again, H0(z)

in the dotted circles of Figure 2.12 denotes the probability of the desired user’s signal at the

output of the acquisition scheme being absent indicated by an insufficiently high correlator

output or because the receiver is waiting for the penalty time to expire, which is expressed

as

H0(z) = (1 − PF )z + PF z
K+1, (2.112)

where PF represents the false alarm probability and K is the above-mentioned false locking

penalty factor [3]. Finally, HM(z) represents the overall miss probability of a search run

carried out across the entire uncertainty region, which may be formulated as the product

of the individual miss probabilities associated with the 2α number of intervals tested, since

4Note 1: Let us now consider Figure 2.12 and commence other related discussions from the left-most state,
namely A, of the row of 2α number of horizontally aligned states. There are α states per chip-interval, each
of which has to be tested at both-sides of the current time instant. From the left-most state of Figure 2.12
we traverse to successful detection with a probability of PD1 and to the second of the 2α states with a
probability of (1 − PD1), etc. If we tested both the α number of dwell intervals left and right until the
right-most state, namely B, and failed to satisfy the correlation threshold, the acquisition scheme traverses
to state C of Figure 2.12 with a probability of (1−PD(2α)). Since no acquisition success was declared so far,
at this stage two more legitimate events have to be considered, namely either the false alarm event having
a probability of PF or the absence of false alarm having a probability of (1 − PF ). Given that no successful
detection or no false alarm took place or -alternatively- false alarm was encountered, the only conclusion
that may be drawn is that the desired user’s signal is indeed absent or it is deemed to be absent owing to
interference and other channel impairments, leading to state D in Figure 2.12. The probability of the desired
user being absent is denoted by H0(Z) and graphically portrayed in Figure 2.12. The acquisition scheme
traverses an indefinite number of these desired user is absent states, until eventually assumes state A again.
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these may be considered independent events, yielding

HM (z) = z2α
2α
∏

j=1

(1 − PDj). (2.113)

The above-mentioned three transfer functions of Equations. 2.111, 2.112 and 2.113 apply to

all cases, except for the branches of Figure 2.12 emerging from the specific nodes at all the

resultant 2α number of states of the diagram, which connect to the final correct destination

node. Then the transfer function characterising the transition from an initial mode that is i

branches down counterclockwise from the top of Figure 2.12 to the final correct destination

mode is derived as follows:

Ui(z) = H i
0(z)HD(z) + H i

0(z)HM (z)H
(ν−2α)
0 (z)HD(z) + H i

0(z)H
2
M [H

(ν−2α)
0 (z)]2HD(z) + ...

= H i
0(z)HM (z){1 + HM(z)H

(ν−2α)
0 (z) + [HM (z)H

(ν−2α)
0 (z)]2 + ...}. (2.114)

Then, following further manipulation, the final transfer function is obtained as

Ui(z) =
H i

0(z)HD(z)

[1 − HM(z)H
(ν − 2α)
0 (z)]

. (2.115)

Since all the nodes seen in Figure 2.12 are a priori equally likely, the resultant transfer

function averaged over all the (ν − 2α) root-nodes or starting-nodes becomes [3]

U(z) =
1

(ν − 2α)

(ν − 2α)
∑

i=1

Ui(z) =
HD(z)H0(z)[1 − H

(ν − 2α)
0 (z)]

(ν − 2α)[1 − H0(z)][1 − HM (z)H
(ν − 2α)
0 (z)]

. (2.116)

The function U(z) may also be expressed after a polynomial division as

U(z) =

∞
∑

i=1

Ui·zi, (2.117)

where Ui encompasses all the information regarding both the time instant and the prob-

ability of ith path in the resultant transfer function. Hence it may be shown that the

generalised expression derived for computing the MAT of the SDSS based code acquisition

scheme considered is given by employing both Equation. 2.116 and Equation. 2.117:

E[TACQ] =
dU(z)

dz
|z=1·τD =

1

HD(1)
[HD

′
(1) +HM

′
(1) + (2.118)

{(ν − 2α)[1 − HD(1)

2
] +

1

2
HD(1)}H0

′
(1)] · τD,

where H
′
x(z)|x=D, M or 0 is the derivative of Hx(z)|x=D, M or 0 and τD is the dwell time [3].

Therefore the MAT may be expressed as N ·T ·Tc·E[TACQ] seconds and characterises the

overall system performance of the SDSS, where N denotes the coherent integration interval

and T is the number of PDI stages, E[TACQ] denotes the mean acquisition time given by

Equation 2.118, while τD represents N ·T ·Tc.
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2.4.1.2 Multi-path Scenario

We assume that in each chip duration Tc, α number of correct timing hypotheses are tested,

which are spaced by Tc/α. Hence the total number of timing positions within the uncertainty

region is increased by a factor of α. Moreover, as mentioned in Section 2.2.1, when the L

multi-path signals arrive with a time delay τl having a tap-spacing of one chip-duration, then

the relative frequency of the signal being present H1 is increased L-fold. Therefore, in light

of both α and L, the total number of timing positions within the entire uncertainty region

is finally increased by a factor of α·L. The required transfer functions [14] are defined

as follows. The entire successful detection function HD(z) encompasses all the possible

branches of successful detection, which was increased by a factor of L in the state diagram

of Figure 2.12 [3]. Furthermore, H0(z) indicates the absence of the desired user’s signal at

the output of the acquisition scheme, whilst HM(z) represents the overall miss probability

of a search run carried out across the entire uncertainty region. Other related processes

are the same as detailed for the single-path scenario of SDSS in Section 2.4.1.1. Then, it

may be shown that the generalised expression derived for computing the MAT of the serial

search based code acquisition scheme is given by Equation. 2.118 in Section 2.4.1.1:

E[TACQ] =
1

HD(1)
[HD

′
(1) +HM

′
(1) + {(ν − 2αL)[1 − HD(1)

2
] +

1

2
HD(1)}H0

′
(1)] · τD1

(2.119)

which may be simplified to

E[TACQ] ≈ (1 +HM (1))·H0
′
(1)

2·(1 −HM (1))
·(ν·τD), (2.120)

where H
′
x(z)|x=D, M or 0 is a derivative of Hx(z)|x=D, M or 0 and τD denotes the dwell time.

The exact MAT formula given by Equation. 2.119 can be simplified, as described in Equa-

tion. 2.120, if the total number of states ν is significantly higher than the number of H1

states, where H1 represents that the signal may be deemed to be present [22]. In order to

perform our numerical performance analysis, we adopted the specific approximation of the

exact MAT expression proposed in [22]. More explicitly, since each resolvable path con-

tributes two hypotheses and because the average correct detection probability associated

with these two hypotheses is the same, the overall miss probabilities of the SDSS scheme

may be expressed as:

HM (z) = z2Lα
L
∏

l=1

2α
∏

ζ=1

(1 − PD(l,ζ)), (2.121)
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where PD(l,ζ) represents the correct detection probability of the SDSS scheme. The H0(z)

value of the SDSS scheme is expressed as

H0(z) = (1 − PF )z + PF z
K+1, (2.122)

where K denotes the false locking penalty factor expressed in terms of the number of chip

intervals required by an auxiliary device for recognising that the code-tracking loop is still

unlocked and PF is the false alarm probability of the SDSS scheme.

2.4.2 Double Dwell Serial Search for Co-located Transmission Scenario

2.4.2.1 Single-path Scenario
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Figure 2.13: Schematic diagram of double dwell serial search.

An appealing approach to minimising the achievable MAT performance of the serial search

based code acquisition scheme is to perform consecutive tests in conjunction with multiple

dwell times [3, 4, 5]. Since most of the cells searched correspond to incorrect alignments,

eliminating them quickly leads to a significant reduction in the MAT. The resultant multiple

dwell based search system may be considered a generalisation of the single dwell based

one. Double dwell based serial search has been widely used in practice [3, 5, 15], because it

strikes an attractive compromise between the achievable MAT performance and an increased

hardware complexity. Figure 2.13 portrays the schematic of Double Dwell Serial Search
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(DDSS), where the block-diagram shows both the search mode and the verification mode.

More explicitly, if the correlation-test of Z1 > θ1 is satisfied, the result of the search mode

in the upper branch is confirmed in the verification mode of the lower branch using the

second integer dwell time τD2 and the correlator threshold of Z2 > Z1. The first integration

dwell time (τD1) seen in the upper branch of Figure 2.14 is defined as the time required

for testing each hypothesis in the search mode which is typically on the order of 64 chips.

If the estimated code phase is deemed correct in the search mode, the verification mode is

activated in order to confirm, whether HD the previous decision is correct or not. For the

sake of achieving a high-reliability decision, both the coherent integration interval and the

number of PDI stages should be optimised 5. If the decision is confirmed in the verification

mode, the corresponding code phase can be deemed the correct code phase of the received

signal. Otherwise, the search mode will be reactivated, until the correct code phase will be

obtained and confirmed. In a scenario, where false alarm was encountered, after a penalty

time, the search mode will be reactivated. The operation of the DDSS is also illustrated

in the state diagram of Figure 2.14. Similarly, to the assumption of the preceding SDSS

scenario, we postulate that in each chip duration Tc, α number of correct timing hypotheses

are tested, which are spaced by Tc/α, and hence the total uncertainty region ν is increased

by a factor of α 6. All the resultant (ν − 2α) states that may lead to a false alarm are

expected to increase the MAT according to the corresponding penalty time. The 2α number

of legitimate locking states within a lag of one chip duration of the correct timing instant

extending in both directions are taken into account in the MAT analysis. Combining all

these 2α number of legitimate locking states into the correct detection transfer function

5Selection of the optimised value of the coherent integration interval is highly dependent upon the per-
formance degradation of the carrier frequency mismatch between the BS’s transmitter and the MS’s receiver
and a specific number of PDI stages must be determined by satisfying a pair of targeted correct detection
and false alarm probabilities in terms of minimised MAT.

6Note 2: Let us now consider Figure 2.14 and commence other related discussions from the left-most state,
namely A, of the row of 2α number of horizontally aligned states. There are α states per chip-interval, each
of which has to be tested at both-sides of the current time instant. From the left-most state of Figure 2.14
we traverse to successful detection with a probability pair of P

(1)
D1 and P

(2)
D1 and to the second of the 2α states

either with a probability of (1 − P
(1)
D1 ) or with a probability pair of P

(1)
D1 and (1 − P

(2)
D1 ), etc. If we tested

both the α number of dwell intervals left and right until the right-most state, namely B, and failed to exceed
the correlation threshold, the acquisition scheme traverses to state C of Figure 2.14, namely H0(z). Since
no acquisition success was declared so far, at this stage three more legitimate events have to be considered,
namely the false alarm event having a probability pair of P

(1)
F and P

(2)
F , the absence of false alarm having a

probability pair of P
(1)
F and 1−P

(1)
F , or the absence of false alarm having a probability of (1−P

(1)
F ). Given

that no successful detection or no false alarm took place or - alternatively - false alarm was encountered,
the only conclusion that may be drawn is that the desired user’s signal is indeed absent or it is deemed
to be absent owing to interference and other channel impairments, leading to state C in Figure 2.14. The
probability of the desired user being absent is denoted by H0(Z) and graphically portrayed in Figure 2.14.
The acquisition scheme then traverses an indefinite number of these ’desired user is absent states’, until
eventually assumes state A again.
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Figure 2.14: Sate diagram of double dwell serial search.

encompassing all branches of the relevant state diagram in Figure 2.14 leads to the correct

detection transfer function expressed as [14]

HD(z) =

2α
∑

j=1

P
(1)
Dj P

(2)
Dj z

m+1
j−1
∏

i=1

[

(1 − P
(1)
Di )z + P

(1)
Di (1 − P

(2)
Di )zm+1

]

, (2.123)

where P
(1)
Dj and P

(2)
Dj represent the correct detection probability associated with the j th

testing of the first and second integration dwell interval, respectively, following (j − 1) failed

trials, each resulting in a miss and where each probability of a miss in the corresponding

total miss transfer function is given by (1− P
(1)
Di ) or P

(1)
Di (1− P

(2)
Di ). Furthermore, z indicates

the unit-delay operator and m represents the exponent of z in the verification mode, while

H0(z) in a dotted circle of the Figure 2.14 denotes the probability of the desired user’s

signal being absent at the output of the acquisition scheme, which is expressed as

H0(z) = (1 − P
(1)
F )z + P

(1)
F (1 − P

(2)
F )zm+1 + P

(1)
F P

(2)
F zK+m+1, (2.124)

where P
(1)
F and P

(2)
F represent the false alarm probability of the first and second dwell,

respectively, and K is the false locking penalty factor [3]. Finally, HM(z) represents the

overall probability of miss during a search run carried out across the entire uncertainty
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region, which may be formulated as the product of the summation of the two individual miss

probabilities of the first and second integral dwell interval, since these may be considered

independent events, yielding

HM(z) =

2α
∏

j=1

[(1 − P
(1)
Dj )z + P

(1)
Dj (1 − P

(2)
Dj )zm+1]. (2.125)

Similarly, to the procedures used for SDSS in Equation. 2.118 of Section 2.4.1.1 it may

be shown that the generalised expression derived for computing the MAT of the DDSS

based code acquisition scheme considered is given by employing both Equation. 2.116 and

Equation. 2.117 of Section 2.4.1.1:

E[TACQ] =
dU(z)

dz
|z=1·τD1 =

1

HD(1)
[HD

′
(1) +HM

′
(1) + (2.126)

{(ν − 2α)[1 − HD(1)

2
] +

1

2
HD(1)}H0

′
(1)] · τD1,

where H
′
x(z)|x=D, M or 0 is the derivative of Hx(z)|x=D, M or 0 and τD1 is the first dwell time

[3]. Therefore the MAT may be expressed as N ·T ·Tc·E[TACQ] seconds and represents the

overall system performance of the DDSS, where N denotes a coherent integration interval

and T is the number of PDI stages, E[TACQ] denotes the mean acquisition time given by

Equation 2.126, while τD1 represents N ·T ·Tc.

2.4.2.2 Multi-path Scenario

As illustrated in the Multi-path scenario of SDSS, we assume that in each chip duration Tc,

α number of correct timing hypotheses are tested, which are spaced by Tc/α. Hence the

total number of timing positions within the uncertainty region is increased by a factor of

α. When the L multi-path signals arrive with a time delay τl having a tap-spacing of one

chip-duration, then the relative frequency of the signal being present H1 is increased L-fold.

Therefore, in light of both α and L the total number of timing positions within the entire

uncertainty region is finally increased by a factor of α·L. The required transfer functions

[14, 15], are defined as follows. The entire successful detection function HD(z) encompasses

all the possible branches of successful detection, which was increased by a factor of L in the

state diagram of Figure 2.14 [14]. Furthermore, H0(z) indicates the absence of the desired

user’s signal at the output of the acquisition scheme, whileHM (z) represents the overall miss

probability of a search run carried out across the entire uncertainty region. Other related

processes are the same as detailed for the single-path scenario of DDSS in Section 2.4.2.1.
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Then, it may be shown that the generalised expression derived for computing the MAT of

the serial search based code acquisition scheme is given by Equation 2.118 in Section 2.4.1.1:

E[TACQ] =
1

HD(1)
[HD

′
(1) +HM

′
(1) + {(ν − 2αL)[1 − HD(1)

2
] +

1

2
HD(1)}H0

′
(1)] · τD1,

(2.127)

while the corresponding simplified expression is formulated as

E[TACQ] ≈ (1 +HM(1))·H0
′
(1)

2·(1 −HM(1))
·(ν·τD1), (2.128)

where H
′
x(z)|x=D, M or 0 is a derivative of Hx(z)|x=D, M or 0 and τD1 denotes the dwell time7.

The exact MAT formula given by Equation 2.127 can be simplified, as seen in Equa-

tion 2.128, if the total number of states ν is significantly higher than the number of HD

states [22]. More explicitly, when considering ν >> 2αL, ν − 2αL is approximated by ν,

then only the term [1 − HD(1)
2 ] of Equation 2.127 is retained, because the effects of others

are negligible in terms of calculating the MAT. In order to carry our numerical analysis, we

adopted the approximation for the exact MAT expression of Equation. 2.127, as proposed

in [22]. Since each resolvable path contributes two hypotheses and because the average

correct detection probability associated with these two hypotheses is the same, the overall

miss probabilities of the DDSS scheme may be expressed as:

HM (z) =
L
∏

l=1

2α
∏

ζ=1

[(1 − P
(1)
D(l,ζ))z + P

(1)
D(l,ζ)·(1 − P

(2)
D(l,ζ))z

m+1], (2.129)

where P
(x)
D(l,ζ)|x=1, or 2 are the correct detection probability of both the search and the ver-

ification modes of the DDSS arrangements, respectively. The H0(z) value of the DDSS

scheme can be expressed as

H0(z) = (1 − P
(1)
F )z + P

(1)
F (1 − P

(2)
F )zm+1 + P

(1)
F P

(2)
F zK+m+1, (2.130)

where K denotes the false locking penalty factor expressed in terms of the number of chip

intervals required by an auxiliary device for recognising that the code-tracking loop is still

unlocked. Furthermore, P
(x)
F |x=1, or 2 represents the false alarm probability of both the

search and the verification mode of the DDSS scheme, respectively and m is the exponent

of z in the verification mode.

7The dwell time is defined as the time-interval, during which the acquisition scheme ’dwells’ in the interval
τD ≡ NTc accumulating the correlation contributions, which quantify the similarity of the locally stored
and received spreading sequence.
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2.4.3 Double Dwell Serial Search for Cooperative Transmission Scenario

2.4.3.1 Multi-path Scenario

There is a difference between a single- and co-located MIMO-aided schemes as well as a

RS-assisted one in terms of analysing the MAT, because a signal received from a RS is a

time delayed version of that directly received from the BS. Hence the independently fading

multiple signal replicas received from RSs cannot be directly combined, as opposed to the

co-located MIMO-element scenarios, as described in Sections 2.4.1 and 2.4.2. The groups of

multi-path components received from a BS and RS(s) may or may not overlap, depending

on the path delays experienced. However, for the sake of simplifying our analysis, we assume

that every group of multi-path components is non-overlapping and each arrives with a time

delay that is an integer multiple of the chip-duration τp, because the derivation of the exact

MAT formula can be simplified without grave inaccuracies, when the uncertainty region may

be assumed to be substantially wide, such as (215 − 1) chips 8. In terms of deriving both

the PD and the PF based upon invoking multiple receive antennas, we will commence our

discourse by analysing the MAT performance of code acquisition schemes employing DDSS

[15]. We assume that in each chip duration Tc, α number of correct timing hypotheses are

tested instead of just a single one, which are spaced by Tc/α. Hence the uncertainty region’s

total time-duration remains the same, but the number of legitimate locking positions to be

tested is increased by a factor of α. Moreover, when the L multi-path signals arrive at time

delays, which are integer multiples of the chip-duration τl, then the relative frequency of the

signal being present is increased L-fold. Similarly, the relative frequency of the signal being

present is increased by a factor of P , which is proportional to the total number of RSs and

BS, P . The required transfer functions [3, 15], are defined as follows. The entire successful

detection related transfer function HD(z) encompasses all the branches of a state diagram

[3, 15], which lead to successful detection. Furthermore, H0(z) indicates the absence of the

desired user’s signal at the output of the acquisition scheme, whilst HM (z) represents the

overall miss probability of a search run carried out across the entire uncertainty region.

The related processes were detailed for DDSS in Section 2.4.2. Then, it may be shown that

the generalised expression derived for computing the MAT of the DDSS scheme is given by

8To elaborate a little further, when the uncertainty region is (2 15 − 1) chip durations, the ratio between
the number of chips in the uncertainty region and that of the legitimate locking positions corresponding to
the signal being absent and present, respectively, is at most on the order of 10−4, which allows us to employ
our aforementioned assumptions in the derivation of the MAT formula.
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[3, 22]:

E[TACQ] =
1

HD(1)
[HD

′
(1) +HM

′
(1) + (2.131)

{(ν − 2αLP )[1 − HD(1)

2
] +

1

2
HD(1)}H0

′
(1)] · τD1

≈ (1 +HM (1))·H0
′
(1)

2·(1 −HM (1))
·(ν·τD1), (2.132)

where H
′
x(z)|x=D, M or 0 is a derivative of Hx(z)|x=D, M or 0 , ν represents the total number

of uncertainty positions to be searched and τD1 denotes the 1st dwell time. Again, the exact

MAT formula can be simplified, if ν is significantly higher than the number of H1 states,

where H1 represents that the signal may be deemed to be present [22]. Therefore, in order

to simplify our numerical performance analysis, we adopted the specific approximation of

the exact MAT expression proposed in [22], as shown in Equation. 2.132. Explicitly, since

each resolvable path contributes two H1 hypotheses and because the average PD associated

with these two hypotheses is the same, the overall miss probability of the DDSS scheme in

the fixed RS-aided scenario may be expressed as:

HM(1)|(cooperative) =

P
∏

p=1

L
∏

l=1

α
∏

ζ=1

[(1 − PD1(p,l,ζ)) + PD1(p,l,ζ)·(1 − PD2(p,l,ζ))]
2, (2.133)

where PDx(p,l,ζ)|x=1, or 2 represent the correct detection probability of both the search and

the verification modes of the DDSS arrangements, respectively. The H0
′
(1) value of the

DDSS scheme is expressed as:

H0
′
(1) = 1 + m·PF1 + K·PF1·PF2, (2.134)

where K denotes the false locking penalty factor expressed in terms of the number of

chip intervals required by an auxiliary device for recognising that the code-tracking loop is

still unlocked and m represents the exponent of z in the verification mode. Furthermore,

PFx|x=1, or 2 represent the false alarm probability in both the search and in the verification

mode of the DDSS scheme, respectively.

2.5 Analysis of Ec/I0 for DS-CDMA Systems

In this section we investigate the Ec/I0 distribution in the DL of the inter-cell synchronous

CDMA system for the sake of analysing serial search based code acquisition in multiple

transmit antenna aided DS-CDMA. Let us commence this section by considering the defi-

nition of Ec/I0 and how it impacts the performance of the DS-CDMA systems.
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First of all, we assumed having the transmitted powers for the CDMA-2000 system [72],

which are summarised in Table 2.2.

Hence the total allocated power at the BS is highly dependent on the number of the active

Table 2.2: Transmitted Powers for the CDMA-2000 System
BS’s transmit power 10 [W]

Pilot channel power 1.5 [W]

Paging and synchronisa-
tion channel power

0.9 [W]

Traffic channel power 0.25 [W]

Total power of 10 traffic
channels

2.53 [W]

Total power of 20 traffic chan-
nels

5.07 [W]

Total power of 30 traffic
channels

7.6 [W]

users in each sector. When assuming that the number of active users is 30, the total power

assigned is 10 [W] = 40 [dBm]. Then, the total amount of channel-induced impairments

on the DL is constituted by the superposition of the background noise, plus the serving-

cell interference imposed by both the multi-path signals, the other intra-cell users and the

other-cell interference [3, 15, 72].

The total amount of serving-cell interference on the DL is expressed as ISC(Total) = ISC1(1−
β1) + ISC2(1 − α1), where ISC1 is the serving-cell interference imposed by the multi-path

signals, while β1 represents the fraction of the first received path’s power and a fixed value of

0.57, which represents the fraction of the Line-Of-Sight (LOS) path’s power of a single-path

scenario as in [15]. Then ISC2 denotes the serving-cell interference imposed by the other

intra-cell users, whilst α1 is the orthogonality factor of (0.4 – 1)9 [105]. Furthermore, the

other-cell interference imposed by the remaining 56 sectors is denoted as IOC [72] and the

received noise power is denoted as N0·W , where N0 represents the power spectral density

of the thermal noise and W is the bandwidth allocated. Accordingly, the total amount of

channel-induced impairments imposed on the DL is defined as I(Total) = ISC1(1 − β1) +

ISC2(1 − α) + IOC +N0·W . The total link loss is expressed as the product of the antenna

gain, path loss and the lognormal shadow-fading coefficient. Therefore, the received signal

power is obtained as the product of the transmitted pilot power and the link loss. In our

9The orthogonality factor is defined as the particular fraction of other-cell interference, which contami-
nates the serving cell’s desired signal as a result of the asynchronous interference.
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scenario the cellular structure consists of 19 hexagonal cells. The six neighbouring cells of

the first tier and the 12 neighbouring cells of the second tier surround the centre cell. Each

cell has three sectors. The cell layout is wrapped-around to form a toroidal surface in order

to achieve shorter simulation run times. A toroidal surface is chosen, because it can be

readily formed from a rhombus by joining the opposing edges [106, 107, 108].

Let us now consider the definition of Ec/I0 for the DL pilot channel. The SINR per chip

denoted as Ec/I0 may be expressed as [72, 105]

(
Ec

I0
)(pilot) =

β1·PTotal·ςp·L1

ISC1(1 − β1) + ISC2(1 − α1) + IOC +N0·W
, (2.135)

where PTotal is the total transmit power allocated at the BS, ςp represents the fraction of

the transmitted pilot power with respect to the total allocated transmit power, while L1

denotes the link loss. Table 2.3 portrays the orthogonality factor set used in our simulations.

In the macro-cellular scenario considering a range spanning from 1 to 0.5 is appropriate for

our simulations depending upon the environmental conditions associated with the cell size

considered [105]. Table 2.4 represents the general system level parameters used in our

Table 2.3: Orthogonality Factor Set Parameterised by Received Pilot Signal Strength
Orthogonality Factor Pilot Signal Strength

1 ... -55 [dBm]

0.95 ... -60 [dBm]

0.9 ... -65 [dBm]

0.85 ... -70 [dBm]

0.8 ... -75 [dBm]

0.75 ... -80 [dBm]

0.7 ... -85 [dBm]

0.65 ... -90 [dBm]

0.6 ... -95 [dBm]

0.55 ... -100 [dBm]

0.5 Less than -100 [dBm]

simulations.

We also assume operating in the range of ‘finger locking’, which may be considered to

be the range between Ec/I0 = -17 and -13 dB, as suggested in [72, 110]. In our scenario

it is simply assumed that the pilot channel’s required Ec/I0 value is -15 dB [72]. Based

on Table 2.4, we analysed the distribution of Ec/I0 depending on the number of MSs

supported. For the simplicity of this analysis we only considered a single-input single-

output scenario. In these investigations, we analysed the distribution of Ec/I0 in the DL of



2.5. Analysis of Ec/I0 for DS-CDMA Systems 83

Table 2.4: General Downlink System Level Simulation Parameters
Parameter Explanation Comments

Carrier Fre-
quency

1.9 GHz

Cellular Layout Hexagonal grid, 3-sector,
Wrap around method

[106, 107, 108]

Number of cells 57 sectors 2 rings [106, 107]

Site to site dis-
tance

2000 m Macro cell [109]

Antenna horizon-
tal pattern

70 deg (-3 dB) with 20 dB
front-to-back ratio

[106, 107]

Antenna Orienta-
tion

0 degree horizontal azimuth
is East(main lobe)

No loss is assumed on the ver-
tical azimuth [106]

Propagation
model

L1=128.6+35log10(dist.)dB
(BS Ant. Ht=32m,
MS=1.5m)

[106] (dB scale and dist. in
km)

Std. of slow fad-
ing

8 [dB] Log-normal shadowing [72,
106, 107]

BS total power 10 [W] (= 40 [dBm]) [72]

Overhead channel
DL power usage

Pilot(0.15), Paging and
Sync(0.09)

[72]

Received noise
power

-105 [dBm] [72]

Pilot (Ec/I0)req -15 [dB] Threshold of finger locking
[72]

Delay spread
model

Relative power ratio: 0.7
and 0.3; 0.57,0.29 and 0.14;
0.45 and the others not de-
fined

(0.25,0.5 and 0.25, respec-
tively) Two paths [106, 107];
Three paths [15]; Four paths
[106, 107]

Active set size Up to 3 2- and 3-way soft handover
considered [106, 107]

Soft handove pa-
rameters

WindowADD=4[dB] [72, 107]

Orthogonality
factor

[1 0.85 0.65 0.5] See Table 2.3 [105]

Number of MS 10,20 and 30 Actual allocated transmit
power in BS is 6,8,10 [W],
respectively depending on
the number of MS (10,20 and
30, respectively) [72]

Length of coher-
ent summation

1 symbol (128 chips)
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Figure 2.15: Distribution of Ec/I0 when supporting K = 10 mobile stations per sector.

the inter-cell synchronous CDMA-2000 system with the aid of our system level simulations,

in order to characterise the relationship between the value of Ec/I0 and the achievable MAT

performance in Chapters 3 and 4. This will allow us to characterise the effects of using both

transmit diversity and frequency diversity in multi-user scenarios in terms of the attainable

MAT performance.

Figure 2.15 illustrates the distribution of Ec/I0 for the pilot channel, when supporting K

= 10 MSs per sector. The sub-figure situated at the top of this figure explicitly shows the

distribution of Ec/I0 recorded for the currently activated HandOver (HO) link, when the

MS benefits from soft-HO. All the recorded values are higher than the predetermined value

of the threshold required for finger locking. Accordingly, the achievable MAT performance

may not be gravely affected, although employing transmit diversity, frequency diversity or

both in multi-user scenario may lead to the degradation of the MAT performance. By con-

trast, when considering the Ec/I0 distribution of the 3rd HO link in a soft-HO scenario,

considerable fraction of the MSs will experience an Ec/I0 value close to the minimum re-

quired threshold. Hence, when considering the effects of using both transmit diversity and

frequency diversity, the MAT performance of the post-initial acquisition scheme may be
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significantly deteriorated. This phenomenon may lead to a HO performance degradation.

Figures 2.16 and 2.17 demonstrate the Ec/I0 distribution of the pilot signal received, when

supporting K = 20 and K = 30 MSs per sector, respectively. These scenarios corresponds

to a highly loaded cellular network. All the three sub-figures suggest that the Ec/I0 distri-

butions are shifted to the lower Ec/I0 region in comparison to the scenario of K = 10 MSs

per sector. This suggests that a further degraded MAT performance may be experienced.

Accordingly, it may be concluded from Figures 2.15, 2.16 and 2.17 that in the scenarios of

3-way soft HO the number of MSs to be supported by the BS of a given sector increases,

the Ec/I0 ratio may dip below -15 dB for a high portion of the 2nd- and 3rd-best target

handover links, where -15 dB is the minimum required Ec/I0 value of the pilot channel

[72]. Therefore the results of our in-depth analysis suggest that both the achievable MAT

performance and the HO performance may be seriously degraded.

The three figures were generated by the following procedures:

1) The distance from any MS to any BS can be obtained from the following calculations.

Define a coordinate system so that the centre of cell 1 is at (0,0), the distance of a mobile

at (x,y) from a base-station at (a,b) is computed as the minimum in the set seen below10.

A. Distance between (x, y) and (a, b),

B. Distance between (x, y) and (a+ 3R̃, b+ 8
√

3R̃/2),

C. Distance between (x, y) and (a− 3R̃, b− 8
√

3R̃/2),

D. Distance between (x, y) and (a+ 4.5R̃, b− 7
√

3R̃/2),

E. Distance between (x, y) and (a− 4.5R̃, b+ 7
√

3R̃/2),

F. Distance between (x, y) and (a+ 7.5R̃, b+
√

3R̃/2) and

G. Distance between (x, y) and (a− 7.5R̃, b−
√

3R̃/2),

where R̃ is the radius of a circle which connects the six vertices of the hexagon.

2) MSs are randomly dropped over the 57 sectors so that each cell has the required number

of users. A user shall be assigned to a sector of any cell, if the sector is in the Active Set

(with a maximum size of three) of the user. All sectors of the system shall continue to

accept users, until the desired fixed number of users per sector is achieved everywhere.

3) The fading signal and fading interference are computed for each MS roaming in each

sector.

When considering multiple transmit antennas and multiple subcarriers, the number of MSs

having an Ec/I0 ratio below -15 dB may increase further. Details on the MAT analysis of

10To simplify our simulations, only three-way handovers were employed. A MS engaged in a three-way
soft handover acts as a user in the sector having the smallest total path loss defined as the sum of the path
loss and shadowing in the Active Set of MS.
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the above-mentioned scenario will be provided in Chapters 3 and 4.
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 SINR per chip( Ec/Io ) distribution in the main HO link: K=20 users per sector, 57 sectors

Figure 2.16: Distribution of Ec/I0 when supporting K = 20 mobile stations per sector.

2.6 Chapter Summary and Conclusions

In this chapter, we have provided a detailed study of serial search based code acquisition

schemes. Following a brief introduction in Section 2.1, we continued by describing our single-

and multi-path channel model, the fading conditions as well as the effects of both spatial

and inter-subcarrier fading correlation for our performance analysis provided in Section 2.2.

Furthermore, the four most wide-spread MIMO types were briefly summarised in Table 2.1.

It was noted that code acquisition schemes specifically designed for scenarios of both SDM

and Space-Time Coding MIMOs are considered. Then the underlying formulae of both

the correct detection and false alarm probabilities in co-located scenario were derived in

Section 2.3. The Neyman-Pearson criterion was introduced in Section 2.3.1, followed by the

derivation of the decision variable PDFs of a co-located MIMO aided NC code acquisition

scheme designed for both the SC-DS-CDMA and MC-DS-CDMA DL, when communicating

over a spatially uncorrelated Rayleigh channel in Section 2.3.2 in terms of using both a
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Figure 2.17: Distribution of Ec/I0 when supporting K = 30 mobile stations per sector.

direct approach and a PDF based one. In Section 2.3.3 the decision variable PDFs of an

co-located MIMO aided DC code acquisition scheme used for both the SC-DS-CDMA and

MC-DS-CDMA DL, when communicating over a spatially uncorrelated Rayleigh channel

were investigated. Finally, the decision variable PDFs of a cooperative MIMO aided NC

code acquisition scheme designed for the SC-DS-CDMA DL in Section 2.3.4 in terms of using

a PDF based one were derived. The MAT analysis of both SDSS and DDSS employed in

our code acquisition schemes was provided for both single- and multi-path scenarios in

Section 2.4. Finally, the specific definition of Ec/I0 with respect to a DS-CDMA system

was introduced and then the in-depth relationship between the Ec/I0 distribution and

the number of users per sector was analysed in Section 2.5. Based on the above-mentioned

experimental results of Section 2.2, as well as on the formulae of Sections 2.3 and 2.4 derived

for supporting the analysis provided in Chapters 4 as well as 5, and finally, the analysis

of Ec/I0 in Section 2.5 the specific characteristics of both co-located and cooperative NC

MIMO aided schemes will be analysed in the forthcoming chapters.



Chapter 3

Performance Analysis of

Co-located versus Cooperative

MIMO Aided Non-Coherent Code

Acquisition

3.1 Introduction

In this chapter, we will provide a quantitative performance analysis for serial search based

code acquisition in the co-located and cooperative MIMO aided SC- and MC- DS-CDMA

DL. In Section 3.2 we will commence the chapter with the performance analysis of the

correct detection versus false alarm probability for serial search based code acquisition

employed in the co-located MIMO aided SC-DS-CDMA DL with the aid of Sections 2.3.2

and 2.4.1. Based on the formulae in Sections 2.3.2, 2.4.1 and 2.4.2, this section is followed by

a discussion on both initial and post-initial acquisition in the serial search based co-located

NC MIMO aided SC-DS-CDMA DL in Section 3.3. We will analyse the performance of

code acquisition in the co-located MIMO aided MC-DS-CDMA DL in Section 3.4 with

the aid of Sections 2.3.2, 2.4.1 and 2.4.2. Finally, based on the formulae in Sections 2.3.4

and 2.4.3, we will also investigate the performance of the serial search based cooperative NC

MIMO aided SC-DS-CDMA DL in Section 4.5. Furthermore, based on the above-mentioned

results justified by information theoretic considerations, our acquisition design guidelines

applicable to diverse NC MIMO aided scenarios will be summarised.
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3.2 Correct Detection versus False Alarm Probability Per-

formance in Co-located Scenario

3.2.1 System Parameters

Figure 2.2 depicts the block diagram of the NC receiver designed for our code acquisition

scheme using MIMO. The MAT formulae provided for the single-path scenario of SDSS in

Section 2.4.1.1 are also employed for the performance analysis of the NC scheme of this

section. The system parameters employed are summarised in Table 3.1. In Table 3.2

we outlined the maximum SINR degradation imposed by both the Doppler shift and the

clock-drift-induced frequency mismatch between the transmitter and receiver in conjunction

with a coherent integration interval of N chip durations. The length of the PN sequence

in our system was assumed to be (215 − 1)·Tc = 65534·Tc, where the chip-duration is

Tc = 1/1.2288µs. It may be deemed sufficient at this point to integrate the detector

output seen in Figure 2.2 over N = 256 chips, which is equivalent to two 128-chip modulated

symbols used for coherent accumulation. This value was calculated by using Equation. 2.9

provided for determining the performance degradation owing to both the Doppler shift

and the frequency mismatch. The spreading factor of the Walsh code to be acquired was

selected to be 128. The frequency mismatch was assumed to be 1000 Hz [3], while the

carrier frequency was 1.9 GHz. As an example of a high mobile speed, it is reasonable to

postulate 160 km/h. We also assumed that the sampling inaccuracy caused by having a

finite search step size of ∆ = 1/2Tc was -0.91 dB, which is a typical value for the search

step size [3, 15]. Accordingly, we considered three performance degradation factors, which

encompassed the clock-drift-induced frequency mismatch, the Doppler shift and the effects

of the finite sampling distance. All these imperfections were taken into account, when

calculating the correct detection probability. Finally, two additional parameters have to be

stipulated for the analysis of SDSS. Specifically, the total uncertainty region was assumed

to entail 65,534 hypotheses, and in the spirit of [15], the false locking penalty factor was

assumed to be 1000 chip-durations.

3.2.2 System Performance Results

Figure 3.1 illustrates the correct detection probability versus false alarm probability, pa-

rameterised by both the number of transmit antennas for P = 1,2 as well as 4 and the
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Table 3.1: System Parameters
Bandwidth 1.25 MHz

Carrier frequency 1.9 GHz

Spreading factor 128

Diversity:
Transmit 1,2,4,6,8,10
Receive 1,2,4

Frequency mismatch 1000 Hz

Mobile speed 160km/h

Coherent integration interval 256chips

Total uncertainty region 65,534

False locking penalty factor 1000 chip-durations

Table 3.2: Maximum SINR degradation inflicted by both the Doppler shift and a 1000
Hz frequency mismatch in conjunction with the coherent integration interval of N chip
durations at a carrier frequency of 1.9 GHz

N (Chips) 64 128 256 384 512

Degradation (dB) 0.061 0.2449 0.9969 2.3144 4.3213

Ec/I0 value. In case of Ec/I0 = -10 dB, the achievable performance enhancement gradually

saturates, as the transmit diversity order is increased from P = 1 to 4. By contrast, PD

decreases as the number of transmit antennas P increases, when the mobile station experi-

ences a relatively low Ec/I0 value of -19 dB, as evidenced by the three curves corresponding

to the relatively low PD values in Figure 3.1. Figures 3.2 and 3.3 characterise the correct

detection probability versus false alarm probability, parameterised by both the number of

transmit antennas for P = 1,2 as well as 4 in conjunction with both R = 2 (Figure 3.2) and

R = 4 (Figure 3.3) receive antennas as a function of the Ec/I0 value.

When having R = 2 receive antennas as portrayed in Figure 3.2, the results show similar

trends to those of Figure 3.1. By contrast, in the scenario of R = 4 receive antennas as seen

in Figure 3.3, there is a sufficiently high spatial diversity gain, which has beneficial effects

on the achievable acquisition performance PD. However, as seen in Figure 3.3, increasing

the transmit diversity order imposes a degradation of the achievable PD performance. The

specific Ec/I0 abscissa values used in Figures 3.1 to 3.3 were chosen to exemplify the

typical achievable values. In all the remaining figures we will assume an operation in

the range of ‘finger locking’, which may be considered to be the range between Ec/I0

= -17 and -13 dB, as suggested in [72, 110]. Therefore, in Figure 3.4 and Figure 3.5
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Figure 3.1: Correct detection versus false alarm probability for P = 1,2 and 4 transmit
antennas in conjunction with R = 1 receive antenna, when using the schematic of Figure 2.2
and Table 3.1.
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Figure 3.2: Correct detection versus false alarm probability for P = 1,2 and 4 transmit
antennas in conjunction with R = 2 receive antennas, when using the schematic of Figure 2.2
and Table 3.1.
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Figure 3.3: Correct detection versus false alarm probability for P= 1,2 and 4 transmit
antennas in conjunction with R= 4 receive antennas, when using the schematic of Figure 2.2
and Table 3.1.

we will investigate in more detail the somewhat unexpected phenomenon of experiencing

a degraded acquisition performance in the presence of multiple transmit antennas. The

correct detection probabilities seen in Figure 3.4 and Figure 3.5 were obtained assuming

a false locking probability of PF = 0.1 for all scenarios considered, where ′S′ denotes

the simulation results, whilst ′A′ presents the numerical analysis results calculated from

both Equations. 2.28 and 2.29. The simulations always represent a slightly better correct

detection probability than the analysis at the same false alarm probability. This is because

in the analysis a constant Doppler shift value was added to the total frequency mismatch

in Equation. 2.9, which was calculated for the high mobile speed scenario. However, in a

practical scenario, the Doppler shift may have either a positive or a negative impact on the

PD performance, depending upon the specific conditions encountered.

In Figures 3.4 and 3.5, the relationship between PD and the number of transmit antennas

is portrayed both with and without multiple receive antennas for different values of Ec/I0,

respectively. More explicitly, Figure 3.4 portrays the correct detection probability versus

the number of transmit antennas, parameterised by the pilot channel’s Ec/I0 value. At

Ec/I0 = -10 dB a slight PD improvement is observed upon increasing the number of trans-

mit antennas, although again, at low Ec/I0 values typically the opposite is true. Figure 3.5
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characterises the correct detection probability versus both the number of MIMO, parame-

terised by the pilot channel’s Ec/I0 value. The left illustration of Figure 3.5 characterises

the scenario of R = 2 receive antennas, while the one at the right was valid for R = 4 receive

antennas. The curve recorded for Ec/I0 = -10 dB at the right of Figure 3.5 overlapped with

that plotted for Ec/I0 = -13 dB, because all the achievable detection probabilities were

PD ≈ 1. Both Figures 3.4 and 3.5 illustrate that PD tends to decrease, as the number of

transmit antennas increases, especially when the MS experiences a low Ec/I0 value. We can

observe in both Figure 3.4 and Figure 3.5 that the highest detection probabilities marked by

circles were achieved, when the per-branch Ec/I0 value was -19 dB for a given total Ec/I0

value in the range of ‘finger locking’. Owing to the above-mentioned facts, the range of the

minimum Ec/I0 values required for reaching ‘finger locking’ may vary, depending upon the

number of transmit antennas.

1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Transmit Antennas (P)

D
e

te
ct

io
n

 P
ro

b
a

b
ili

ty

−10dB(S)
−10dB(A)
−13dB(S)
−13dB(A)
−16dB(S)
−16dB(A)
−19dB(S)
−19dB(A)

0 

0 

0 

Figure 3.4: Correct detection probability versus the number of transmit antennas for P =
1,2,4,6,8 and 10, parameterised by the pilot channel’s Ec/I0 value, when using the schematic
of Figure 2.2 and Table 3.1.

Let us now proceed by defining the MAT gain as the quotient of the MAT achieved by

a particular MIMO configuration and that attained by the conventional [P = 1, R = 1] =

P1R1 scheme. However, the transmit power reduction imposed by using multiple transmit

antennas can be partially compensated for with the aid of multiple receive antennas. In

this case it is more appropriate to use the MAT of the P1R2 or P1R4 schemes. Figure 3.6

characterises the MAT gain/degradation as a function of the Ec/I0 values considered. Here
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Figure 3.5: Correct detection probability versus the number of transmit antennas for P =
1,2 as well as 4 and the number of receive antennas for both R = 2 (Left figure) and R = 4
(Right figure), parameterised by the pilot channel’s Ec/I0 value, when using the schematic
of Figure 2.2 and Table 3.1.

the MAT gain/degradation recorded for the different scenarios was presented by defining the

MAT ratios of the scenarios (P1R1/PxR1), (P1R2/PxR2) and (P1R4/PxR4), where we

have x = 2 or 4. To elaborate a little further, there would have been some benefit in using

the same normalisation factor such as the MAT of the single receiver system R1 for all the

different scenarios, but we found that the above-mentioned definitions were more suitable

for explicitly demonstrating the impact of the number of transmit antennas. As shown in

Figure 3.6, for example the P2R1 and P2R2 scenarios exhibit a modest MAT gain for Ec/I0

values between -11 and -8 dB and between -12 and -9 dB, respectively, but in the rest of the

SINR region a MAT degradation is experienced. Here all the performance curves have been

generated at the threshold value of Ec/I0 = -13 dB, which was considered as the minimum

value required for reliable finger locking. More quantatively, observe in Figure 3.6 that

in order to achieve the MAT ratio of unity, corresponding to no transmit-antenna-induced

MAT loss, we need about 2 dB more power for the P2R1 scenario. Alternatively, the

cell radius would have to be reduced by an appropriate path-loss-dependent factor, if no

transmit-antenna-induced MAT degradation can be tolerated. Therefore the employment

of MIMO may lead to the reduction of the attainable cell size, since no communications are

possible until code acquisition has been completed.
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Figure 3.6: MAT ratio versus Ec/I0 value, when using the schematic of Figure 2.2 and
Table 3.1.

In summary, multiple transmit antennas constitute an efficient means of improving the

attainable diversity gain, and/or system throughput, when communicating over mobile

channels. However, for the sake of fair comparisons, the total signal power transmitted from

the multiple transmit antennas must be fixed, regardless of their number. In other words, the

total transmit power must be equally shared by all the transmit antennas. This implies that

an excessively low level of per-branch received signal strength would lead to a low acquisition

performance, even if the transmit multiplexing/diversity gain is high. In other words, a high

diversity order effectively results in an acquisition performance loss, as a consequence of the

insufficiently high transmit signal strength per branch. In case of employing both multiple

transmit and receive antennas, this trend is still observable, although using two or four

receive antennas has the potential of mitigating the associated acquisition performance

degradation imposed by the low per-branch Ec/I0 values encountered.

3.2.3 Conclusion

In this section, we analysed the MIMO aided initial acquisition performance of the inter-

cell synchronous CDMA DL. Ironically, our findings suggest that increasing the number of

transmit antennas results in combining the low-energy, noise-contaminated signals of the
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transmit antennas, which ultimately reduces the correct detection probability, as evidenced

by Figures 3.1 to 3.5. However, it is extremely undesirable to degrade the achievable ac-

quisition performance, when the system is capable of attaining its target bit error rate

performance at reduced SINR values, as a benefit of employing multiple transmit antennas.

It may be concluded that the achievable cell coverage determined by the received pilot chan-

nel power may be reduced, as observed in Figure 3.6, as the number of transmit antennas

is increased, which is a highly undesirable phenomenon, since it has grave repercussions in

terms of having to tolerate a high number of handovers per cell.

3.3 Initial and Post-Initial Acquisition in Co-located Sce-

nario

3.3.1 Concept of Initial and Post-Initial Acquisition

The classic serial search techniques designed for initial acquisition [3] have been traditionally

employed in specific scenarios, where the uncertainty region (or search window width) is

quite wide (i.e. 215 − 1) and hence in the context of serial search it is the MAT, which

constitutes the most pertinent performance criterion, as seen for example in the DL of the

inter-cell synchronous CDMA-2000 system [3]. In the case of initial acquisition contrived

for DS-CDMA, the main design goal is to acquire accurate timing of the first received signal

path impinging at the receiver, since this timing information is used as that of the reference

finger of the Rake receiver. By contrast, the post-initial acquisition procedure that extracts

the accurate timing positions of the remaining delayed paths and identifies the appropriate

paths earmarked for processing by the Maximum Ratio Combining (MRC) scheme of the

Rake receiver, has a major impact on the performance of the Rake receiver [8]. There are

two main differences between the initial and post-initial acquisition procedures. First of all,

once the first Rake finger is synchronised, the uncertainty region that has to be explored

will be shrunk to ± ξ hypotheses surrounding the time-instant, where the first received

path was found. This reduced interval will be referred to as the ’reduced uncertainty

region’ to be explored after the initial acquisition [7]. This search window width is defined

by both the dispersion of the multipath propagation environment encountered as well as

by the appearance and disappearance of propagation paths [111]. Secondly, the post-initial

acquisition procedure commences after the Automatic Frequency Control (AFC) operation

was activated for the sake of fine tracking, following the successful initial acquisition. Hence,
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the performance degradation imposed by the associated frequency mismatch is considerably

reduced compared to that immediately after the initial acquisition. Accordingly, these two

factors are taken into account in our forthcoming analysis.

3.3.2 System Parameters

Figure 2.5 depicts the block diagram of the NC receiver designed for our code acquisi-

tion scheme using MIMO. The MAT formulae of both the SDSS and DDSS provided in

Sections 2.4.1 and 2.4.2 are also employed for the performance analysis of this section.

The associated system parameters are summarised in Table 3.3. In Tables 3.4 and 3.5 we

outlined the maximum SINR degradation imposed by both the Doppler shift and the clock-

drift-induced frequency mismatch between the transmitter and receiver in conjunction with

the coherent integration interval of N chip durations seen in Figure 2.5 for both initial and

post-initial acquisition. The length of the PN sequence in our system was assumed to be

(215 − 1) · Tc, where the chip-duration was Tc = 1/1.2288µs. In the case of the initial

Table 3.3: System Parameters
Bandwidth 1.25 MHz

Carrier frequency 1.9 GHz

Spreading factor 128

Diversity:
Transmit 1,2,4
Receive 1,2,4

Frequency mismatch
(Initial)

1000 Hz

Frequency mismatch
(Post-Initial)

200 Hz

Mobile speed 160km/h

Num. of chip
SDSS 128 chips
DDSS 32 and 256 (or 128) chips

Total uncertainty region
(Initial)

65,534 hypotheses

Total uncertainty region
(Post-Initial)

124 hypotheses

False locking penalty factor 1000 chip-durations

Number of paths single and three path(s)

acquisition scheme of Figure 2.5, it was found to be sufficient to integrate the detector

output seen in Figure 2.5 over N =128 chips for the sake of analysing SDSS, while the num-

ber of chips over which the accumulator Σ of Figure 2.5 sums the (·)2 envelope detector’s
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Table 3.4: Maximum SINR degradation inflicted by both the Doppler shift and a 1000
Hz frequency mismatch in conjunction with the coherent integration interval of N chip
durations at a carrier frequency of 1.9 GHz

N(Chips) 64 128 256 384 512

Degradation(dB) 0.061 0.2449 0.9969 2.3144 4.3213

Table 3.5: Maximum SINR degradation inflicted by both the Doppler shift and a 200
Hz frequency mismatch in conjunction with the coherent integration interval of N chip
durations at a carrier frequency of 1.9 GHz

N(Chips) 128 256 384 512 640 768

Degradation(dB) 0.032 0.128 0.289 0.5159 0.812 1.179

output in both the search and the verification modes of DDSS are assumed to be 32 and

256 in the R = 1 receive antenna scenarios or 128 in the R = 4 receive antenna scenario,

respectively. By contrast, in the case of the post-initial acquisition scheme of Figure 2.5,

the optimised length of coherent summation of the detector output values invoked for the

sake of analysing SDSS is given in Table 3.6, whilst 64 is selected as the length of coherent

summation in the search mode of DDSS. Finally, the optimised intervals of the coherent

summation used in the verification mode of DDSS are portrayed in Table 3.7. The numbers

seen in (·) in both Tables 3.6 and 3.7 can be used as an alternative. Its basic operation is

identical for both the initial and post-initial acquisition schemes, except for using different

coherent summation intervals necessitated by the different frequency mismatch of the two

schemes. These optimised parameter values were calculated by using the formulae of the

probability of the correct detection and false alarm in Section 2.3.2.3, the MAT expression

of Section 2.4 as well as Equation. 2.9 of Section 2.3.2.1 provided for determining the per-

formance degradation owing to both the Doppler shift and the frequency mismatch. The

spreading factor of the Walsh code to be acquired was selected to be 128. The frequency

mismatch was assumed to be 1000 Hz for the initial acquisition [3] and 200 Hz for the

post-initial acquisition phases [8], while the carrier frequency was 1.9 GHz. As an example

of a high mobile speed, it is reasonable to postulate 160 km/h. We also assumed that the

sampling inaccuracy caused by having a finite, rather than infinitesimally low search step

size of ∆ = Tc/2 was -0.91 dB, which is a typical value for the search step size [3]. The

total uncertainty region of initial and post-initial acquisition were assumed to entail 65,534

and 124 hypotheses, respectively. Finally, in the spirit of [15], the false locking penalty
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factor was assumed to be 1000 chip-durations. Finally, both single-path and multi-path

scenarios were considered. In this scenario both a single-path and a group of three paths

arriving with a relative time delay of one chip were considered. Both CIRs had the same

magnitude for the first received path as well as 3 dB lower for the second and 6 dB lower for

the third received paths, respectively, compared to the LOS path of a single-path scenario.

All the performance curves, except for Figures 3.12 and 3.13, have been obtained at the

optimum decision threshold of Ec/I0 = −13 dB designed for the initial acquisition scheme

and at Ec/I0 = −19 dB invoked for the post-initial acquisition scheme, respectively. The

operational range of the post-initial acquisition scheme was assumed to be 6 dB lower than

that of the initial acquisition arrangement, because the signal power of the delayed paths

is typically lower than that of the first received path.

Table 3.6: Optimised length of coherent summation of the detector outputs invoked for the
sake of analysing SDSS in post-initial acquisition

Transmit/Receive P1R1 P2R1 P4R1 Transmit/Receive P1R4 P2R4 P4R4

Length (Chips) 512 512 640 Length (Chips) 256
(128)

256
(384)

384

Table 3.7: Optimised length of coherent summation of the detector outputs invoked in the
verification mode for the sake of analysing DDSS in post-initial acquisition

Transmit/Receive P1R1 P2R1 P4R1 Transmit/Receive P1R4 P2R4 P4R4

Length (Chips) 384 640 768 Length (Chips) 256
(384)

384 512

3.3.3 System Performance Results

Figure 3.7 illustrates the achievable MAT versus SINR per chip performance for our SDSS

aided initial acquisition scheme as a function of the number of transmit antennas for P

= 1, 2 as well as 4 and that of the number of receive antennas for R = 1 and 4. In the

results of Figures 3.7 to 3.11, except for Figure 3.9, the bold lines indicate the scenario

of receiving three paths (denoted as M3 in Figures 3.7 to 3.11, except for Figure 3.9),

whereas the thinner lines represent a single-path scenario (denoted as M1 in Figures 3.7
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Figure 3.7: MAT versus SINR per chip performance of the initial acquisition scheme for
SDSS parameterised with both the number of transmit and receive antennas, when employ-
ing the schematic of Figure 2.5 and Table 3.3.
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Figure 3.8: MAT versus SINR per chip performance of the initial acquisition scheme for
DDSS parameterised with both the number of transmit and receive antennas, when em-
ploying the schematic of Figure 2.5 and Table 3.3.
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Figure 3.9: Operating ranges in the search mode of the initial acquisition scheme for the
sake of obtaining the best possible MAT performance. The four vertically stacked points
seen in the figure correspond to Ec/I0 = -4, -7, -10 and -13 dB, respectively, from the top
to the bottom, when employing the schematic of Figure 2.5 and Table 3.3.

to 3.11, except for Figure 3.9). Observe in Figure 3.7 that somewhat surprisingly, as the

number of transmit antennas is decreased, despite the potentially reduced transmit diversity

gain, we experience an improved MAT performance for both the single-path and multi-path

scenarios. Since the number of the successfully detected states was increased by a factor of

three, the MAT performance of this scenario becomes better than that of the single-path

one. In the case of R = 4 receivers the performance improvements due to having multiple

paths become marginal, because the receive diversity gain is already sufficiently high for

having a near-Gaussian MAT-performance. Hence the results of the multi-path scenario

of R = 4 were omitted in order to avoid obfuscating details. For comparison, Figure 3.8

characterises the MAT versus SINR per chip performance of DDSS for the initial acquisition

arrangement as a function of the number of transmit antennas for P = 1, 2 as well as 4

and that of the number of receive antennas for R = 1 and 4. Similarly to the conclusions of

Figure 3.7, as the number of transmit antennas is decreased, all the curves seen in Figure 3.8

illustrate an improved MAT performance, except that a useful transmit diversity gain is

experienced only for the case of ′P2R1′, and even this gain was limited to the specific SINR

range of -4 and -11 dB in the single-path scenario. In the case of DDSS, the performance

improvements obtained for the three-path scenario are less than those of SDSS. It is worth



3.3.3. System Performance Results 102

mentioning that although not explicitly shown in Figures 3.7, 3.8, 3.10 and 3.11 for avoiding

obfuscating details, the operating range of R = 2 receive antennas was found to be between

that corresponding to the R = 1 and R = 4 receive antenna scenario. To illustrate the

above fact a little further, in the case of ′P2R1′ the DDSS scheme exhibits a better MAT

performance in comparison to the ′P1R1′ arrangement across the specific SINR range shown

in Figure 3.8. This is because in the case of DDSS the reliable operational ranges expressed

in terms of both the correct detection and the false alarm probability are quite different

from those of SDSS. More explicitly, the reliable operational range of SDSS associated with

the best possible MAT performance is around a false alarm probability of 10−4. On the

other hand, the reliable operation of DDSS may be maintained at as high a false alarm

probability, as 0.2 when the number of transmit antennas is increased from P = 1 to P =

4 in conjunction with R = 1 receive antenna, as demonstrated in Figure 3.9. Furthermore,

in case of R = 4 receive antennas, similar trends are observed, even though the region

of the reliable DDSS operation is shifted to the left with respect to the case of a single

receive antenna, as seen in Figure 3.9. It is worth mentioning that the operating range

of R = 2 receive antennas is in between that corresponding to R = 1 and R = 4 receive

antennas, for the sake of avoiding obfuscating points in the figure, the R = 2 scenario

was omitted. Accordingly, while the reliable operational range of SDSS is around a false

alarm probability of 10−4, that of DDSS in the search mode varies more widely, namely

across the range spanning from 0.04 to just over 0.2, depending on the specific number

of transmit and receive antennas. This manifests itself also in terms of having detection

threshold values in the search mode of DDSS, which are substantially lower than those of

SDSS, when optimised for the sake of attaining the best possible MAT performance. This

clearly implies that DDSS benefits from a significantly higher diversity gain than SDSS. The

performance degradation imposed by employing multiple antennas becomes more drastic,

as the number of transmit antennas is increased for both the SDSS and DDSS schemes in

the initial acquisition scenario. Furthermore, the associated MAT performance discrepancy

between the SDSS and DDSS schemes becomes more drastic. In case of employing both

multiple transmit and multiple receive antennas, similar trends are observable, although

using two or four receive antennas has the potential of mitigating the associated acquisition

performance degradation imposed by the low per-branch Ec/I0 values associated with the

employment of multiple transmitters.

Figure 3.10 and 3.11 characterise the achievable MAT versus SINR per chip performance

of post-initial acquisition. The results are parameterised by both the number of transmit
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antennas for P = 1,2 as well as 4 and by the number of receive antennas for R = 1 as

well as 4 for both the SDSS (Figure 3.10) and for the DDSS schemes (Figure 3.11), re-

spectively. Even though the optimised coherent summation intervals determined for the

sake of obtaining the best possible MAT performance are quite different, as the number of

transmit antennas is decreased, all the curves seen in both Figures 3.10 and 3.11 indicate

an improved MAT performance, as we observed in the case of initial acquisition in both

Figures 3.7 and 3.8. This trend explicitly indicates that the DDSS scheme also degrades

the achievable MAT performance as a consequence of the low per-antenna power imposed

by employing multiple transmit antennas for the sake of attaining a transmit diversity gain.

However, the MAT performance degradation imposed is less severe than that of the SDSS

scheme. Moreover, the performance improvements of the initial acquisition scheme recorded

for SDSS in Figure 3.7 as a benefit of having multiple paths is more significant than those

of the post-initial acquisition arrangement shown for SDSS in Figure 3.10. The initial ac-

quisition scheme having multiple received paths contributes to the attainable performance

improvements. On the other hand, observe in Figure 3.11 that in the case of DDSS, the per-

formance improvements obtained for the three-path scenario are lower than those of SDSS

in both the initial and post-initial acquisition scenarios. The performance improvements

due to having multiple paths become the lowest for the post-initial acquisition arrangement

using DDSS in Figure 3.11. Both Figures 3.12 and 3.13 illustrate the achievable MAT

versus the detection threshold value for DDSS of both the initial and post-initial acquisition

schemes, respectively, parameterised by both the number of transmit antennas for P = 1,2

as well as 4 in conjunction with R = 1 receive antenna and by the SINR per chip values seen

in the legends. As seen in Figures 3.12 and 3.13, the sensitivity with respect to the detection

threshold value becomes significantly higher as the value of Ec/I0 is decreased, although the

degree of the sensitivity is quite different depending upon the number of transmit antennas.

Similarly, the associated MAT performance difference observed in Figures 3.12 and 3.13

also become quite dramatic in case of the initial acquisition scheme for Ec/I0 = -13 dB and

for the post-initial acquisition arrangement at -19 dB. The results of Figure 3.12 explicitly

demonstrate that the MAT experienced at -13 dB exceeds 10 sec, a value which is in excess

of the useful practical operational range of the system. In conclusion, the sensitivity of

the MAT performance with respect to the detection threshold value depends on both the

number of transmit as well as receive antennas. Accordingly, to interpret all the above

results a little further, a low level of per-branch received signal strength would lead to a low

acquisition performance, despite achieving a high transmit diversity gain. In other words,
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Figure 3.10: MAT versus SINR per chip performance of the post-initial acquisition scheme
for SDSS parameterised with both the number of transmit and receive antennas, when
employing the schematic of Figure 2.5 and Table 3.3.
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Figure 3.11: MAT versus SINR per chip performance of the post-initial acquisition scheme
for DDSS parameterised with both the number of transmit and receive antennas, when
employing the schematic of Figure 2.5 and Table 3.3.
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Figure 3.12: MAT versus the detection threshold value of the initial acquisition scheme
for DDSS parameterised with P = 1, 2 as well as 4 transmit antennas in conjunction
with R = 1 receive antenna for transmission over uncorrelated Rayleigh channels, when
employing the schematic of Figure 2.5 and Table 3.3.
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Figure 3.13: MAT versus the detection threshold value of the post-initial acquisition scheme
for DDSS parameterised with P = 1, 2 as well as 4 transmit antennas in conjunction
with R = 1 receive antenna for transmission over uncorrelated Rayleigh channels, when
employing the schematic of Figure 2.5 and Table 3.3.
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a high transmit diversity order effectively results in an acquisition performance loss, as a

consequence of the insufficiently high signal strength per transmit antenna branch.

The main reasons for the above-mentioned performance trends may be further justified

by information theoretic considerations in the NC MIMO aided scenarios considered [112,

113, 114]. The characteristics of the NC MIMO aided scenarios may be summarised as

follows:

Wireless systems employing MIMO exhibit a high capacity, provided that the channel is

known to the receiver [95]. By contrast, a NC MIMO aided scheme, which does not rely on

any channel knowledge has a lower capacity [112, 113, 114]. However, it was argued in [113]

that there is no reason for using more than Tsym/2 number of transmit antennas, where

Tsym = 2 was the specific number of symbols over which integration was carried out when

generating the results of both Tables 3.4 and 3.5, because the number of degrees of freedom

increases with Tsym/2, but only until the number of transmit antennas P approaches Tsym/2

[113]. Furthermore, at low SINRs the mutual information between the transmitter and

receiver is maximised by using a single transmit antenna, because the mutual information

bounds were shown to be decreasing functions of P [114]. This implies that using multiple

transmit antennas provides no MAT performance gain in the low SINR region, in fact,

rather surprisingly, it leads to an MAT performance degradation. Finally, in the medium

SINR range a maximum of Tsym transmit antennas is worth employing for the sake of

achieving an MAT performance gain, because the capacity achieved for P > Tsym is the

same as that achieved for P = Tsym [112]. This indicates that P = 2 transmit antennas are

capable of achieving an improved MAT performance in the SINR region of -4 and -11 dB,

as demonstrated for the single-path scenario of Figure 3.8.

Accordingly, when considering the design of MIMO aided code acquisition schemes, the

following guidelines may be inferred from Figures 3.7 to 3.13:

a) Using multiple transmit antennas typically leads to an MAT performance degradation,

except for the ′P2R1′ scenario encoutering a single-path environment, as evidenced by

Figures 3.7, 3.8, 3.10 and 3.11. Using a relatively low number of chips, over which integration

or accumulation is carried out imposes further limits on the attainable benefits of MIMO. In

the multi-path scenarios considered all the schemes fail to show a transmit diversity gain, as

observed in Figures 3.7, 3.8, 3.10 and 3.11. Therefore, employing a single transmit antenna

might be recommended for maximising the achievable performance of both the initial and

post-initial acquisition schemes investigated. Furthermore, using a sufficiently high number
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of Post-Detection Integration (PDI) stages is also beneficial for minimising the MAT 1.

b) Using multiple receive antennas increases the achievable receiver diversity gain and

has the potential of compensating for the MAT degradation imposed by the low per-branch

power of multiple transmitters, as demonstrated by R = 4 receive antenna scenario in

Figures 3.7, 3.8, 3.10 and 3.11.

c) For the sake of acquiring the exact timing information of the received paths, specifi-

cally designed preambles, such as that of the Primary Synchronization Channel (P-SCH)

of W-CDMA [115] combined with Time-Switched Transmit Diversity (TSTD) [116] might

be recommended, which is capable of achieving a diversity gain with the aid of a single

transmit antenna [113, 114]. In practical scenarios, the received path timing differences of

the signals arriving from multiple transmit antennas might be distributed within a fraction

of a chip duration [117], although they may vary owing to the time-variant propagation

delay, hence using multiple transmit antennas may further degrade the attainable perfor-

mance. In addition to initial acquisition, the classic pilot channel may also be used for

carrier frequency error correction and channel estimation [118].

3.3.4 Conclusion

In this section, we analysed the MIMO aided diversity effects on the performance of both

initial and post-initial acquisition schemes in the inter-cell synchronous CDMA DL. Ironi-

cally, our findings suggest that increasing the number of transmit antennas in a MIMO-aided

CDMA system results in combining the low-energy, noise-contaminated signals of the trans-

mit antennas, which ultimately degrades the achievable MAT performance, when the SINR

is relatively low, regardless whether single-path or multi-path scenarios are considered, as

evidenced by Figures 3.7, 3.8, 3.10 and 3.11. This phenomenon has a detrimental effect

on the attainable performance of Rake receiver based synchronisation, when the perfectly

synchronised system is capable of attaining its target bit error rate performance at reduced

SINR values, as a benefit of employing multiple transmit antennas. Based on the above-

mentioned results justified by information theoretic considerations, our acquisition design

guidelines are applicable to diverse NC MIMO aided scenarios.

1The underlying philosophy of PDI is that a decision variable is generated by accumulating T consecutive
N-spaced signal samples observed over multiple N-spaced time intervals to improve the PD in the mobile
channel imposing both fading and poor SINR conditions. This specific number must be determined by
satisfying a pair of targeted PD and PF values for the sake of minimising the MAT.
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3.4 Co-located MIMO Aided Code Acquisition in the MC-

DS-CDMA Downlink

3.4.1 System Architecture and System Parameters

Figure 2.6 illustrates the schematic diagram of the transmitter used in the MC-DS-CDMA

DL having both P antennas and U subcarriers. Figure 2.7 depicts the block diagram of the

NC receiver designed for our MC-DS-CDMA code acquisition scheme using MIMO. The

MAT formulae of both the SDSS and DDSS in Sections 2.4.1 and 2.4.2 are also employed

for the performance analysis. Our performance comparison between the SC-DS-CDMA

system (U = 1) and various MC-DS-CDMA (U = 2 and 4) systems using different number

of subcarriers is based upon the assumptions that these systems employ the same total

transmitted energy per chip. Furthermore, it is assumed that the integral dwell time,

τD, is the same for all the scenarios considered here. The associated system parameters

are summarised in Table 3.8. In Table 3.9 we outlined the maximum SINR degradation

imposed by both the Doppler shift and the clock-drift-induced frequency mismatch between

the transmitter and receiver in conjunction with the coherent integration interval of τD

durations, as seen in Figure 2.7. The length of the PN sequence in our system was assumed

to be (215 − 1)·Tc(orTc1), where the chip-durations employed here for U = 1, 2 and 4 are

Tc1 = 1/2.4576µs, Tc = 1/1.2288µs and Tc = 1/0.6144µs, respectively. Based on [25],

when communicating over various fading channels having delay spreads in the range of

[0.1µs,3µs], the fading processes of the adjacent subcarriers in our MC-DS-CDMA system

are considered to be uncorrelated. The number of chips over which the accumulator Σ of

Figure 2.7 sums the (·)2 envelope detector’s output in both the search and the verification

modes of DDSS is assumed to be 128 and 512 in the SC scheme of U = 1. By contrast,

the number of chips over which the accumulator summed the envelope detector’s output

is 64 and 256 in the U = 2 based MC-DS-CDMA arrangement, while 32 and 128 in the

U = 4 scenarios, respectively. These optimised parameter values were calculated by using

both the probability of correct detection and false alarm. Furthermore, the MAT formula

of Equation 2.126 derived for a single-path scenario and Equation 2.128 valid for the multi-

path scenario of Section 2.4.2 as well as Equation. 2.9 of Section 2.3.2.1 were used, which

were provided for quantifying the performance degradation owing to both the Doppler shift

and the frequency mismatch encountered. The spreading factor of the Walsh code to be

acquired was selected to be 128. The frequency mismatch was assumed to be 1000 Hz
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[3], while the carrier frequency was 1.9 GHz. As an example of a high mobile speed, it is

reasonable to postulate 160 km/h. We also assumed that the sampling inaccuracy caused

by having a finite, rather than infinitesimally low search step size of ∆ = Tc/2 was -0.91

dB, which is a typical value for this particular search step size [3, 14]. The total uncertainty

region of code acquisition was assumed to entail 65,534 hypotheses. Finally, in the spirit of

[15], the false locking penalty factor was assumed to be 1000 chip-durations. Finally, both

single-path and multi-path scenarios were considered. In the U = 1 scenario both a single-

path and a three-path scenario were considered. Each of the two delayed paths arrived with

a relative time delay of one chip and a 3 dB lower magnitude for the first received path

as well as 6 dB lower for both the second and the third received paths, respectively, when

compared to the LOS path of a single-path scenario. On the other hand, in the U = 4

scenario, only a single received signal path is encountered in a given search window. All the

performance curves in Figures 3.14 and 3.15 have been obtained at the value of Ec/I0 =

-16 dB. This is a threshold value in the range of ‘finger locking’, which may be considered

to be the range between Ec/I0 = -17 and -13 dB [72, 110].

Table 3.8: System Parameters

Bandwidth
U = 1 2.5 MHz
U = 4 4 × 0.625 MHz

Carrier frequency 1.9 GHz

Spreading factor 128

Diversity

Transmit 1,2,4
Receive 1,2,4
Subcarrier 1,2,4

Frequency mismatch 1000 Hz

Mobile speed 160km/h

Schemes selected Number of chip

SDSS
U = 1 512 chips
U = 2 256 chips
U = 4 128 chips

DDSS
U = 1 128 and 512 chips
U = 2 64 and 256 chips
U = 4 32 and 128 chips

Total uncertainty re-
gion

65,534 hypotheses

False locking penalty
factor

1000 chip-durations

Number of paths single and three path(s)
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Table 3.9: Maximum SINR degradation inflicted by both the Doppler shift and a 1000 Hz
frequency mismatch in comparison to a stationary receiver having no frequency drift for
the coherent integration interval of N chip durations at a carrier frequency of 1.9 GHz as a
function of the number of subcarriers (U = 1, 2 and 4)

N(Chips): U=1 128 256 512 768 1024

N(Chips): U=2 64 128 256 384 512

N(Chips): U=4 32 64 128 192 256

Degradation(dB) 0.061 0.2449 0.9969 2.3144 4.3213

3.4.2 System Performance Results
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Figure 3.14: MAT versus Ec/I0 performance of the DDSS-aided SC-DS-CDMA code acqui-
sition scheme parameterised with both the number of transmit and receive antennas, when
using the schematic of Figures 2.6 and 2.7 as well as Table 3.8.

Figure 3.14 characterises the MAT versus Ec/I0 performance of DDSS for the SC-DS-

CDMA code acquisition arrangement as a function of the number of transmit antennas for

P = 1,2 as well as 4 and that of the number of receive antennas for the specific values of R =

1 and 4. In the results of Figures 3.14 and 3.15, the solid lines indicate a single-path scenario

(denoted as M1 in Figures 3.14 and 3.15), whereas the dotted lines represent the scenario of

receiving three paths (denoted as M3 in Figure 3.14). It is worth mentioning that although

not explicitly shown in Figures 3.14 and 3.15 for avoiding obfuscating details, the operating

range of R = 2 receive antennas was found to be between that corresponding to the R = 1
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and R = 4 receive antenna scenarios. As the number of transmit antennas was decreased,

all the curves seen in Figure 3.14 illustrated an improved MAT performance for the systems

exploiting R = 4 receive antennas in both the single-path and multi-path scenarios. Similar

trends were observed also in the R = 1 receive antenna aided multi-path scenario, except for

R = 1 in the specific Ec/I0 range of the single-path system characterised in Figure 3.14. To

elaborate on the above fact a little further, the ′P2R1′ and ′P4R1′ scheme communicating

over a single-path channel exhibits a better MAT performance in comparison to the ′P1R1′

arrangement across the specific Ec/I0 range considered. In other words, this clearly implies

that the scheme employing R = 1 receive antenna benefits from a higher diversity gain in the

SC-DS-CDMA scenario having a sufficiently wider bandwidth. By contrast, even though

the number of the successfully detected states was increased by a factor of three, the MAT

performance of the multi-path scenario became worse than that of the single-path one. This

is because a low ’per-path-power’ would lead to a low acquisition performance in the multi-

path scenario. Furthermore, the performance degradation imposed by employing multiple

transmit antennas becomes more drastic in the low Ec/I0 range, as the number of transmit

antennas is increased in the scenario. In case of employing both multiple transmit and

multiple receive antennas, similar trends are observable, although using two or four receive

antennas has the potential of mitigating the associated acquisition performance degradation

imposed by the low per-branch Ec/I0 values associated with the employment of multiple

transmitters. In the case of R = 4 receivers the performance degradations imposed by

multiple paths become significantly lower than those in the R = 1 receive antenna scenario,

because the receive diversity gain is already sufficiently high for achieving a near-Gaussian

MAT-performance, provided that an Ec/I0 in excess of -12 dB is maintained for both the

single-path and multi-path scenarios. The R = 4 and R = 1 scenarios might be viewed as

practical upper and lower bounds of the achievable MAT performances encountered. On

the other hand, Figure 3.15 illustrates the achievable MAT versus Ec/I0 performance of

the DDSS-aided MC-DS-CDMA code acquisition scheme parameterised with the number

of antennas, when using U = 4 subcarriers. In the case of the MC-DS-CDMA system, the

scheme has an unnecessarily high diversity order, which is determined by the number of

subcarriers used. It is also assumed that the total transmitted energy per chip is the same

in all the scenarios considered. Accordingly, the effect of the inherent frequency diversity

is the same as that of the multiple transmit antenna aided diversity, as documented in

Section 2.3.2.1. This fact indicates that employing multi-carrier transmissions based on

the DS-CDMA principle leads to exactly the same detrimental effect on the achievable
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Figure 3.15: MAT versus Ec/I0 performance of the DDSS-aided MC-DS-CDMA code ac-
quisition scheme parameterised with both the number of transmit and receive antennas for
U = 4 subcarriers, when using the schematic of Figures 2.6 and 2.7 as well as Table 3.8.

MAT performance as that imposed by employing the multiple transmit antennas. The

results of Figure 3.15 are parameterised by both the number of transmit antennas for P

= 1,2 as well as 4 and by the number of receive antennas for R = 1 as well as 4. As

the number of transmit antennas is decreased, all the curves seen in Figure 3.15 indicate

an improved MAT performance. This trend explicitly illustrates that the performance of

the MC-DS-CDMA acquisition scheme becomes significantly worse than that of SC-DS-

CDMA encountering a single-path. This is a consequence of both the low per-antenna

power imposed by employing a transmit diversity gain and the low per-subcarrier power

imposed by using a frequency diversity gain. To interpret the above results a little further,

a low level of per-branch and/or per-subcarrier received signal strength would lead to a low

acquisition performance, despite achieving a high transmit- and frequency-diversity gain, as

a result of the insufficiently high signal strength per transmit antenna and per subcarrier.

When comparing the results of Figures 3.14 and 3.15, the performance of the MC-DS-CDMA

code acquisition scheme encountering a single-path is marginally better than that of the

SC-DS-CDMA code acquisition scheme encountering three paths. It also suggests that a

low level of per-path received signal strength would result in a low acquisition performance,

despite having a four times higher number of accumulated chips over the same integral dwell



3.4.2. System Performance Results 113

time.

Figure 3.16 documents the relationship between PD and the number of transmit antennas

required by the DDSS-aided code acquisition scheme for approaching their lowest possible

MAT versus the number of subcarriers (U = 1 and 4), parameterised with both the number

of transmit antennas and different values of Ec/I0. The correct detection probabilities seen

in Figure 3.16 were obtained assuming a false locking probability of PF = 10−3 for all

scenarios considered, since the reliable operational range in the verification mode of the

DDSS-aided code acquisition scheme is a false alarm probability spanning from 10−3 to

10−4. The left illustration of Figure 3.16 characterises the scenario of U = 1, while the one

at the right of Figure 3.16 is valid for the arrangememt having U = 4. When increasing

the number of transmit antennas, the curves recorded for Ec/I0 values spanning from -7 to

-13 dB at the left of Figure 3.16 indicate a PD improvement, although at low Ec/I0 values,

i.e. at Ec/I0 = -16 dB, the opposite is true. On the other hand, the results at the right of

Figure 3.16 indicate that PD tends to decrease, as both the number of transmit antennas

and the number of subcarriers increases, when typical Ec/I0 values are encountered.

P1   P2   P4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
et

ec
tio

n 
P

ro
ba

bi
lit

y

P1   P2   P4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
et

ec
tio

n 
P

ro
ba

bi
lit

y

Ec/Io = −7dB
Ec/Io = −10dB
Ec/Io = −13dB
Ec/Io = −16dB

Ec/Io = −7dB
Ec/Io = −10dB
Ec/Io = −13dB
Ec/Io = −16dB

Number of SubCarrier = 1; R=1 Number of SubCarrier = 4;R=1

Figure 3.16: PD versus the number of transmit antennas for P = 1,2 as well as 4, the
number of receive antennas for P= 1 as well as the number of subcarriers for both U = 1
(Left figure) and U = 4 (Right figure) parameterised by the Ec/I0, when using the schematic
of Figures 2.6 and 2.7 as well as Table 3.8.
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Figure 3.17 describes the relationship between the SINR per chip required by the DDSS-

aided initial code acquisition scheme for approaching their lowest possible MAT versus the

number of subcarriers (U = 1, 2 and 4) parameterised with both the number of transmit

and receive antennas. More explicitly, for R = 1 and R = 2 receive antennas, the required

Ec/I0 values are compared at MAT = 6 and 4 seconds, respectively. As either the number

of transmit antennas or the number of subcarriers is increased, the value of the required

Ec/I0 is also increased, except for the ′P1R1′ scenario, benefiting from the positive effect

of the increased frequency diversity gain. It is also worth mentioning that according to

Figure 3.17 the required Ec/I0 value tends to increase, as the number of subcarriers is in-

creased, on provided that there exists no spectral overlap between the spectral main lobes

of two adjacent subcarriers in the MC-DS-CDMA system considered [23]. Since the reli-

able operational range in the verification mode of the DDSS-aided initial code acquisition

scheme is a false alarm probability spanning from 10−3 to 10−4, as the number of sub-

carriers is increased, the correct detection probability considerably decreases according to

the relationship between the correct detection versus false alarm probability formulated in

Section 2.3.2.4. The main reasons for the above-mentioned performance trends may also be
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Number of subcarriers (U=1, 2 and 4)

Figure 3.17: Ec/I0 performance versus the number of subcarriers (U = 1, 2 and 4) of the
DDSS-aided MC-DS-CDMA code acquisition scheme parameterised with both the number
of transmit and receive antennas, when using the schematic of Figures 2.6 and 2.7 as well
as Table 3.8.

further justified by the information theoretic considerations derived for NC MIMO aided
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scenarios in [112, 113, 119]. Finally, when considering the design of MIMO aided code

acquisition schemes, the following guidelines may be inferred from Figures 3.14, 3.15, 3.16

and 3.17:

a) As evidenced by Figures 3.14, 3.15 and 3.17, using multiple transmit antennas typically

leads to an MAT performance degradation, owing to the reduced per-antenna transmit

power, except for specific scenarios, when encountering a single-path environment, also

depending on the allocated bandwidth. Using a relatively low number of chips, over which

integration or accumulation is carried out, imposes further limits on the attainable benefits

of MIMO [112, 113]. Furthermore, in the multi-path scenarios considered all the schemes

of Figure 3.14 fail to show a transmit diversity gain. Therefore, activating only a single

transmit antenna might be recommended for the sake of maximising the achievable MAT

performance of the code acquisition scheme investigated before correct code acquisition is

confirmed.

b) As seen in Figures 3.14, 3.15 and 3.17, employing multiple receive antennas increases

the achievable receiver diversity gain and has the potential of compensating for the MAT

degradation imposed by the low per-branch power of both multiple transmitters and mul-

tiple subcarriers.

c) In order to acquire the exact timing information of the received paths without any

potential performance degradation that might be imposed on NC MIMO aided scenarios,

specifically designed preambles, such as that of the primary synchronization channel of

W-CDMA [115] combined with TSTD [116] might be recommended, which is capable of

achieving a diversity gain with the aid of a single transmit antenna [113, 114]. The conven-

tional pilot channel may also be used for other purposes, such as frequency error correction

and channel estimation so as to support coherent MIMO aided scenarios [118].

3.4.3 Conclusion

In this section, we analysed the MIMO aided diversity effects on the performance of the

code acquisition scheme of the inter-cell synchronous MC-DS-CDMA DL. Unexpectedly,

our results suggest that increasing both the number of transmit antennas and that of the

subcarriers in a MIMO-aided MC-DS-CDMA system results in combining the low-energy,

noise-contaminated signals of both the transmit antennas and the subcarriers, which may

degrade the MAT by an order of magnitude, when the SINR is relatively low, as evidenced
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by Figures 3.14, 3.15, 3.16 and 3.17. This phenomenon imposes a grave degradation on

the performance of Rake receiver aided initial code acquisition schemes, when the perfectly

synchronised idealised system is capable of attaining its target bit error rate performance

at reduced SINR values, as a benefit of exploiting both multiple transmit antennas and

frequency diversity. Furthermore, communicating in a multi-path scenario also degrades the

attainable performance. Based on the above-mentioned results, which are also corroborated

by the information theoretic considerations of [113], our acquisition design guidelines are

applicable to diverse NC MIMO aided scenarios.

3.5 Cooperative MIMO Aided Non-Coherent Code Acquisi-

tion

3.5.1 Cooperative Scenarios

In wireless networks, fading constitutes one of the main sources of channel-induced impair-

ments. A powerful technique of overcoming the fading imposed by multi-path propagation

is constituted by spatial diversity invoking MIMO, which has attracted substantial research

interests [33, 34, 97]. Furthermore, the substantial appeal of MIMOs is that their capac-

ity increases linearly with the Signal-to-Interference plus Noise Ratio (SINR), as opposed

to the more modest logarithmic increment of the classic Shannon-Hartley law, which may

be readily elucidated by assigning the increased transmit power to an additional antenna

and therefore linearly increasing the throughput [35]. However, in realistic propagation

environments, the multiple antenna’s signals typically become correlated owing to the size-

limitation of the MS and BS. Hence the spatial diversity gain of independently faded signals

is often eroded. This phenomenon is typically imposed by shadow fading. In order to cope

with this problem, various cooperative and Relay Station (RS)-aided transmission schemes

have been proposed [120, 121, 122]. In low-complexity cooperative systems a MS receives

the two-hop DL signal via the RS as well as the directly detected DL signal of the BS. Since

these two signals generally arrive through completely different -rather than correlated- prop-

agation paths, cooperative transmission becomes capable of mitigating the above-mentioned

correlated shadow fading effects. Furthermore, exploiting the intermediate RS, cooperative

transmission has the potential of extending the cell area and/or of improving the quality

of cell-edge coverage, which results in requiring a reduced number of BSs. The RS in co-

operative systems filters the signal received from the BS and retransmits it to the MS. The
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relaying schemes are commonly classified into two types: Amplify-and-Forward (AF) as

well as Decode-and-Forward (DF) regimes [121, 122]. In the AF scheme, the RS simply

retransmits the scaled version of the encountered signal and hence the noise component

may also be amplified. By contrast, the DF aided RS fully decodes the received signal and

forwards the re-encoded version in order to avoid the noise amplification. However, the DF

strategy undoubtedly increases the complexity of RSs. In cooperative or distributed MIMO

aided scenarios, the RS may be constituted by an intermediate MS that is currently not

engaged in active communication or by a fixed RS that is installed at a specific position in

a cell. However, for the sake of creating high-reliability RSs, we consider fixed RSs as the

master of a specific RS-aided network [122]. It is also assumed that there is a LOS path

between the master RSs as well as the BS [122].

Our detailed scenario is demonstrated in Figure 3.18. Figure 3.18 illustrates our three-

stage code acquisition scenario encountered in fixed RS-aided environments, when consid-

ering several RSs located in a cell, where (1) represents a BS, (2) indicates a RS being the

master of the RS-aided network, (3) is a slave RS of the RS-aided network, (4) represents

another slave RS of the RS-aided network, (5) indicates a MS travelling at low speed, (6) is

another MS roaming at low speed and (7) represents a MS moving at high speed. The traffic

cell is divided into three sectors and a fixed RS is employed in each sector. We assume that

both the BS and the RS have a single transmit antenna. It is also assumed that the BS

is capable of supporting all the functions required. Furthermore, both the BS and master

RSs are capable of supporting handover functionalities, whilst the master RS supports both

AF, DF as well as pilot transmission. We also assume that some of the slave RSs support

AF, DF as well as signalling message transmission for the RS-aided cluster, while other

slave RSs may only support AF and signalling message transmission. Only MSs travelling

at low speed can be included in a cluster supported by slave RSs. It is worth noting that

a substantial cell-size extension may be achieved by fixed master RSs. Furthermore, both

the master and slave RSs are capable of achieving an improved throughput and a coop-

erative diversity gain. In Figure 3.18 the bold mark [1] suggests that Global Positioning

System (GPS) aided synchronisation is employed for both the BS and fixed master RSs, the

bold mark [2] indicates the required initial control procedures to be carried out between

the BS and fixed RSs, whilst the bold mark [3] portrays the procedures associated with

a specific master and the slaves in a RS-aided temporary cluster. Finally, the bold mark

[4] illustrates the communication procedures employed by the RSs and a specific MS. The
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Figure 3.18: Code acquisition scenario in cooperative MIMO environments, which consti-
tutes three stages when considering a couple of RSs.
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bottom sector of Figure 3.18 depicts two clusters represented as Cluster A and B, respec-

tively. Cluster A exemplifies a scenario, where only pilot transmission from a master RS

is used for code acquisition in support of a MS located at the extended cell edge, while

cluster B represents a scenario, where the BS transmits pilots in order to support the code

acquisition and the master RSs also contribute towards supporting the code acquisition pro-

cedure. Within each cluster, the small dashed arrow indicates that only control information

associated with a specific RS-aided cluster is sent without employing pilot transmission.

Furthermore, the arrow M1 of Figure 3.18 represents the signalling message, which is a

specific PN code based preamble and provides MS identifier information in the UL in order

to register both the slaves and the MSs. Finally, the arrow M2 of Figure 3.18 represents

another signalling message, which is another specific PN code based preamble and provides

MS identifier information in a specific RS-aided cluster for the sake of acquiring timing

information between the slaves and the MSs. The top left sector of Figure 3.18 depicts a

scenario, when considering a MS roaming at high speed, in which the employment of fixed

RSs is only possible, because the high speed of the MS does not allow a RS-aided cluster to

be established. To illustrate this scenario a little further, a PN sequence having the same

code phase offset is used by both the BS and the fixed master RSs in order to acquire GPS

aided synchronisation. Different Walsh codes are assigned to both the BS and the fixed

master RSs, respectively, where the BS and master RSs are fixed at a specific position.

Based on the above elaborations, our three-stage code acquisition scheme designed for

RS-aided inter-cell synchronous DS-CDMA DL systems is summarised as follows:

• 1) First stage: Timing acquisition between the BS and master RSs ⇒ Both are

capable of extracting timing information from the received signal because they are

fixed and it is already known which one was assigned a specific Walsh code for its

future communications.

• 2) Second stage: Timing acquisition between the BS and master RSs as well as MSs.

⇒ In this scenario, the MSs are capable of benefitting from cooperative diversity. We

will analyse this particular scenario in detail.

• 3) Third stage: Timing acquisition among the RSs (master and slave) and MSs. ⇒
By employing the M1 message of Figure 3.18 in the UL, the slave RSs and the MSs

are registered with a specific master RS. When using the M2 message of Figure 3.18

among the slave RSs and the MSs, timing acquisition is accomplished within a previ-

ously established cluster. A new broadcast downlink channel is used for distributing
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the cluster assignment or grouping information. More specifically, the grouping in-

formation includes assignment of slave RSs and unique identification information for

each element of the cluster. Based on the information provided by the broadcast

channel, the M2 messages of Figure 3.18 are exchanged in order to establish timing

acquisition among the constituents of a specific cluster.

Our analysis in this thesis is essentially confined to the second stage designed for employment

in an RS-aided code acquisition scheme. Figure 3.19 illustrates a number of code acquisition

(1)

(2)

(3)

(4)

(5)

Figure 3.19: Code acquisition scenarios in cooperative MIMO environments, which encom-
passes three normalised-power scenarios (denoted as (1), (2) and (3)) and two increased-
power ones (denoted as (4) and (5)) when considering one or two RSs.

scenarios encountered in fixed RS-aided environments, when considering one or two RSs.

The traffic cell is divided into three sectors and a fixed RS is employed in each sector. We

assume that both the BS and the RS have a single transmit antenna, except for a co-located

scenario having two transmit antennas. The top right sector of Figure 3.19 depicts three
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scenarios, where the total allocated power is equally shared by the transmit antennas in

both the co-located and cooperative transmission scenarios (termed as ’normalised-power

scenario’) as follows:

• First scenario (denoted as (1) in Figure 3.19) : The MS receives the DL signals from

both the RS located at the same sector’s centre as well as from the BS and processes

them in order to attain reliable code acquisition.

• Second scenario (denoted as (2) in Figure 3.19) : A co-located scenario having two

transmit antennas is considered.

• Third scenario (denoted as (3) in Figure 3.19) : A SISO scenario is used as a bench-

marker.

By contrast, in both the fourth and fifth scenarios it is assumed that the total allocated

power is also proportionately increased according to the number of RSs (referred to as

’increased-power scenario’), as detailed below:

• Fourth scenario (denoted as (4) in Figure 3.19) : It is exactly the same as the first

one, except for its different power allocation.

• Fifth scenario (denoted as (5) in Figure 3.19) : When the MS is located at the

edge of the top left sector of Figure 3.19, the signal received from the RS at the

adjacent sector’s centre seen at the bottom of Figure 3.19 also arrives at the MS with

a substantial signal strength.

Furthermore, in the fifth case, this particular MS has to combine the signals received from

all the three transmitters for the sake of reliable code acquisition. The average strength

of the RS’ signal varies depending on the location of the MS. Explicitly, when the MS is

located near the cell-edge, the signal received from the RS generally has a higher signal

strength with respect to that of the BS, which results in the phenomenon often referred to

as link imbalance between the signals received by the MS.

3.5.2 System Parameters

Figure 2.11 depicts the block diagram of the NC receiver designed for our code acquisi-

tion scheme employing R co-located receive antennas in RS-aided scenarios. The receiver
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generates a decision variable by accumulating R number of independently faded signals ob-

served over a time interval for the sake of improving the PD in the mobile channel imposing

both fading and poor SINR conditions. In order to simplify the receiver’s structure, we

omitted the front-end down converter, the chip-matched filter, as well as the sampler and

descrambler of the PN code. Further details on the related schemes may be found in [18].

The MAT formula of DDSS provided in Section 2.4.3 is also employed for the performance

analysis of this section. The associated system parameters are summarised in Table 3.10.

Table 3.10: System Parameters
Bandwidth 1.25 MHz

Carrier frequency 1.9 GHz

Spreading factor 128

Diversity:
Transmit 1,2,3
Receive 1,2,4

Frequency mismatch 1000 Hz

Mobile speed 160km/h

Number of chip
(DDSS)

64 and 256 chips

Total uncertainty re-
gion

65,534 hypotheses

False locking penalty factor 1000 chip-durations

Number of paths single and three path(s)

Values of link imbal-
ance

0,3 and 6 dB

Table 3.11: Maximum SINR degradation inflicted by both the Doppler shift and a 1000Hz
frequency drift in conjunction with the coherent integration interval of N chip durations at
a carrier frequency of 1.9GHz

N(Chips) 64 128 256 384 512

Degradation(dB) 0.061 0.2449 0.9969 2.3144 4.3213

In Table 3.11 we outlined the maximum SINR degradation imposed by both the Doppler

shift and the frequency drift between the transmitter and receiver oscillators in conjunction

with the coherent integration interval durations τD seen in the code acquisition schematic of

Figure 2.11. The number of chips over which the integrator of Figure 2.11 sums the square

of the envelope detector’s output in both the search and the verification modes of DDSS is

assumed to be 64 and 256 in the scenarios having P = 1 and 2 RSs as well as R = 1, 2 and
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4 receive antennas. In the co-located MIMO scenario we assume having the same number

of chips in both the search and the verification modes. The values of the link imbalance

between the BS as well as the one RS or two RSs aided scenario is assumed to be 0, 3 and

6 dB. Additionally, we assumed that there is no link imbalance between the two RSs. The

spreading factor of the Walsh code to be acquired was selected to be 128. The frequency

drift was assumed to be 1000Hz [3], whilst the carrier frequency was 1.9GHz. As an example

of a high mobile speed, it is reasonable to postulate 160 km/h. We also assumed that the

sampling inaccuracy caused by having a finite, rather than infinitesimally low search step

size of ∆ = Tc/2 was -0.91 dB, which is a typical value for the search step size [3]. Fur-

thermore, in case of ∆ = Tc/2, the effect of cell correlation becomes modest [123], hence it

is reasonable to assume that two consecutive cells are uncorrelated. The total uncertainty

region of code acquisition was assumed to entail 2 ∗ (215 − 1) = 65,534 hypotheses. Finally,

in the spirit of [15], the false locking penalty factor was assumed to be 1000 chip-durations.

Both single-path and multi-path scenarios were considered. Each of the three paths of the

multi-path scenario arrived with a relative time delay of one chip and they had a 3dB lower

magnitude for the first received path as well as 6dB lower magnitude for the second and

the third received paths than the LOS path of the single-path scenario, respectively. All

paths were assumed to be present in a given search window. All the performance curves

have been obtained at the optimum decision threshold of Ec/I0 = −13 dB designed for the

code acquisition scheme. The operational range of the two-RS scenario was assumed to be

3 dB lower than that of the single-RS one, because it is highly likely that the former may

be situated near the cell-edge.

3.5.3 System Performance Results

Figure 3.20 characterises the MAT versus Ec/I0 performance of the DDSS code acquisi-

tion arrangement parameterised with the number of paths for a single RS and for P =

2 co-located transmit antennas. A BS having a single transmit antenna is also consid-

ered to be a benchmarker. In Figure 3.20 to 3.24, ’M1’ denotes a single-path scenario,

whilst ’M3’ presents the scenario of encountering three paths. When considering Fig-

ure 3.20, ’P2R1Mx|x=1or3 : 0dB’ represents a cooperative transmission scenario, whereas

’P2R1Mx|x=1or3 ’ indicates a co-located transmission scenario. Furthermore, in Figures 3.21

to 3.24, the solid lines indicate the MAT curves recorded for RS-aided transmissions, whereas

the dotted lines represent the MAT curves of our benchmarker. The effects of the different
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Figure 3.20: MAT versus SINR per chip performance of the code acquisition system for
DDSS parameterised with the number of paths for one RS as well as for co-located P =
1 and 2 transmit antennas (normalised-power scenario), when employing the schematic of
Figure 2.11 and the scenarios of Figure 3.19 as well as Table 3.10.

link imbalance values of 0, 3, and 6 dB are clearly visible in all the figures. When con-

sidering the normalised-power scenario, the solid line denoted as ’P2R1M1’ in Figure 3.20

illustrates a similar MAT performance to the ’P1R1M1’ arrangement right across the entire

Ec/I0 range. The solid line denoted as ’P2R1M1 : 0dB’ indicates the worst MAT perfor-

mance among all the three cases considered, suggesting that the multi-path diversity does

not lead to any MAT performance gain. In case of the three-path scenario, the number

of successful detection states was increased by a factor of three, but despite of this, the

MAT performance of this three-path scenario became worse than that of the single-path

one. The dotted line denoted as ’P1R1M3’ in Figure 3.20 exhibits the best achievable MAT

performance among all the three cases. This is because a low ’per-path-power’ of the P =

2 transmitter scenario leads to a low acquisition performance in the multi-path scenario.

Even in case of ’P2R1M3’ we attain no diversity gain, because the performance degradation

imposed by the low per-branch-power of both transmit and multi-path diversity becomes

more drastic. Similarly to the single-path case, the ’P2R1M3 : 0dB’ scenario represents

the worst performance. Accordingly, in the normalised-power scenario, sharing a given to-

tal transmit power at the BS by multiple transmit antennas becomes detrimental in terms

of the MAT performance, in most practical scenarios. The increased-power scenarios are
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analysed in Figures 3.21 to 3.24. Figure 3.21 illustrates the achievable MAT versus SINR
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Figure 3.21: MAT versus SINR per chip performance of the code acquisition system for
DDSS parameterised with link imbalance and the number of receive antennas for one RS
and a single path (increased-power scenario), when employing the schematic of Figure 2.11
and the scenarios of Figure 3.19 as well as Table 3.10.

per chip performance of the DDSS code acquisition scheme parameterised with both the

grade of link imbalance and with the number of receive antennas for a single RS and a single

propagation path. Observe in Figure 3.21 that when the link imbalance is decreased, we

experience an improved MAT performance. In a case of having no link imbalance, the MAT

performance approaches that of having two receive antennas. On the other hand, in case of

having a 6 dB imbalance, only a marginal diversity gain is achieved, hence the attainable

MAT performance improvement also becomes negligible. Figure 3.22 characterises the MAT

versus SINR per chip performance of the code acquisition scheme having exactly the same

parameters as those considered in Figure 3.21, except for the scenario having three paths.

Similarly to the conclusions of Figure 3.21, as the link imbalance is decreased, all the curves

seen in Figure 3.22 indicate an improved MAT performance and vice versa. The above-

mentioned conclusions explicitly demonstrate that employing a single RS is beneficial in

terms of the achievable MAT performance, and as expected, the achievable improvements

depend on the value of the link imbalance, regardless whether single-path or multi-path

scenarios are considered. However, using a single RS cannot guarantee maintaining a high

diversity gain due to the fluctuation of the RS’s link quality.
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Figure 3.22: MAT versus SINR per chip performance of the code acquisition system for
DDSS parameterised with link imbalance and the number of receive antennas for one RS
and three paths (increased-power scenario), when employing the schematic of Figure 2.11
and the scenarios of Figure 3.19 as well as Table 3.10.

For comparison, Figures 3.23 and 3.24 characterise the achievable MAT versus SINR per

chip performance of the DDSS code acquisition scheme parameterised with both the value

of link imbalance and the number of receive antennas, when considering two RSs in both

a single-path (Figure 3.23) and in a three-path scenario (Figure 3.24), respectively. The

results of Figures 3.23 and 3.24 also exhibit similar MAT performance trends, as shown

in Figures 3.21 and 3.22, although the degree of achievable performance improvements is

higher than that of the single-RS scenario. To elaborate on the above results a little further,

in case of having a 0 dB imbalance the MAT performance attained becomes better than

that of the benchmarker supported by R = 2 or 4 receive antennas but no RS. Even a link

imbalance of 6 dB is capable of ensuring a similar performance to that of the benchmarker.

Therefore, owing to the random fluctuation of the link quality, the employment of two RSs

might be beneficial in order to achieve a substantial performance improvement in RS-aided

scenarios. In comparison to the detrimental effects of distributing the total transmit power

over both several co-located and cooperative transmit antennas, as shown in Figure 3.20

and in previous sections, based upon Figures 3.21 to 3.24 characterising the increased-power

scenario, we infer that RS-aided scenarios benefit from higher multi-path diversity gains.

In case of employing multiple co-located receive antennas at the MS, an additional receiver



3.5.3. System Performance Results 127

diversity gain is also achieved. Accordingly, by exploiting an appropriate combination of

RS-aided transmissions and multiple co-located MS receive antennas, in the scenarios con-

sidered our scheme is capable of attaining a better performance than the benchmarker

scheme benefiting from having four co-located MS receive antennas. It is worth mention-

ing furthermore that increasing the number of RSs used explicitly increases the number of

independently fading multi-path components by a factor of P . However, this assumption

implicitly expects that the extra transmit power required can indeed be provided by the

RS. It is also noted that in practice the size-limitation of the MS restricts the number of DL

receive antennas. In order to exploit the beneficial characteristics of cooperative transmis-

sions, assigning additional power to each additional transmit antenna becomes inevitable

during the initial code acquisition stage. The importance of post-initial acquisition - which

is capable of identifying the timing instants of the affordable-complexity-dependent number

of delayed and independently fading received signal paths to be combined by a Rake receiver

- is also worth exploring further. This is particularly so in the code acquisition schemes

designed for ultra-wide band systems, owing to the inherent presence of an extremely high

number of multi-path components [63].
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Figure 3.23: MAT versus SINR per chip performance of the code acquisition system for
DDSS parameterised with link imbalance and the number of receive antennas for two RSs
and a single path (increased-power scenario), when employing the schematic of Figure 2.11
and the scenarios of Figure 3.19 as well as Table 3.10.
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Figure 3.24: MAT versus SINR per chip performance of the code acquisition system for
DDSS parameterised with link imbalance and the number of receive antennas for two RSs
and three paths (increased-power scenario), when employing the schematic of Figure 2.11
and the scenarios of Figure 3.19 as well as Table 3.10.

3.5.4 Conclusion

In this section we considered RS-aided distributed DL MIMOs and the benefits of receive

diversity in code acquisition schemes operating in the inter-cell synchronous CDMA DL.

In contrast to the detrimental effects of sharing the total transmit power across multiple

transmit antennas in both co-located and cooperative MIMO element based scenarios, as

described in Figure 3.20 and in Sections 3.2 to 3.4, our analysis explicitly shows that in

the absence of link imbalance, the achievable MAT performance of RS-aided distributed

DL MIMOs approaches that of classic receive diversity schemes benefiting from having

multiple independently fading MS receive antenna elements, when considering the same total

diversity order, as evidenced by Figures 3.21, 3.22, 3.23 and 3.24. Naturally, the performance

of the acquisition schemes employing multiple co-located transmit antenna elements erodes

in the presence of correlated shadow fading, whilst that of the RS-aided scheme is expected

to remain unaffected, provided that the RS is sufficiently far from the MS. On the other

hand, in a scenario of having a high link imbalance, only marginal MAT performance

gains may be achieved, regardless whether single-path or multi-path propagation scenarios

are considered, as portrayed by Figures 3.21, 3.22, 3.23 and 3.24. Hence, for the sake



3.6. Chapter Summary and Conclusions 129

of exploiting the diversity benefits of RS-aided transmissions, the employment of at least

two RSs might be recommended. When additionally invoking multiple co-located and yet

independently fading receive antennas at the MS, further diversity gains may be achieved.

3.6 Chapter Summary and Conclusions

In this chapter, we have analysed the performance of serial search based code acquisition in

the co-located MIMO aided SC- and MC-DS-CDMA DL as well as of the cooperative MIMO

aided SC-DS-CDMA DL. We commenced the chapter by a brief introduction in Section 3.1,

followed by the correct detection versus false alarm probability analysis of serial search based

code acquisition employed in the co-located MIMO aided SC-DS-CDMA DL in Section 3.2.

This was followed by a discussion of both initial and post-initial acquisition in the serial

search based co-located NC MIMO aided SC-DS-CDMA DL in Section 3.3. We analysed

the performance of code acquisition in the co-located MIMO aided MC-DS-CDMA DL in

Section 3.4. Furthermore, we also investigated the performance of code acquisition in the

cooperative NC MIMO assisted SC-DS-CDMA DL in Section 3.5.

In order to highlight our investigations of both the co-located and cooperative NC MIMO

aided schemes, the characteristics of the co-located and cooperative NC MIMO aided code

acquisition schemes is again emphasised in terms of the achievable MAT performance in

Figures 3.25 and 3.26, respectively. Figure 3.25 illustrates the attainable MAT versus Ec/I0

performance of the NC-based DDSS and SDSS code acquisition schemes as a function of

the number of transmit antennas for P = 1, 2 and 4 as well as that of the number of receive

antennas for R = 1. In the results of Figure 3.25, the solid lines indicate the performance

curves of the DDSS schemes, whereas the dashed lines represent the performance curves

of the SDSS schemes. Observe in Figure 3.25 that as the number of transmit antennas is

decreased, despite the potentially reduced transmit diversity gain, we experience an im-

proved MAT performance for the single-path scenario of the SDSS scheme. Similarly to

the conclusions of the SDSS scenario, as the number of transmit antennas is decreased, all

the curves seen in Figure 3.25 for the single-path scenario of the DDSS scheme illustrate an

improved MAT performance. However, a useful transmit diversity gain is experienced only

for the case of ′P2R1′, and even this gain was limited to the specific SINR range of -4 and

-11 dB. To illustrate the above fact a little further, in the case of ′P2R1′ the DDSS scheme

exhibits a better MAT performance in comparison to the ′P1R1′ arrangement across the
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Figure 3.25: MAT versus Ec/I0 performance comparison between the NC-based DDSS and
SDSS code acquisition schemes parameterised with the number of transmit antennas, when
using the schematic of Figure 2.5 and Table 3.3.

specific SINR range shown in Figure 3.25. It is worth noting that the total uncertainty

region of this scenario was assumed to entail 65,534 hypotheses for Figure 3.25. This fact

clearly implies that DDSS benefits from a significantly higher diversity gain than SDSS. The

performance degradation imposed by employing multiple antennas becomes more drastic, as

the number of transmit antennas is increased for both the SDSS and DDSS schemes, since

the length of coherent summation is limited by the clock-drift-induced frequency mismatch.

Furthermore, the associated MAT performance discrepancy between the SDSS and DDSS

schemes becomes more drastic.

Figure 3.26 illustrates the achievable MAT versus SINR per chip performance of the DDSS

code acquisition scheme parameterised with both the grade of link imbalance and with the

number of receive antennas for a single RS and a single propagation path, when considering

the increased-power scenario defined in Section 3.5.1. Observe in Figure 3.26 that when the

link imbalance is decreased, we experience an improved MAT performance. When there is

no link imbalance, the MAT performance approaches that of having two receive antennas.

On the other hand, in case of having a 6 dB imbalance, only a marginal diversity gain is

achieved, hence the attainable MAT performance improvement also becomes negligible. The
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Figure 3.26: MAT versus SINR per chip performance of the code acquisition system for
DDSS parameterised with link imbalance and the number of receive antennas for one RS
and a single path (increased-power scenario), when employing the schematic of Figure 2.11
and the scenarios of Figure 3.19 as well as Table 3.10.

above-mentioned conclusions explicitly demonstrate that employing a single RS is beneficial

in terms of the achievable MAT performance, and as expected, the achievable improvements

depend on the value of the link imbalance. However, employing a single RS cannot guarantee

maintaining a high diversity gain due to the fluctuation of the RS’s link quality.

Ironically, our findings suggest that increasing the number of transmit antennas in a

co-located MIMO-aided SC-DS-CDMA system results in combining the low-energy, noise-

contaminated signals of the transmit antennas, as seen in Figures 3.14, 3.15, 3.16 and 3.17.

Furthermore, increasing both the number of transmit antennas and that of the subcarriers in

a co-located MIMO-aided MC-DS-CDMA system also results in combining the low-energy,

noise-contaminated signals of both the transmit antennas and the subcarriers. This fact

ultimately reduces the correct detection probability, and accordingly increases the MAT

by an order of magnitude, when the SINR is relatively low. However, it is extremely

undesirable to degrade the achievable acquisition performance, when the system is capable

of attaining its target BER performance at reduced SINR values. This phenomenon also has

a detrimental effect on the performance of Rake receiver based synchronisation, when the

perfectly synchronised system is capable of attaining its target bit error rate performance at

reduced SINR values, as a benefit of employing multiple transmit antennas and/or frequency



3.6. Chapter Summary and Conclusions 132

diversity. Hence it may be concluded that the achievable cell coverage determined by

the received pilot channel power may be reduced, as the number of transmit antennas is

increased, which is a highly undesirable phenomenon, since it has grave repercussions in

terms of having to tolerate a high number of handovers per cell. Based on the above-

mentioned results justified by information theoretic considerations, our acquisition design

guidelines are applicable to diverse co-located NC MIMO aided scenarios.

In contrast to the detrimental effects of sharing the total transmit power across multiple

transmit antennas in the co-located and cooperative MIMO based scenarios, characterised

in Figure 3.20 and in Sections 3.2 to 3.4, our findings suggest that employing distributed

MIMO elements acting as RSs combined with multiple receive antennas leads to an im-

proved MAT performance, as evidenced by Figures 3.21, 3.22, 3.23 and 3.24. However,

these gains are only achievable, if the RSs can afford to contribute toward supplying the ex-

tra power used in the ’increased-power-scenario’ of Section 3.5. By contrast, when having a

high link imbalance, as in Figure 3.21, 3.22, 3.23 and 3.24 only marginal MAT performance

gains may be achieved, regardless whether single-path or multi-path propagation scenarios

are considered. Therefore, in order to efficiently exploit the diversity benefits of RS-aided

transmissions, the employment of at least two RSs might be recommended. When addition-

ally invoking multiple co-located receive antennas at the MS, further diversity gains may

be achieved.



Chapter 4

Performance Analysis of

Co-located MIMO Aided

Differentially Coherent Code

Acquisition

4.1 Introduction

In this chapter, we will analyse both DC and NC serial search based code acquisition in both

the co-located MIMO aided SC- and MC- DS-CDMA DL. We will commence our discourse

by analysing the achievable code acquisition performance in the co-located MIMO aided

SC-DS-CDMA DL in Section 4.2 with the aid of Sections 2.3.3, 2.4.1 and 2.4.2. Based on

the formulae in Sections 2.3.3, 2.4.1 and 2.4.2, this will be followed by a discussion on the

attainable code acquisition performance in the co-located MIMO aided MC-DS-CDMA DL

in Section 4.3. Furthermore, based on the above-mentioned results justified by information

theoretic considerations, our acquisition design guidelines applicable to diverse co-located

DC MIMO aided scenarios will be summarised in Sections 4.2.2 and 4.3.2.
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4.2 Co-located MIMO Aided Code Acquisition in the SC-

DS-CDMA Downlink

4.2.1 System Architecture and System Parameters

Figure 4.1 portrays both the DC and the NC receiver’s schematic designed for our code

acquisition scheme using MIMOs, where the NC module generates its decision variable by

accumulating (P ·R) number of independently faded signals observed over a given time inter-

val. In the DC scheme of Figure 4.1, instead of squaring the summed energy as suggested by

the procedures outlined in [3], the channel’s output samples accumulated over a full spread-

ing code period are multiplied by the conjugate of the N -chip-delayed samples [17, 18] and

τD represents the integral dwell time. The MAT formulae of both the SDSS and DDSS in

Section 2.4 are also employed for the performance analysis. When analysing the MAT per-

R

o
o
o

1

o
o
o

Either  DC module 
or NC module

Either  DC module 
or NC module

NC module : DC module : 

Ztot

R∑

W1(t)

∫ τD
0

∫ τD
0

Re[·]

τD (·)∗ (·)2

WP (t)

Figure 4.1: Receiver structure of both differentially coherent and non-coherent code ac-
quisition using R receive antennas. In the context of the search mode constituting the
SDSS scheme using the threshold θ1 in Fig. 4.2 only NC detection is possible, while in the
verification mode employing the threshold θ2 both NC and DC acquisition is possible.

formance of the SDSS technique [3], where the NC receiver structure of Figure 4.1 is used in

the search mode constituting the SDSS scheme seen at the top of Figure 4.21, the decision

statistics, Ztot generated by the NC module of Figure 4.1 is compared to the threshold θ1,

which is optimised for a specific Ec/I0 value2. This completes the single-step search-mode

1The term ’update’ indicates that the acquisition scheme adjusts or updates the particular code-phase
assumed during the current hypothesis test in its efforts to find the best possible alignment of the received
and locally stored code, given the particular search step-size used.

2The specific value of Ec/I0 depends on the operating environment.
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of the SDSS scheme. By contrast, the DDSS technique [14] of Figure 4.2 invokes a two-step

process. More explicitly, once the desired user’s code was found in the search-mode of the

DDSS scheme of Figure 4.2, the verification mode is activated. The verification mode may

use either the DC or the NC modules of Figure 4.1, in order to confirm that the correct

code-phase is indeed the one identified in the search mode. On the other hand, in the

search mode, only the NC scheme can be used, as portrayed in Figure 4.2. The DC scheme

is excluded from the search mode, because it requires further processing carried out within

the DC module of Figure 4.1 and hence the complexity may be minimised by limiting the

employment of the DC scheme to the verification mode. More explicitly, the NC scheme is

employed in two consecutive decision processes, namely first in finding and then confirming

the correct code phase in order to improve the reliability of SDSS, which results in the

DDSS acquisition scheme. Figure 4.2 illustrates the schematic of the DDSS scheme, where

θ1 and θ2 represent the acquisition thresholds of the search and verification mode, respec-

tively. Furthermore, Z1 and Z2 denote the decision variables of the search and verification

mode, respectively. In Figure 4.2 Z1 is compared to θ1 and if it exceeds the threshold, Z2

generated by either DC or NC module is compared to θ2. If successful code acquisition is

declared, then the code tracking loop is enabled. Otherwise, the acquisition system reverts

back to the search-stage, until the correct code and its phase are found. In our forthcoming

analysis, four code acquisition arrangements are considered. Specifically, SDSS employing

both DC and NC schemes as well as DDSS exploiting both DC and NC arrangements are

invoked in the verification mode. However, in the search mode of the DDSS scheme only

the NC scheme can be used. Further details on the related DDSS system can be found in

[14, 68].

The associated system parameters are summarised in Table 4.1. In Table 4.2 we outlined

the maximum SINR degradation imposed by both the Doppler shift and the clock-drift-

induced frequency mismatch between the transmitter and receiver in conjunction with a

coherent integration interval of N chip durations, where both represent the total frequency

mismatch. The length of the PN sequence in our system was assumed to be 256·Tc, where

the chip-duration is Tc = 1/1.2288µs. It was found to be sufficient to integrate the de-

tector output seen in Figure 4.1 over N =256 chips, which is equivalent to two 128-chip

direct-sequence modulated symbols used for coherent accumulation due to the adoption of

the above-mentioned FPC scheme of [18] for analysing SDSS. In the DDSS case the number

of chips, over which the accumulator in Figure 4.1 sums the envelope detector’s output, is

assumed to be 64 for the search mode and 256 for the verification mode in all the different
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Figure 4.2: Receiver flowchart of our DDSS code acquisition scheme, where θ1 and θ2
represent the acquisition thresholds of the search and verification modes, respectively. The
search mode constitutes the SDSS and consecutive search and verification modes represent
the DDSS.

MIMO scenarios. This value was calculated by using Equation. 2.9 in Section 2.3.2.1 pro-

vided for determining the performance degradation owing to the total frequency mismatch

imposed on both the Doppler shift and the clock drift. The spreading factor of the Walsh

code to be acquired was selected to be 128. The frequency mismatch was assumed to be

1000 Hz [3], while the carrier frequency was 1.9 GHz. As an example of a high mobile

speed, it is reasonable to postulate 160 km/h. We also assumed that the sampling inaccu-

racy caused by having a finite, rather than infinitesimally low, search step size of ∆ = Tc/2

was -0.91 dB3, which is a typical value for the search step size [3]. The total uncertainty

region was assumed to entail 512 hypotheses. In the spirit of [15], the false locking penalty

factor was assumed to be 1000 chip-durations. Finally, it is assumed that both a single-path

and a three-path scenario are considered. More specifically each of the three paths arrives

with a relative time delay of one chip with respect to the previous one and has the same

magnitude for the first received path as the single-path channel, as well as 3 dB lower for

the second and 6 dB lower for the third received paths, respectively.

In all the remaining figures we assumed an operation in the range of ‘finger locking’, which

may be considered to be the range between Ec/I0 = −17 and −13 dB, as suggested in [110].

All the performance curves - except when investigating the achievable MAT versus the

detection threshold value - have been generated at the threshold value of Ec/I0 = −16 dB,

3A half-chip-duration timing error imposed on the single hypothesis test per chip is capable of causing an
SINR loss of several dBs, when considering the achievable MAT performance which was deemed excessive.
Hence we opted for testing two hypotheses per chip, which reduced the corresponding SINR loss to 0.91 dB.
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which was considered as the minimum value required for finger locking.

Table 4.1: System Parameters
Bandwidth 1.25 MHz

Carrier frequency 1.9 GHz

Spreading factor 128

Diversity:
Transmit 1,2,4
Receive 1,2,4

Frequency mismatch 1000 Hz

Mobile speed 160km/h

Num. of chip
SDSS 256 chips
DDSS 64 and 256 chips

Total uncertainty region 512 hypotheses

False locking penalty factor 1000 chip-durations

Number of paths single and three path(s)

Table 4.2: Maximum SINR degradation inflicted by both the Doppler shift and the clock
drift in conjunction with the coherent integration interval of N chip durations at a carrier
frequency of 1.9 GHz

N (Chips) 64 128 256 384 512

Degradation(dB) 0.061 0.2449 0.9969 2.3144 4.3213

4.2.2 System Performance Results

Throughout Figures 4.3 to 4.8, the sensitivity with respect to the detection threshold value

becomes significantly higher as the value of Ec/I0 is decreased and the NC scheme is em-

ployed, although the degree of the sensitivity is quite different depending upon the number

of transmit antennas. The results for Figures 4.3 to 4.8 are generated by exploiting the

SDSS technique in Section 2.4.1. Figure 4.3 illustrates the achievable MAT versus the detec-

tion threshold value for the DC code acquisition system as a function of both the number of

transmit antennas for P = 1, 2 as well as 4 and that of the SINR per chip denoted as Ec/I0.

Observe in Figure 4.3 that surprisingly, as the number of transmit antennas is decreased,

despite the potentially reduced transmit diversity gain, we experience an improved MAT

performance at Ec/I0 = -16 dB. However, observe in Figure 4.3 that in the case of Ec/I0 = -

13 and -10 dB, the performance degradation remains relatively low, as the transmit diversity

order is increased from P = 1 to 4. For comparison, Figure 4.4 characterises the achievable
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MAT versus the detection threshold value for the NC code acquisition arrangement as a

function of the number of transmit antennas for P = 1,2 as well as 4 and that of the SINR

per chip. Similarly to the conclusions of Figure 4.3, as the number of transmit antennas

is decreased, all the curves seen in Figure 4.4 illustrate an improved MAT performance.

However, unlike in the case of the DC scheme of Figure 4.3, the MAT performance degrada-

tion becomes further pronounced for Ec/I0 values such as Ec/I0 = -13 dB, as the transmit

diversity order is increased from P = 1 to 4. This is because the DC scheme characterised

in Figure 4.3 has a performance gain of just under 3 dB in comparison to the NC one.

The MAT performance results of Figure 4.3 confirm the expected trends. Moreover, this

explicitly indicates that the DC scheme also degrades the achievable MAT performance as

a consequence of employing multiple transmit antennas for the sake of attaining a transmit

diversity gain. However, the MAT performance degradation imposed is less severe than that

of NC counterpart. Figure 4.5 and Figure 4.6 characterise the achievable MAT versus de-

tection threshold performance, parameterised by both the number of transmit antennas for

P = 1, 2 as well as 4 in conjunction with R = 2 receive antennas and by the Ec/I0 ratio for

both the DC code acquisition scheme (Figure 4.5) and for its NC counterpart (Figure 4.6).

The achievable MAT versus detection threshold performance recorded for exactly the same

parameters as in Figures 4.5 and 4.6 but using R = 4 receive antennas is characterised in

Figures 4.7 and 4.8, respectively. When having R = 2 and R = 4 receive antennas, similar

trends may be observed for both DC code acquisition schemes as portrayed in Figures 4.5

and 4.7, respectively. By contrast, as seen in Figures 4.6 and 4.8 for the same scenario of

R = 2 and R = 4 receive antennas, respectively, the NC code acquisition scheme exhibited

a more drastic MAT performance degradation at relatively low Ec/I0 values such as -16

dB, compared to DC code acquisition, especially, as the number of transmit antennas was

increased.

Throughout Figures 4.9 to 4.12, the achievable MAT versus SINR per chip performance

of both the DC and NC code acquisition scheme employing SDSS and DDSS techniques

is analysed in both single-path and multi-path scenarios. These investigations are then

followed by the characterisation of the correct detection versus false alarm probability in

Figure 4.13. The results of Figures 4.9 to 4.12 were generated by exploiting the techniques

outlined in Sections 2.4.1 and 2.4.2. Figure 4.9 illustrates the achievable MAT versus SINR

per chip performance of the DC SDSS code acquisition scheme as a function of the number

of transmit antennas for P = 1,2 as well as 4 and that of the number of receive antennas for

R = 1 and 4. In Figures 4.9 to 4.12, the solid lines indicate the scenario of receiving three
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Figure 4.3: MAT versus the detection threshold value of the differentially coherent code
acquisition system for P = 1, 2 as well as 4 transmit antennas in conjunction with R =
1 receive antenna for transmission over uncorrelated Rayleigh channels, when using the
schematic of Figure 4.1 and Table 4.1.

10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P:4;−16dB
P:2;−16dB
P:1;−16dB
P:4;−13dB
P:2;−13dB
P:1;−13dB
P:4;−10dB
P:2;−10dB
P:1;−10dB

M
A

T
(s

e
c)

Threshold (NC Scheme)

Figure 4.4: MAT versus the detection threshold value of the non-coherent code acquisition
system for P = 1, 2 as well as 4 transmit antennas in conjunction with R = 1 receive
antenna for transmission over uncorrelated Rayleigh channels, when using the schematic of
Figure 4.1 and Table 4.1.
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Figure 4.5: MAT versus the detection threshold value of the differentially coherent code
acquisition system for P = 1, 2 as well as 4 transmit antennas in conjunction with R =
2 receive antenna for transmission over uncorrelated Rayleigh channels, when using the
schematic of Figure 4.1 and Table 4.1.
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Figure 4.6: MAT versus the detection threshold value of the non-coherent code acquisition
system for P = 1, 2 as well as 4 transmit antennas in conjunction with R = 2 receive
antenna for transmission over uncorrelated Rayleigh channels, when using the schematic of
Figure 4.1 and Table 4.1.
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Figure 4.7: MAT versus the detection threshold value of the differentially coherent code
acquisition system for P = 1, 2 as well as 4 transmit antennas in conjunction with R =
4 receive antenna for transmission over uncorrelated Rayleigh channels, when using the
schematic of Figure 4.1 and Table 4.1.
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Figure 4.8: MAT versus the detection threshold value of the non-coherent code acquisition
system for P = 1, 2 as well as 4 transmit antennas in conjunction with R = 4 receive
antenna for transmission over uncorrelated Rayleigh channels, when using the schematic of
Figure 4.1 and Table 4.1.
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paths (denoted as M3), whereas the dashed lines represent a single-path scenario (denoted

as M1). For the sake of compact notation, the scenario of using P = x, R = y and M = z

is denoted as PxRyMz in Figures 4.9 to 4.12.

Observe in Figure 4.9 that somewhat surprisingly, as the number of transmit antennas

is decreased, we experience an improved MAT performance for both the single-path and

multi-path scenarios. The main reasons for these performance trends will be further justified

by information theoretic considerations in the NC MIMO antenna-aided scenarios at the

end of the section. On the other hand, the MAT performance of the multi-path scenario

became better than that of the single-path one, since the number of states where the signal

was deemed to be present was increased by a factor of three. In the case of R = 4 receivers

the performance improvements due to having multiple paths became marginal, because

the receive diversity gain was already sufficiently high for approaching a Gaussian MAT-

performance. A useful transmit diversity gain was achievable only for the P = 2 and R =

1 scenario, and this was limited to the specific SINR range of -10 to -14 dB in the single-

path scenario. For comparison, Figure 4.10 characterises the MAT versus SINR per chip

performance of the NC SDSS code acquisition aided system as a function of the number

of transmit antennas for P = 1,2 as well as 4 and that of the number of receive antennas

for R = 1 and 4. Similarly, as the number of transmit antennas is decreased, all the curves

illustrate an improved MAT performance. In particular, the MAT performance of the DC

scheme clearly shows a better performance in comparison to the NC arrangement, since the

DC scheme has a performance gain of approximately 3dB in comparison to the NC scheme.

Furthermore, the DC scheme is more efficient in terms of reducing the effects of both the

AWGN and the interference, than the NC one in the low SINR range [17] 4. Hence, the

DC scheme suffers from a less severe MAT performance degradation owing to employing

multiple transmit antennas in comparison to its NC counterpart.

Figure 4.11 characterises the MAT versus SINR per chip performance of a DDSS sys-

tem. More specifically, both the NC code acquisition aided system of Figure 4.1 used in the

search mode and the DC code acquisition assisted scheme employed in the verification mode

are characterised. Explicitly, their performance is quantified as a function of the number of

transmit antennas for P = 1,2 as well as 4 and the number of receive antennas for R = 1 and

4 (denoted as NCDC in Figure 4.1). By contrast, Figure 4.12 characterises the MAT versus

SINR per chip performance of a DDSS system employing the NC code acquisition aided

4In the low SINR region, the false alarm probabilities of the DC and NC schemes differ by a factor of
two. This fact leads to the superiority of the DC scheme over the NC arrangement.
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Figure 4.9: MAT versus SINR per chip performance of the differentially coherent code
acquisition system for SDSS parameterised with both the number of transmit and
receive antennas, when using the schematic of Figure 4.1 and Table 4.1.
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Figure 4.10: MAT versus SINR per chip performance of the non-coherent code acqui-
sition system for SDSS parameterised with both the number of transmit and receive
antennas, when using the schematic of Figure 4.1 and Table 4.1.
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scheme of Figure 4.1 in both its search mode and verification mode (denoted as NCNC in

Figure 4.12). The results seen in Figure 4.11 suggest that the overall performance improve-

ment of the DDSS system employing the DC scheme of Figure 4.1 in its verification mode is

significantly higher than that of the DDSS system using the NC scheme of Figure 4.1, as seen

in Figure 4.12. Similarly to the results of the SDSS scenario in both Figures 4.9 and 4.10,

the MAT performance degradation becomes more drastic in Figures 4.11 and 4.12, when the

number of transmit antennas is increased, as observed for the DC and NC schemes, respec-

tively. Nonetheless, as expected, the overall performance of DDSS remains substantially

higher than that of SDSS. In the case of DDSS, the performance improvement obtained for

the three-path scenario is less than that of SDSS. It is worth mentioning that although not

explicitly shown in Figures 4.9 to 4.12 for avoiding obfuscating details, the MAT operating

range of R = 2 receive antennas was found to be between that corresponding to the R =

1 and R = 4 receive antenna scenario. Observe in Figures 4.9 to 4.12 that the associated

MAT performance discrepancy between the SDSS and DDSS schemes becomes more dras-

tic, when the number of transmit antennas is increased. In the multi-path scenarios all

the schemes fail to show any transmit diversity gain, since the third-order receive diversity

provided by the three paths approaches a Gaussian performance. Table 4.3 summaries the

performance gains recorded in Figures 4.9 to 4.12 for the DC code acquisition scheme over

the NC arrangement in the case of experiencing a single-path, when considering P = 1,2

and 4 number of transmit antennas invoked in conjunction with R = 1 receive antenna.

Observe in this table, that the performance improvements achieved by employing the DC

SDSS and DDSS schemes becomes significantly higher in the vicinity of SINR = −15 dB,

when the number of transmit antennas is increased.

Table 4.3: The MAT performance ratio between NC SDSS and DC SDSS as well as NC
DDSS and DC DDSS at Ec/I0 = -15 dB

DC SDSS/ NC SDSS DC DDSS/ NC DDSS

P4 3.2443 2.5727

P2 2.5 2.0704

P1 2.0208 1.7615

Figure 4.13 illustrates the correct detection versus false alarm probability, parameterised

by the number of transmit antennas for P = 1,2 and 4 in the verification mode of both the

DC and NC schemes at Ec/I0 = -13 dB. In terms of the achievable MAT performance, the

most efficient operational range of the false alarm probabilities for the verification mode and
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Figure 4.11: MAT versus SINR per chip performance for a DDSS system constituted
by both the non-coherent code acquisition aided system in the search mode
and the differentially coherent code acquisition system in the verification mode
parameterised with both the number of transmit and receive antennas, when employing the
schematics of Figures 4.1 and 4.2 as well as Table 4.1.
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Figure 4.12: MAT versus SINR per chip performance of the non-coherent code acqui-
sition system for DDSS parameterised with both the number of transmit and receive
antennas, when employing the schematics of Figures 4.1 and 4.2 as well as Table 4.1.

for the search mode is in the range of 10−3 to 10−4. In this range the values of the correct

detection probability sharply decrease, as seen in Figure 4.13. The reason that the false

alarm probability should be small is directly related to the value of the aforementioned false

locking penalty associated with the false alarm event(s). A high value of the penalty factor

leads to a further degraded MAT performance. Accordingly, a low false alarm probability

results in the best possible MAT performance. Having a high correct detection probability

would also impose the MAT, but finding the optimum of this probability may be challenging,

whilst maintaining as low a false alarm probability as possible. Furthermore, observe in

Figure 4.13 that the performance of P = 4 is the worst in the context of the NC DDSS

scheme and P = 1 is the best, in particular at 10−3 and lower ranges of the false alarm

probability. The DC scheme also exhibits similar trends for the DDSS scheme, although the

degree of performance degradation is smaller than that of the NC scheme at Ec/I0 values

below those seen in Figure 4.13. More explicitly, the performance of the correct detection

versus false alarm probability recorded for the DC scheme at Ec/I0 = -16dB is similar to

that of the NC scheme at Ec/I0 = -13dB in Figure 4.13. Additionally, it is worth noting

that the useful operational range of the false alarm probability for the search mode is 0.05

to 0.25 for values of R = 1 to 4. The correct detection probability increases rapidly over
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this range of the probability of false alarm.
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Figure 4.13: Correct detection versus false alarm probability of P= 1,2 and 4 transmit an-
tennas for both differentially coherent and non-coherent code acquisition in the verification
mode of our DDSS schemes, when employing the schematics of Figures 4.1 and 4.2 as well
as Table 4.1.

The fact that multiple transmit antennas degrade the achievable MAT performance can

be further explained as follows. A low level of per-branch received signal strength would lead

to a low acquisition performance. In other words, a high diversity order effectively results in

an acquisition performance loss, as a consequence of the insufficiently high transmit signal

strength per branch. In case of employing both multiple transmit and multiple receive

antennas, similar trends are observable, although using two or four receive antennas has

the potential of mitigating the associated acquisition performance degradation imposed by

the low per-branch Ec/I0 values associated with the employment of multiple transmitters.

The main reasons for the above-mentioned performance trends may be further justified by

information theoretic considerations in the NC MIMO aided scenarios considered [112, 113].

The main reasons for the above-mentioned phenomenon are multifold, as inferred from

Figures 4.3 to 4.13:

1) In general, coherently detected space-time transmission schemes benefit from hav-

ing explicit knowledge of the channel’s impulse response, which is unavailable during the
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code-acquisition phase. Using a relatively low number of chips, over which integration

or accumulation is carried out imposes further limits on the attainable benefits of MIMO

schemes [112, 113]. Furthermore, the MIMO aided code-acquisition schemes are only capa-

ble of achieving a rather limited time diversity, even when 2 to 4 Post-Detection Integration

(PDI) stages are used [3, 45].

2) Since no channel coding is used for the pilot signal, no time diversity gain associated

with interleaving and channel coding can be achieved [124].

3) When the detection threshold θ2 of Figure 4.2 is reduced, the resultant code phase

estimate often cannot be confirmed by the verification stage of Figure 4.2 and hence the

false alarm probability is increased. At the same time, the correct detection probability

is also increased. However, when aiming for the best achievable MAT performance, the

detection threshold optimisation has to strike a balance between increasing the false alarm

probability and the correct detection probability, because after a false alarm event the

system may require a high number of chip-durations to return to its search mode.

4) The effect of using a fixed threshold pair θ1 and θ2 in Figure 4.2, which is optimised

for a specific Ec/I0 value, also limits the attainable MAT performance, since the acquisition

threshold should be optimised and controlled as a function of the Ec/I0 value encountered.

4.2.3 Conclusion

In this section, we analysed the multiple antenna aided transmit/receive diversity effects on

the code acquisition performance of both DC and NC code acquisition schemes in the inter-

cell synchronous CDMA DL. Again, our results show that increasing the number of transmit

antennas in a MIMO aided CDMA system usually results in a MAT performance degra-

dation, regardless whether single-path or multi-path scenarios are considered. This fact

suggests that employing a single transmit antenna might be recommended for maximising

the achievable MAT performance. Furthermore, it is extremely undesirable to degrade the

achievable code acquisition performance, when the idealised perfectly synchronised bench-

mark system is capable of attaining its target bit error rate performance at reduced SINR

values, as a benefit of employing multiple transmit antennas. Hence it may be concluded

that the achievable cell radius determined by the received pilot channel power is expected to

be reduced, as the number of transmit antennas is increased, which is a highly undesirable

phenomenon, since it has grave repercussions in terms of having to tolerate a high number
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of handovers per cell.

4.3 Co-located MIMO Aided Code Acquisition in the MC-

DS-CDMA Downlink

4.3.1 System Architecture and System Parameters

Figure 4.14 portrays both the DC and the NC receiver’s schematic designed for our MC-DS-

CDMA code acquisition scheme using MIMO, where the NC module generates its decision

variable by accumulating (P ·R·U) number of independently faded signals observed over a

given time interval. In the DC scheme of Figure 4.14, instead of squaring the summed energy

as suggested by the procedures outlined in [3], the channel’s output samples accumulated

over a full spreading code period are multiplied by the conjugate of the N -chip-delayed

samples [17, 18] and τD represents the integral dwell time. The MAT formulae of both the

SDSS and DDSS in Section 2.4 are also employed for the performance analysis.
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Figure 4.14: Receiver structure of either a differentially coherent or a non-coherent code
acquisition scheme employing both R receive antennas and U subcarriers.
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When analysing the MAT performance of the SDSS technique [3], where the NC receiver

structure of Figure 4.14 is used in the search mode constituting the SDSS scheme seen

at the top of Figure 4.15, the decision statistics, Ztot generated by the NC module of

Figure 4.14 is compared to the threshold θ1, which is optimised for each specific Ec/I0 value.

This completes the single-step search-mode of the SDSS scheme. By contrast, the DDSS

technique [14] of Figure 4.15 invokes a two-step process. More explicitly, once the desired

user’s code was found in the search mode of the DDSS scheme of Figure 4.15, the verification

mode is activated, which may use either the DC or the NC modules of Figure 4.14, in order

to confirm that the correct code-phase is indeed the one identified during the search mode.

On the other hand, in the search mode of the DDSS scheme of Figure 4.15 preceding its

verification mode, i.e. before the desired user’s code was acquired, only the NC scheme can

be used. More explicitly, the NC scheme is employed in two consecutive decision processes,

namely first to find and then to confirm the correct code phase in order to improve the

reliability of SDSS, which results in the DDSS acquisition scheme. Figure 4.15 illustrates

the flow chart of the DDSS scheme, where θ1 and θ2 represent the acquisition thresholds of

the search and verification mode, respectively. Furthermore, Z1 and Z2 denote the decision

variables of the search and verification mode, respectively. In Figure 4.15 Z1 is compared

to θ1 and if it exceeds the threshold, Z2 generated by either DC or NC module is compared

to θ2. If successful code acquisition is declared, then the code tracking loop is enabled.

Otherwise, the acquisition system reverts back to the search mode, until the correct code

and its phase are found. In our forthcoming analysis, four code acquisition arrangements

are considered. Specifically, SDSS employing both DC and NC schemes as well as DDSS

exploiting both DC and NC arrangements are invoked in the verification mode. However,

in the search mode of the DDSS scheme only the NC scheme can be used. Further details

on the related DDSS system can be found in [14, 68].

Our performance comparison between the SC-DS-CDMA system (U = 1) and the MC-

DS-CDMA system using U = 4 subcarriers is based upon the assumptions that these

systems have the same total transmitted energy per chip. Furthermore, it is assumed

that the integral dwell time, τD, is the same for all the scenarios considered here. The

associated system parameters are summarised in Table 4.4. In Table 4.5 we summarised

the maximum SINR degradation inflicted by both the Doppler shift and the clock-drift-

induced frequency mismatch between the transmitter and receiver in conjunction with the

coherent integration interval of τD duration, as seen in Figure 4.14. It was assumed that the

length of the PN sequence in our system was 512·Tc1 (or 128·Tc), where the chip-durations
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Figure 4.15: Flow chart of our DDSS code acquisition scheme.

chosen for U = 1 and 4 are Tc1 = 1/2.4576µs and Tc = 1/0.6144µs, respectively. In order

to analyse the performance of the SDSS technique the accumulation was carried out over

512 chips in the SC scheme of U = 1 and over 128 chips in the U = 4 MC-DS-CDMA

arrangement, respectively, whereas the number of chips over which the accumulator Σ sums

the (·)2 envelope detector’s output in both the search and the verification modes of DDSS

are assumed to be 128 and 512 chips in the SC scheme of U = 1, while 32 and 128 chips

in the U = 4 MC-DS-CDMA arrangement, respectively. These optimised parameter values

were computed by using the probabilities of both the correct detection and false alarm in

both DC and NC schemes as well as Equation. 2.9 in Section 2.3.2.1, which were provided

for quantifying the performance degradation imposed by both the Doppler shift and the

frequency mismatch encountered. The spreading factor of the Walsh code to be acquired

was chosen to be 128. The carrier frequency was 1.9 GHz, whilst the frequency mismatch

was postulated to be 1000 Hz [3]. As an example of a high mobile speed, it is reasonable

to assume 160 km/h. We also assumed that the sampling inaccuracy caused by having a

finite, rather than infinitesimally low search step size of ∆ = 1/2Tc was -0.91 dB, which

is a practically acceptable value for the specific search step size considered [3]. The entire

uncertainty region of code acquisition was assumed to entail 512 hypotheses, which is the



4.3.1. System Architecture and System Parameters 152

uncertainty region of the U = 2 scenario, because the same uncertainty region is required

for the sake of a fair comparison. Finally, in the spirit of [15], the false locking penalty factor

was considered to be 1000 chip-durations. For simplicity, it was assumed that only a single

received signal path is encountered in a given search window. All the performance curves

have been generated at the threshold value of Ec/I0 = −19 dB, which was experimentally

found for the specific code acquisition scheme considered.

Table 4.4: System Parameters

Bandwidth
U = 1 2.5 MHz
U = 4 4 × 0.625 MHz

Carrier frequency 1.9 GHz

Spreading factor 128

Diversity

Transmit 1,2,4
Receive 1,2,4
Subcarrier 1,4

Frequency mismatch 1000 Hz

Mobile speed 160km/h

Schemes selected Number of chip

SDSS
U = 1 512 chips
U = 4 128 chips

DDSS
U = 1 128 and 512 chips
U = 4 32 and 128 chips

Total uncertainty re-
gion

512 hypotheses

False locking penalty
factor

1000 chip-durations

Table 4.5: Maximum SINR degradation inflicted by both the Doppler shift and a 1000 Hz
frequency mismatch in comparison to a stationary receiver having no frequency drift for
the coherent integration interval of N chip durations at a carrier frequency of 1.9 GHz as a
function of the number of subcarriers (U = 1 and 4)

N(Chips): U=1 128 256 512 768 1024

N(Chips): U=4 32 64 128 192 256

Degradation(dB) 0.061 0.2449 0.9969 2.3144 4.3213
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4.3.2 System Performance Results

Figure 4.16 illustrates the achievable MAT versus SINR per chip performance of SDSS for

the DC SC-DS-CDMA code acquisition arrangement as a function of the number of transmit

antennas for P = 1,2 as well as 4 and that of the number of receive antennas for R = 1 and 4.

Observe in Figure 4.16 that unexpectedly, as the number of transmit antennas is decreased,

all the curves explicitly indicate an improved MAT performance, except for the ′P2R1′

scenario. To elaborate on the above observation a little further, a useful transmit diversity

gain is only experienced for the case of ′P2R1′, and even this was limited to the specific SINR

range of -13 to -16 dB. For comparison, Figure 4.17 characterises the MAT versus SINR per

chip performance of SDSS for the NC code acquisition scheme as a function of the number

of transmit antennas for P = 1,2 as well as 4 and that of the number of receive antennas

for R = 1 and 4. Similarly, as the number of transmit antennas is decreased, all the curves

illustrate an improved MAT performance. Since the DC scheme has a performance gain of

just under 3 dB over the NC one, when considering their correct detection probability and

false alarm probability, hence we conclude that the MAT performance curves confirm the

expected trends. Moreover, the DC scheme has an advantage over the NC one in the low

SINR range in terms of reducing the effects of both the AWGN and interference. Hence,

this indicates that the DC scheme experiences a lower MAT performance degradation owing

to the employment of multiple transmit antennas than its NC counterpart.

Figures 4.18 and 4.19 illustrate the achievable MAT versus SINR per chip performance

of the SDSS-aided MC-DS-CDMA code acquisition scheme in both DC and NC scenarios,

respectively, when parameterised by both the number of transmit and receive antennas and

using U = 4 subcarriers. In the case of the MC-DS-CDMA system, both schemes benefit

from a specific diversity order, which is determined by the number of subcarriers used. It

is also assumed that the total transmitted energy per chip is the same in all the scenarios

considered. Accordingly, the achievable diversity order is determined by the product of the

number of subcarriers and that of the number of transmit antennas. This phenomenon

indicates that the employment of MC transmissions leads to exactly the same detrimental

effect on the achievable MAT performance, as that imposed by employing multiple transmit

antennas owing to the reduced ’per-diversity-branch’ power, which further argued below.

The results of Figures 4.18 and 4.19 are parameterised by both the number of transmit

antennas for P = 1, 2 as well as 4 and by the number of receive antennas for R = 1 as

well as 2. As the number of transmit antennas is decreased, all the curves of Figures 4.18
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Figure 4.16: MAT versus SINR per chip performance of the SDSS-aided differentially
coherent code acquisition scheme parameterised with both the number of transmit
and receive antennas for U = 1 subcarriers, when employing the schematic of Figure 4.14
and Table 4.4.
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Figure 4.17: MAT versus SINR per chip performance of the SDSS-aided non-coherent
code acquisition scheme parameterised with both the number of transmit and receive
antennas for U = 1 subcarriers, when employing the schematic of Figure 4.14 and Table 4.4.
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and 4.19 exhibit an improved MAT performance. Furthermore, as a benefit of the inherent

performance gain of the DC scheme over the NC one, the overall MAT performance results

of Figure 4.18 are better than those of Figure 4.19. This trend explicitly illustrates that the

SDSS-aided MC-DS-CDMA code acquisition scheme considerably degrades the achievable

MAT performance of SC-DS-CDMA. This is a consequence of both the low per-antenna

power imposed by using multiple transmit antennas for the sake of achieving either a trans-

mit diversity gain or a multiplexing gain as well as that of the low per-subcarrier power

imposed by having multiple subcarriers in order to attain a frequency diversity gain. A low

level of per-branch and/or per-subcarrier received signal strength is expected to result in

a low acquisition performance, despite achieving a high transmit- and frequency-diversity

gain.
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Figure 4.18: MAT versus SINR per chip performance of the SDSS-aided differentially
coherent code acquisition scheme parameterised with both the number of transmit
and receive antennas for U = 4 subcarriers, when employing the schematic of Figure 4.14
and Table 4.4.

Figure 4.20 illustrates the achievable MAT versus SINR per chip performance of the

DDSS-aided SC-DS-CDMA code acquisition arrangement. More specifically, both the NC

code acquisition assisted scheme used in the search mode and the DC code acquisition

assisted arrangement employed in the verification mode are characterised as a function of

both the number of transmit antennas for P = 1,2 as well as 4 and that of the number of
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Figure 4.19: MAT versus SINR per chip performance of the SDSS-aided non-coherent
code acquisition scheme parameterised with both the number of transmit and receive
antennas for U = 4 subcarriers, when employing the schematic of Figure 4.14 and Table 4.4.

receive antennas for R = 1 and 4. By contrast, Figure 4.21 characterises the MAT versus

SINR per chip performance of the DDSS aided NC code acquisition scheme, both in its

search mode and verification mode. Observe in Figure 4.20 that unexpectedly, as the num-

ber of transmit antennas is decreased, all the curves explicitly indicate an improved MAT

performance, except for the ′P2R1′ scenario, as recorded for the specific SINR range be-

tween -13 and -16 dB. To elaborate on the above observation a little further, in the scenario

of ′P2R1′ the DDSS scheme exhibits a slightly better MAT performance in comparison

to the ′P1R1′ scenario right across the specific SINR range considered. Similarly, as the

number of transmit antennas is decreased in Figure 4.21, all the MAT curves illustrate

an improved performance, except for the ′P2R1′ scenario, which constituted an exception

also in Figure 4.20. The results seen in Figure 4.20 suggest that the overall performance

improvement of the DDSS aided DC scheme of Figure 4.14 recorded in its verification mode

is significantly higher than that of the DDSS assisted NC scheme of Figure 4.14, as seen

in Figure 4.21. The DC scheme has a performance gain of just under 3 dB over the NC

arrangement, when considering their correct detection probability and false alarm proba-

bility, hence we conclude that the MAT performance curves confirm the expected trends.

Moreover, the DC scheme has an advantage over the NC one in the low SINR range [17] in
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terms of reducing the effects of both the AWGN and interference 5. Hence, this indicates

that the MIMO-aided DC scheme experiences a lower MAT performance degradation owing

to the reduced transmit power of the individual transmit antennas than its NC counterpart.

It is worth mentioning that although not shown in Figure 4.20 and Figure 4.21 for reasons

of avoiding obfuscating details, the reliable operating range of R = 2 receive antennas is

situated in between that corresponding to the R = 1 and R = 4 receive antenna scenario.
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Figure 4.20: MAT versus SINR per chip performance for a DDSS scheme constituted
by both the non-coherent code acquisition assisted scheme in the search mode
and the differentially coherent code acquisition scheme in the verification mode
parameterised with both the number of transmit and receive antennas for ′U = 1′ subcarrier,
when using the schematics of Figures 4.14 and 4.15 as well as Table 4.4.

Figure 4.22 illustrates the achievable MAT versus SINR per chip performance of the

DDSS-assisted MC-DS-CDMA code acquisition scheme using NC code acquisition in its

search mode and DC code acquisition in its verification mode. The MAT results are param-

eterised with both the number of transmit and receive antennas for ′U = 4′ subcarriers. For

the sake of comparison, Figure 4.23 characterises the MAT versus SINR per chip perfor-

mance of the DDSS assisted NC code acquisition scheme in its search mode and verification

mode parameterised with both the number of transmit and receive antennas for ′U = 4′

5In the low-SINR region, the false alarm probability difference between the DC and NC schemes corre-
sponds to a factor of two, indicating the superiority of the DC scheme over the NC one.
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Figure 4.21: MAT versus SINR per chip performance of the DDSS assisted non-
coherent code acquisition scheme parameterised with both the number of transmit
and receive antennas for ′U = 1′ subcarrier, when using the schematics of Figures 4.14
and 4.15 as well as Table 4.4.
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subcarriers. In the case of the MC-DS-CDMA system, both schemes benefit from a specific

diversity order, which is determined by the number of subcarriers used. It is also assumed

that the total transmitted energy per chip is the same in all the scenarios considered. Ac-

cordingly, the achievable diversity order is determined by the product of the number of

subcarriers and that of the number of transmit antennas. This phenomenon indicates that

the employment of multi-carrier transmissions leads to exactly the same detrimental effect

on the achievable MAT performance as that imposed by employing multiple transmit an-

tennas owing to the reduced ’per-diversity-branch’ power, as argued further below. The

results of Figures 4.22 and 4.23 are parameterised by both the number of transmit antennas

for P = 1, 2 as well as 4 and by the number of receive antennas for R = 1 as well as 2.

As the number of transmit antennas is decreased, all the curves of Figures 4.22 and 4.23

exhibit an improved MAT performance. Furthermore, as a benefit of the inherent perfor-

mance gain of the DC scheme over the NC one, the overall MAT performance results of

Figure 4.22 are better than those of Figure 4.23. Although the results of the DDSS scenario

characterised in both Figures 4.22 and 4.23 exhibit a similar trend as in both Figures 4.20

and 4.21, the performance degradation imposed by employing both multiple antennas and

multiple subcarriers becomes more drastic in both Figures 4.22 and 4.23, when the number

of transmit antennas is increased. This fact explicitly illustrates that the DDSS-assisted

MC-DS-CDMA code acquisition scheme considerably degrades the achievable MAT perfor-

mance of SC-DS-CDMA.

This is the consequence of two phenomena. Firstly, it is imposed by the low per-antenna

power imposed by using multiple transmit antennas for the sake of achieving either a trans-

mit diversity gain or a multiplexing gain. The second reason for the reduced MAT perfor-

mance of MC-DS-CDMA is the low per-subcarrier power imposed by the introduction of

multiple subcarriers in order to attain a frequency diversity gain. Nonetheless, we demon-

strated that the employment of the DC scheme improves the achievable MAT performance.

To elaborate on the above results a little further, a low level of per-branch and/or per-

subcarrier received signal strength is expected to result in a low acquisition performance,

despite achieving a high transmit- and frequency-diversity gain. In other words, a high

transmit- and frequency-diversity order effectively leads to a code acquisition performance

loss, as a consequence of the insufficiently high signal strength per transmit antenna and

per subcarrier. When employing multiple receive antennas, similar trends are observable,

although using multiple receive antennas has the potential of alleviating the acquisition per-

formance degradation imposed by the low per-branch Ec/Io values due to the employment
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of multiple transmitters and multiple subcarriers. Both Figures 4.24 and 4.25 document
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Figure 4.22: MAT versus SINR per chip performance for a DDSS scheme constituted by
both the non-coherent code acquisition assisted scheme in the search mode and
the differentially coherent code acquisition scheme in the verification mode pa-
rameterised with both the number of transmit and receive antennas for ′U = 4′ subcarriers,
when using the schematics of Figures 4.14 and 4.15 as well as Table 4.4.

the relationship between PD and the number of transmit antennas required by both the

DDSS-assisted DC and NC code acquisition schemes for approaching their lowest possible

MAT. Explicitly, the results of Figures 4.24 and 4.25 were recorded versus the number of

subcarriers (U = 1 and 4), parameterised with both the number of transmit antennas and

with different values of Ec/I0, respectively. The correct detection probabilities seen in both

Figures 4.24 and 4.25 were obtained assuming a false locking probability of PF = 5×10−4

for all scenarios considered, since the reliable operational range in the verification mode of

the DDSS-assisted code acquisition scheme is a false alarm probability spanning from 10−3

to 10−4. The left illustration of Figure 4.24 characterises the scenario of U = 1, while the

one at the right of Figure 4.24 is valid for the arrangement having U = 4. When increasing

the number of transmit antennas, the curves recorded for Ec/I0 values spanning from -7 to

-13 dB at the left of Figure 4.24 indicates a PD improvement, although at low Ec/I0 values,

say at Ec/I0 = -16 dB, the opposite is true. On the other hand, the results seen at the right

of Figure 4.24 indicate that PD tends to decrease, as both the number of transmit antennas
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Figure 4.23: MAT versus SINR per chip performance of the DDSS assisted non-
coherent code acquisition scheme parameterised with both the number of transmit
and receive antennas for ′U = 4′ subcarriers, when using the schematics of Figures 4.14
and 4.15 as well as Table 4.4.
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and the number of subcarriers increases, when typical Ec/I0 values are encountered. The

results of Figure 4.25 also exhibit similar performance trends. However, due to the per-

formance loss of the NC scheme in comparison to the DC arrangement, the achievable PD

performance further deteriorates over the Ec/I0 values considered. The main reasons for
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Figure 4.24: PD of the differentially coherent scheme versus the number of transmit antennas
for P = 1,2 as well as 4, the number of receive antennas for P = 1 as well as the number
of subcarriers for both U = 1 (Left figure) and U = 4 (Right figure) parameterised by the
Ec/I0, when employing the schematic of Figure 4.14 and Table 4.4.

the above-mentioned performance trends may be further justified by information theoretic

considerations in the NC MIMO aided scenarios considered [112, 113, 119]. Finally, when

considering the design of MIMO aided code acquisition schemes, the following guidelines

may be inferred from Figures 4.16 to 4.25:

1) In general, coherently detected space-time transmission schemes benefit from having

explicit knowledge of the CIR, which is unavailable during the code-acquisition phase. Ac-

cordingly, exploiting multiple transmit antennas typically leads to an MAT performance

degradation, as seen in Figures 4.16 to 4.25.

2) Using a relatively low number of chips, over which integration or accumulation is carried

out imposes further limits on the attainable benefits of MIMO aided schemes [112, 113].

Furthermore, the MIMO aided code-acquisition schemes are only capable of achieving a
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Figure 4.25: PD of the non-coherent scheme versus the number of transmit antennas for
P = 1,2 as well as 4, the number of receive antennas for P = 1 as well as the number of
subcarriers for both U = 1 (Left figure) and U = 4 (Right figure) parameterised by the
Ec/I0, when employing the schematic of Figure 4.14 and Table 4.4.

rather limited time diversity, even when 2 to 4 PDI stages are used [3, 45].

3) Employing both DDSS and DC schemes may provide a rather limited diversity gain

in comparison to using SDSS and NC schemes, as evidenced by Figures 4.16 to 4.25.

4) Using multiple receive antennas increases the achievable receiver diversity gain and

has the potential of compensating for the MAT degradation imposed by the low per-branch

power of multiple transmitters, as observed in Figures 4.16 to 4.23.

5) Since no channel coding is used for the pilot signal, no time diversity gain associated

with interleaving and channel coding can be achieved [124].

6) When the detection threshold θ2 of Figure 4.16 is reduced, the resultant code phase

estimate often cannot be confirmed by the verification stage of Figure 4.16 and hence the

false alarm probability is increased. At the same time, the correct detection probability

is also increased. However, when aiming for the best achievable MAT performance, the

detection threshold optimisation has to strike a balance between increasing the false alarm

probability and the correct detection probability, because after a false alarm event the

system may require 1000 chip-durations to return to its search mode.
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7) The effect of using a pair of fixed thresholds of θ1 and θ2 in Figure 4.16, which are

optimised for a specific Ec/I0 value also limits the attainable MAT performance, since the

acquisition threshold should be optimised and controlled as a function of the Ec/I0 value

encountered.

8) For the sake of acquiring the initial timing information of the received paths, specifically

designed preambles, such as that of the P-SCH of W-CDMA [115] combined with TSTD

[116] might be recommended, which is capable of achieving a diversity gain with the aid of

a single transmit antenna [113, 114]. The pilot channel may also be used for other purposes,

such as frequency error correction and channel estimation [118].

4.3.3 Conclusion

In this section, we characterised the MIMO aided diversity effects on the attainable code

acquisition performance of both DC and NC code acquisition schemes in the inter-cell

synchronous MC-DS-CDMA DL. Again, similarly to the conclusions of the previous chapter

our results suggest that increasing both the number of transmit antennas and that of the

subcarriers in a MIMO-assisted MC-DS-CDMA system leads to combining the low-energy

signals of both the transmit antennas and the subcarriers, which may further increase

the MAT by an order of magnitude, in particular in the critical scenario, when the SINR is

relatively low, even though the MAT performance degradation imposed on the DC scheme is

less severe than that of its NC counterpart, as observed in Figures 4.16 to 4.25. Based on the

above-mentioned results justified by information theoretic considerations, our acquisition

design guidelines are applicable to diverse NC MIMO aided scenarios, regardless whether

any combinations of SC-DS-CDMA and multi carrier transmission schemes are considered.
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4.4 Chapter Summary and Conclusions

In this chapter, we have provided details of the performance analysis for both DC and

NC serial search based code acquisition in the co-located MIMO aided SC- and MC- DS-

CDMA DL. We commenced the chapter by a brief introduction in Section 4.1. We then

characterised the achievable performance of the code acquisition scheme in the co-located

MIMO aided SC-DS-CDMA DL in Section 4.2. This was followed by a discussion on the

performance of the code acquisition in the co-located MIMO aided MC-DS-CDMA DL in

Section 4.3.

In order to highlight our investigations of the co-located DC MIMO aided schemes, the

characteristics of the co-located DC MIMO aided code acquisition schemes is again empha-

sised in terms of the achievable MAT performance in Figures 4.26 and 4.27. Figure 4.26
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Figure 4.26: MAT versus Ec/I0 performance comparison between the DC- and NC-based
SDSS code acquisition schemes parameterised with the number of transmit antennas for
U = 1 and U = 4 subcarriers, respectively, when employing the schematic of Figure 4.14
and Table 4.4.

illustrates the achievable MAT versus Ec/I0 performance comparison between the DC- and

NC-based SDSS code acquisition schemes parameterised with the number of transmit an-

tennas for U = 1 and U = 4 subcarriers, respectively. In the results of Figure 4.26, the solid

lines indicate the performance curves of the DC-based SDSS scheme for the U = 1 scenario,
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whilst the dashed lines represent the performance curves of the NC-based SDSS scheme for

the U = 4 scenario. It is worth mentioning that the operating range of both the NC-based

SDSS scheme observed for U = 1 and that of the DC-based SDSS scheme recorded for U = 4

is between that corresponding to both schemes characterised in Figure 4.26. However, for

the sake of avoiding obfuscating points in the figure, they were omitted. Similarly to the

conclusions of the scenario of the co-located NC MIMOs, when the number of transmit

antennas is decreased, all the curves explicitly indicate an improved MAT performance,

except for the ′P2R1′ scenario of the DC-based SDSS scheme recorded for U = 1. To

elaborate on the above observations a little further, a useful transmit diversity gain is only

experienced for the case of ′P2R1′ in the single-path scenario, and even this was limited to

the specific SINR range of -13 to -16 dB. In the case of the MC-DS-CDMA system, the NC

SDSS scheme characterised for U = 4 in Figure 4.26 benefits from a specific diversity order,

which is determined by the number of subcarriers used. It is also assumed that the total

transmitted energy per chip is the same in all the scenarios considered. Accordingly, the

achievable diversity order is determined by the product of the number of subcarriers and

that of the number of transmit antennas. This phenomenon indicates that the employment

of MC transmissions leads to exactly the same detrimental effect on the achievable MAT per-

formance, as that imposed by employing multiple transmit antennas owing to the reduced

’per-diversity-branch’ power, as argued further below. As the number of transmit antennas

is decreased, all the curves of the NC SDSS scheme plotted for U = 4 in Figure 4.26 exhibit

an improved MAT performance. Furthermore, as a benefit of the inherent performance gain

of the DC scheme over the NC one, the overall MAT performance results recorded for the

DC scenario of Figure 4.26 are significantly better than those of the NC arrangement. This

trend explicitly illustrates that the SDSS-aided MC-DS-CDMA code acquisition scheme

considerably degrades the achievable MAT performance of SC-DS-CDMA. This is a conse-

quence of both the low per-antenna power imposed by using multiple transmit antennas for

the sake of achieving either a transmit diversity gain or a multiplexing gain as well as that

of the low per-subcarrier power imposed by having multiple subcarriers in order to attain

a frequency diversity gain. A low level of per-branch and/or per-subcarrier received signal

strength is expected to result in a low acquisition performance, despite achieving a high

transmit- and frequency-diversity gain.

Figure 4.27 illustrates the achievable MAT versus Ec/I0 performance of the NCDC and

NCNC DDSS code acquisition schemes parameterised with the number of transmit anten-

nas for U = 1 and U = 4 subcarriers, respectively. In the results of Figure 4.27, the solid
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Figure 4.27: MAT versus Ec/I0 performance comparison between the NCDC- and NCNC-
based DDSS code acquisition schemes parameterised with the number of transmit antennas
for ′U = 1′ and U = 4 subcarriers, respectively, when using the schematics of Figures 4.14
and 4.15 as well as Table 4.4.
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lines indicate the performance curves of the NCDC DDSS scheme for the U = 1 scenario,

while the dashed lines represent the performance curves of the NCNC DDSS scheme for a

U = 4 scenario. More specifically, the acronym NCDC in Figure 4.27 indicates that both

the NC code acquisition aided system used in the search mode and the DC code acquisition

assisted scheme employed in the verification mode are characterised for U = 1. By contrast,

the DDSS system denoted by the acronym NCNC in Figure 4.27 employs the NC code ac-

quisition aided scheme in both its search mode and verification mode for U = 4. It is worth

mentioning that the operating range of both the NCNC-based DDSS scheme observed for

U = 1 and that of the NCDC-based DDSS scheme recorded for U = 4 are in between that

corresponding to both schemes of Figure 4.27. However, for the sake of avoiding obfuscating

points in the figure, they were omitted. Similarly to the conclusions drawn for the scenarios

of Figure 4.26, as the number of transmit antennas is decreased, all the curves explicitly

indicate an improved MAT performance, except for the ′P2R1′ scenario of the NCDC-based

scheme in the single-path propagation environment, as recorded for the specific SINR range

between -13 and -16 dB. To elaborate on the above observations a little further, in the sce-

nario of ′P2R1′ the DDSS scheme exhibits a slightly better MAT performance in comparison

to the ′P1R1′ scenario right across the specific SINR range considered. The results seen in

Figure 4.27 also suggest that the overall performance improvement of the DC scheme in the

verification mode is significantly higher than that of the DDSS assisted NC scheme. The

DC scheme has a performance gain of just under 3 dB over the NC arrangement, when con-

sidering their correct detection probability and false alarm probability. Hence we conclude

that the MAT performance curves confirm the expected trends. Moreover, the DC scheme

has an advantage over the NC one in the low SINR range [17] in terms of reducing the effects

of both the AWGN and interference. Hence, this indicates that the MIMO-aided NCDC

scheme experiences a lower MAT performance degradation owing to the reduced transmit

power of the individual transmit antennas than its NCNC counterpart. Furthermore, this

result explicitly illustrates that the DDSS-assisted MC-DS-CDMA code acquisition scheme

considerably degrades the achievable MAT performance of SC-DS-CDMA. Although the

results of the DDSS scenarios characterised in Figure 4.27 exhibit a similar trend to those

seen in Figure 4.26, the performance degradation imposed by employing both multiple an-

tennas and multiple subcarriers becomes more drastic in Figure 4.26, when the number of

transmit antennas is increased.

Throughout the above-mentioned two topics discussed in the context of the DC serial

search based code acquisition in the co-located MIMO aided SC- and MC- DS-CDMA DL,
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our findings suggest that increasing both the number of transmit antennas and that of the

subcarriers in a co-located MIMO-aided MC-DS-CDMA system results in combining the

low-energy, noise-contaminated signals of both the transmit antennas and the subcarriers.

Furthermore, the MAT performance degradation imposed by the DC scheme is less severe

than that of its NC counterpart, as seen in Figures 4.16 to 4.25. This fact ultimately re-

duces the correct detection probability, and accordingly increases the MAT by an order of

magnitude, when the SINR is relatively low. It is extremely undesirable to degrade the

achievable acquisition performance, when the system is capable of attaining its target BER

performance at reduced SINR values. This phenomenon also has a detrimental effect on

the performance of Rake receiver based synchronisation, when the perfectly synchronised

system is capable of attaining its target BER performance at reduced SINR values, as a ben-

efit of employing multiple transmit antennas and/or frequency diversity. Hence it may be

concluded that the achievable cell coverage determined by the received pilot channel power

may be reduced, as the number of transmit antennas is increased, which is a highly unde-

sirable phenomenon, since it has grave repercussions in terms of having to tolerate a high

number of handovers per cell. Furthermore, based on the above-mentioned results justified

by information theoretic considerations, our acquisition design guidelines are applicable to

diverse co-located DC MIMO aided scenarios.



Chapter 5

Code Acquisition Preliminaries for

the Co-located SIMO DS-UWB

Downlink

5.1 Introduction

A rudimentary introduction to code acquisition designed for the DS-UWB DL has been

provided in Section 1.6. In this chapter, we will provide the necessary preliminaries for more

sophisticated acquisition schemes contrived for the multiple receive antenna aided DS-UWB

DL. We will commence the chapter with the portrayal of the UWB channel model, which

exhibits both large-scale and small-scale fading. Furthermore, we will place much emphasis

on the in-depth description of the Saleh-Valenzuela (S-V) model in Section 5.2. Further

details on code acquisition for the DS-UWB DL will be presented in Section 5.3. More

specifically, the characteristics of PN codes are highlighted in Section 5.3.1, followed by a

detailed discussion on the so-called modulo-2 squaring operation in Section 5.3.2. An in-

depth illustration of both the sum-product algorithm and offset-based min-sum algorithm

will be the focus of Sections 5.3.3 and 5.3.4, respectively. In Section 5.3.5 the iterative

message passing algorithm will be elucidated in detail.

Based on the above-mentioned facts, the detailed system description and a range of

algorithms designed for both single- and two-stage iterative acquisition will be detailed in

Sections 5.4.1 and 5.4.2, respectively. More explicitly, in Section 5.4.1, single-stage iterative

170
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acquisition employing both a single- and multiple-component decoder will be described in

Sections 5.4.1.1 and 5.4.1.2, respectively. Then the underlying formulas of both the correct

detection and false alarm probabilities will be presented in Section 5.5. The MAT analysis

of our proposed schemes will be provided for both the SISO and SIMO aided DS-UWB

DL in Sections 5.6.1 and 5.6.2, respectively, when considering both single- and multi-path

propagation environments. Finally, in Section 5.7 our summary and conclusions will be

provided.

5.2 Channel Model

5.2.1 Modelling of UWB Channels

The UWB channel is a frequency-selective fading channel, which is different from classic cel-

lular channels, as we will detail in this section. This is, because the bandwidth of the trans-

mitted UWB signal is substantially wider than that of the conventional wireless channels.

Based on classic Fourier theory, the wider the bandwidth of the channel, the higher the num-

ber of resolvable multi-path components. As an example, in practical Rake-receiver aided

CDMA systems the number of resolvable multi-path components is ⌊Tm
Tc

+ 1⌋, where Tm and

Tc are the maximum delay-spread of the communication channel and chip-duration, respec-

tively. At such a high bandwidth the corresponding time-domain bins become extremely

narrow and hence, there is a possibility that no multi-path component falls in a delay bin.

Accordingly, in UWB channel modelling it is necessary to characterise the likelihood that

an empty delay bin is followed by an ’occupied’ one [62]. Naturally, the multi-path compo-

nent occupying a specific delay bin is physically often constituted by the superposition of

received paths, all arriving within a low delay difference of each other and given the current

bandwidth, they cannot be distinguished within the delay bin. When the bandwidth is low

and the delay bins are wide, a high number of components may be superimposed, which

leads to having a complex-valued Gaussian, i.e. Rayleigh distribution for each delay bin.

By contrast, for the UWB scenario the delay bins are narrow and hence the central limit

theorem may no longer be valid. Therefore, the amplitude statistics of the signals of an

UWB delay bin can no longer be modeled as Rayleigh or Rician distributed [62]. A more

detailed investigation on this issue will be provided during our forthcoming discourse.

Having a low fading margin and the low power spectral density restrictions imposed by



5.2.1. Modelling of UWB Channels 172

government regulations make UWB systems eminently suitable for indoor wireless commu-

nications [125]. Recent results demonstrate that UWB systems constitute a viable candidate

for short-range multiple-access communications in dense multi-path environments, since the

UWB signals have the potential of benefiting from a high diversity order owing to the UWB

signal’s fine delay-resolution properties [126, 127]. Hence UWB communications have been

used for supporting short-range high-speed wireless communications [125, 126, 127]. Ex-

tensive measurement campaigns have been performed for the sake of modelling the UWB

indoor channels [62]. A detailed overview of the UWB indoor channel can be found in [128].

In this section an overview of the UWB channel models is provided. Similarly to con-

ventional narrowband and wideband channels, UWB channels also exhibit both large- and

small-scale fading as described in the next two sections. Small-scale fading plays a vital

role in short-range indoor wireless communications.

5.2.1.1 Large-Scale Fading

The impact of the UWB channel on the signal transmitted over a relatively large distance

(beyond 1m) is termed as ’large-scale fading’. It encompasses the path-loss-like average

attenuation effects owing to the distance between the transmitter and receiver, as well as

imposed by large objects that are blocking the Line-Of-Sight (LOS) propagation paths. In

traditional propagation models, the large-scale fading is referred to as path loss and it is

often modelled as [129, 130]

PL(d) = PL(do) + 10η log10

(

d

do

)

+Xσ, d ≥ do (5.1)

where PL(d) represents the path-loss at a distance d, PL(do) indicates the average path-loss

at the so-called reference point just outside the antenna’s near-field, i.e. at a distance of do,

for example do = 1m, η is the path-loss exponent and Xσ represents a Gaussian distributed

Random Variable (RV) having a standard deviation of σ (in dB) [129]. The path-loss

PL(do) at the reference point, the path-loss exponent and the standard deviation of σ

are statistically dependent on the communication environment. Hence, they are usually

modelled as RVs obeying certain distributions [125]. The path-loss exponent η typically

depends on the carrier frequency, the antenna height and the propagation environment. It

is often considered to have a normal distribution N [µη, ση] and may be described as [125]

η = µη + η1ση, (5.2)

where η1 represents a Gaussian RV having a mean of zero and a unit variance.
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The shadow fading term Xσ of Equation 5.1 is a typically log-normally distributed

environment-specific term, which can be modelled as [125]

Xσ = η2(µσ + η3σσ), (5.3)

where η2 and η3 also represent zero mean RVs and σσ is a unit-variance normal RV. It

may be shown that the standard deviation σσ of the shadow fading is independent of the

carrier frequency [131]. Upon inserting the above-mentioned parameters into Equation 5.1,

we arrive at an expression for the propagation path-loss, which may be formulated as

PL(d) = PL(do) + 10µη log10

(

d

do

)

+ 10η1ση log10

(

d

do

)

+ η2µσ + η2η3σσ. (5.4)

It is worth noting that the first two terms in Equation 5.4 represent the median path-

loss and the last three terms indicate the random variation around the median path-loss

value [125].

5.2.1.2 Saleh-Valenzuela Model of Small-Scale Fading

’Small-scale fading’ is caused by interferences among at least two or more delayed replicas of

the transmitted signal, which arrive at the receiver with slightly different time delays [129].

The small-scale fading is that experienced within an area of 1m2 [132], and hence it becomes

a vital parameter in indoor communications. The main small-scale fading model adopted

for indoor UWB communications is the modified Saleh Valenzuela (S-V) model [62, 130].

It has been shown that the multi-path components arrive at the receiver in clusters [62,

133]. In wideband communications, generally, the number of resolvable multi-path com-

ponents is related to the signal’s bandwidth and to the propagation environment experi-

enced [133], which can be formulated as

L = ⌊WTm⌋ + 1, (5.5)

where L represents the number of resolvable multi-path components, W = 1/T indicates

the signal bandwidth and Tm is the maximum delay-spread of the communication channel.

The delay-spread spans several nanoseconds in time, which leads to Inter Symbol Interfer-

ence (ISI), if the UWB signalling pulses are closely spaced in time [62]. However, the ISI

may be mitigated by beneficially designing the signalling pulse waveform and/or by using

equalisation algorithms [62].

The arrival of multi-path components may be grouped into two categories: a cluster-

arrival and a ray-arrival within a cluster. Hence, four parameters are required to describe
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Figure 5.1: Stylised illustration of the Saleh Valenzuela (S-V) UWB channel model, which
encompasses three clusters, where each cluster may have a different number of resolvable
multi-path components.

the S-V channel model. These parameters provide a high flexibility and may be appropri-

ately configured for different propagation environments. The four parameters associated

with the S-V model are as follows:

• Cluster-arrival rate, Λ ;

• Ray-arrival rate within a cluster, λ ;

• Cluster-decay factor, Γ ;

• Ray-decay factor within a cluster, γ.

We will further discuss the above-mentioned parameters in our forthcoming discourse.

1. Cluster-Arrival Rate (Λ): The clusters seen in Figure 5.1 are formed by the con-

structing a so-called superstructure [134]. The cluster-arrival may be modelled with

the aid of a Poisson process having a mean cluster-arrival rate of Λ. Hence, the prob-

ability of encountering v additional clusters at time instant T obeys the following
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PDF [130, 133, 134]:

P (v additional clusters at instant T) =
(ΛT )v

v!
exp(−ΛT ). (5.6)

The first cluster is always assumed to be present. In the context of a Poisson process,

the interarrival time of clusters obeys a negative exponential RV, which is described

by the following PDF:

p(Tv|Tv−1) = Λ exp[−Λ(Tv − Tv−1)], v > 0 (5.7)

where 1/Λ is typically within the range of 10 to 50ns [133].

2. Ray-Arrival Rate within a Cluster (λ): Rays portrayed in Figure 5.1 are gen-

erated by the objects within the vicinity of the transmitter and receiver [134]. The

ray-arrival within a cluster may be described by another Poisson process, where the

inter-arrival time of two adjacent rays is another negative exponentially distributed

RV having the PDF of

P (τu,v|τu−1,v) = λv exp[−λv(τu,v − τu,v−1)], u > 0 (5.8)

where τu,v represents the arrival time of the uth multi-path component within the vth

cluster, whilst λv indicates the mean multi-path arrival rate within the vth cluster.

Typically, each cluster is constituted by a high number of multi-path components,

i.e, we have λ >> Λ [134]. In UWB communications environments, where the arrival

rate of the later clusters becomes higher than that of the earlier clusters [133], the

ray-arrival process may be modelled as a mixture of two Poisson processes, which is

formulated as follows [130, 133, 134]:

P (τu,v|τu−1,v) = αλ1 exp[−λ1(τu,v − τu,v−1)]

+ (1 − α)λ2 exp[−λ2(τu,v − τu,v−1)], u > 0 (5.9)

where α represents the probability of the lower-arrival-rate clusters, whereas λ1 and

λ2 are the ray-arrival rates of the first and second Poisson processes, respectively. The

duration of the negative exponential process having a higher poissonian arrival rate

typically becomes shorter than the negative exponential process related to a lower

poissonian arrival rate. However, the former usually results in stronger multi-path

components than the latter.

3. Cluster-Decay Factor (Γ): The decay factors shown in the stylised illustration of

Figure 5.1 are calculated from the power decay profile observed [62]. In the S-V model,
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the average power of the clusters is assumed to decay exponentially. The cluster decay

factor, Γ typically increases, when the building walls become more reflective [134].

The factor Γ is determined as the exponential decay of the peak power of the delayed

received clusters. For a block of data, the first arrived cluster may be normalised to

an amplitude of unity and a time delay of zero. All the other clusters of the same

block of data are expressed relative to the first cluster.

4. Ray-Decay Factor within a Cluster (γ): The average power of the multi-path

components within a cluster decays exponentially as shown in Figure 5.1. The multi-

path decay factor, which is synonymously referred to as the intra-cluster decay rate

tends to be linearly proportional to the arrival time of the cluster, which is expressed

as

γv ∝ uγTv + γo, (5.10)

where uγ represents a factor accounting for the increase of the decay rate as a function

of the delay. The arrival time of the first ray in each cluster is set to zero, while its

amplitude to one. All the other rays within a cluster are adjusted accordingly, relative

to the first ray. Typically, Γ > γ indicates that the expected power of the rays in a

cluster decays faster than that of the first ray in the next cluster, as also above in the

stylised Channel Impulse Response (CIR) of Figure 5.1.

The CIR of the UWB communications environment changes with time, owing to the relative

motion between the transmitter and receiver. As the UWB channel is frequency-selective, it

may be modelled by employing a tapped-delay line [132, 135]. Typically two types of UWB

indoor channel models have been considered, which are derived from the Statistical Tapped-

Delay-Line (STDL) channel model [132, 135]. More specifically, the indoor UWB channel

model of [135] was constructed from propagation measurements, which were performed in

typical office buildings. The model is based on the measurements performed within the

frequency-range of 300 MHz to 1 GHz and on the UWB baseband pulse having a 2-ns

delay resolution. Therefore, the resultant UWB channel model constitutes a typical models

of the family of Low Frequency (LF) UWB systems. In the LF-UWB channel model [128],

the measurements suggest that the direct LOS path is always the first resolvable path,

which is usually also the strongest path. The energy of the subsequent resolvable paths

decays exponentially with the delay. The analysis of the LF-UWB channel [135] suggest

that the well-established tapped-delay-line model [136], where each tap obeys independent

fading, accurately reflects the behaviour of the measured UWB channel. Furthermore, the
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statistical analysis provided in [135] suggests that the best-fit distribution of the small-scale

magnitude statistics is the Nakagami-m distribution, which corresponds to the Gamma

distribution, when considering the distribution of the energy and hence that of the SINR.

It has been also shown [135] that the parameters of the Gamma distribution vary from

path to path. The Nakagami fading parameter value mk ranges between 1 and 6, typically

decreasing, when having an increased excess delay.

On the other hand, the measurement considered in [62] were carried out in the frequency

band ranging from 3.1 GHz to 10.6 GHz. Therefore the corresponding UWB channel model

may be termed as a High Frequency (HF) UWB channel. The measurements included both

residential and office sites, where both LOS and non-LOS conditions were encountered

and the delay spreads ranged from 5 ns to more than 40 ns. In contrast to the LF-UWB

scenarios, analysis of the measurement data suggests that in the HF-UWB channel model the

first resolvable multi-path component may not necessarily be the strongest one. The power

delay profile becomes generally sparse, where some of the resolvable multi-path components

do not carry any significant energy [62]. By contrast, in the HF-UWB channel model, the

multi-path components arrive in clusters rather than as a continuum. Therefore a double

exponential decay based model has been introduced for the sake of characterising the power

delay profile of the HF-UWB channels. In the double exponential decay based UWB channel

model, one of the exponential decay models corresponds to the decay of the clusters, whilst

the other corresponds to the multi-path component decay within a cluster. Furthermore,

the measurements conducted in the context of HF-UWB scenarios demonstrate that the

amplitude of the UWB signal no longer obeys a Rayleigh distribution. Instead, either a

lognormal or a Nakagami distribution may model the channel more accurately.

Based on the above-mentioned characteristics of UWB channels, the conventional STDL

channel model will be modified for our investigations. More specifically, the S-V model will

be adopted. The CIR of the S-V model is represented as [130, 132, 134]

h(t) =
∞
∑

v=1

∞
∑

u=1

βu,vδ(t − Tv − τu,v), (5.11)

where βu,v represents the amplitude of the uth multi-path component within the vth cluster,

Tv is the arrival time of the vth cluster and τu,v denotes the arrival time of the uth multi-path

in vth cluster. Recall that all these variables may be interpreted with the aid of Figure 5.1.

For the sake of capturing all or most of the transmitted signal energy, the receiver may

have to process a high number of resolvable multi-path components. In order to reduce

the detection complexity imposed, the selection of L multi-path components for detection
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may achieve a BER performance close to that of a receiver that processes all the resolvable

multi-path components, provided the value of L is sufficiently high. Practically, the UWB

system can only process a limited number of clusters, where each cluster contains a limited

number of resolvable multi-path components. Therefore the CIR of Equation 5.11 can be

described as

h(t) =

V
∑

v=1

U
∑

u=1

βu,vδ(t − Tv − τu,v), (5.12)

where V denotes the number of clusters and U represents the number of resolvable multi-

path components in a cluster. Therefore the total number of resolvable multi-path compo-

nents may be as high as L = UV . As mentioned before, the parameters βu,v, Tv and τu,v are

time varying owing to the motion of objects within the UWB communications environment.

However, for the sake of convenience, we treat these parameters as time-invariant RVs, un-

der the assumption that their variation is slow as compared to the signalling rate [134]. It

is also assumed that the average power of a multi-path component at a given delay Tv +τu,v

is related to the power of the first resolvable multi-path component according to

β2
u,v = β2

1,1 exp

(

−Tv

Γ

)

exp

(

−τu,v

γ

)

, (5.13)

where β2
1,1 represents the expected power of the first resolvable path of the received UWB

signal. The total average received power of the received UWB signal is normalised to

unity for the sake of convenient comparison to other wideband or narrowband systems [62].

Figure 5.1 illustrates the S-V UWB channel model, as described in [130, 133]. In contrast

to the conventional S-V channel model, where the amplitude statistics were assumed to be

Rayleigh distributed [134], the empirical distribution of the path gains differs significantly

from the Rayleigh amplitude statistics [133]. This is because the received UWB signals

exhibit a high resolution in the time delay domain and hence only a small number of the

multi-path components may fall within a delay bin. Therefore, the complex-valued Gaussian

approximation of the superimposed components of a bin may no longer satisfy the central

limit theorem and hence may no longer obey the Rayleigh distribution. The measurement

based propagation data matches more closely the lognormal or the Nakagami distribution,

which has been shown using Kolmogorov-Smirnov testing at a significance level of 1% [62].

The PDF of the Nakagami-m distribution is given by [130, 136]

P (βu,v) = M (βu,v,m,Ωu,v)

M (βu,v,m,Ωu,v) =
2mmβ2m−1

u,v

Γ(m)Ωm
u,v

exp(−m/Ωu,v)β
2
u,v, (5.14)
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where m ≥ 1/2 represents the Nakagami-m fading factor, which is equal to m = E2[(β2
u,v)]

/Var[(βu,v)
2], Γ(m) is the Gamma function and Ωu,v = E[(βu,v)

2] denotes the second mo-

ment of the amplitude of the uth multi-path component in the vth cluster. In our forth-

coming discourse, a specific type of the Nakagami distribution is used due to the following

reasons:

1. The lognormal distribution can be approximated by the Nakagami distribution asso-

ciated with a high value of the fading parameter [62].

2. The Rayleigh distribution may be valid in some communication environments even

when the resolvable bin-width is low [133]. Rayleigh fading has been observed in indus-

trial environments owing to dense multi-path scattering, where numerous multi-path

components exist. The Nakagami-m distribution becomes identical to the Rayleigh

distribution, when the fading parameter is set to m = 1.

3. The Nakagami-m distribution often gives the best fit to land-mobile and indoor-mobile

multi-path propagation environments, as well as to scintillating ionospheric radio links.

Different propagation scenarios may be accurately modelled by the Nakagami-m distri-

bution by simply changing the value of m. Furthermore, the Nakagami-m distribution

has advantages over the lognormal distribution in terms of its analytical convenience.

Furthermore, for the sake of fair comparison to all the results of [43, 59], a dispersive AWGN

channel having multi-path components will also be investigated. This assumption was also

considered in [42] along with a specific case of Nakagami-m fading.

Finally, Table 5.2.1 summaries the characteristics of four different UWB channel models

[62, 130].

5.2.2 Summary of UWB Channel Models

In this section the modelling of UWB channels has been detailed. The main characteristics

are summarised as follows:

• The modelling of UWB channels is substantially different from those of both nar-

rowband and wideband cellular channels. Hence, the performance results which were

derived for narrowband and wideband channels are no longer applicable for code ac-

quisition in the context of UWB channels.
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Channel Characteristics CM-1 CM-2 CM-3 CM-4

Cluster-Arrival Rate Λ[1/nsec] 0.0233 0.4 0.0667 0.0667

Ray-Arrival Rate λ[1/nsec] 2.5 0.5 2.1 2.1

Cluster-Decay Factor Γ 7.1 5.5 14 24

Ray-Decay Factor γ 4.3 6.7 7.9 12

Models corresponding to the LOS NLOS NLOS Extreme
following channel measure-
ments, respectively

(0-4 m) (0-4 m) (4-10 m) NLOS

Table 5.1: UWB Channel Characteristics

where CM is short for Channel Model, while LOS and NLOS represent Line-Of-Sight and
Non-Line-Of-Sight scenarios, respectively.

• Both the average path-loss at the reference point and the path-loss exponent become

environment-specific.

• Since UWB are only practical in indoor and short-range communications, the small-

scale fading becomes a vital parameter of the interest. The widely known UWB

channel model is the modified S-V model. The S-V channel model is based on a

STDL model defined by four parameters, namely, the cluster-arrival rate (Λ), the

ray-arrival rate within a cluster (λ), the cluster-decay factor (Γ) and the ray-decay

factor within a cluster (γ), which were defined in the context of Figure 5.1.

• The amplitude statistics in UWB channels obey either the log-normal or the Nakagami-

m distribution, and in some specific cases the Rayleigh distribution. The Nakagami-m

distribution is preferred over the log-normal distribution, since both the Rayleigh and

log-normal distributions may be approximated by the Nakagami-m distribution.
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5.3 Preliminaries of Code Acquisition in the DS-UWB Down-

link

5.3.1 Characteristics of PN Codes

Reducible
(factorable)

(not factorable)
Irreducible

Linear Feedback Shift Register sequence

Primitive

MLSR
(P = 2S − 1)

Figure 5.2: Classification of sequences generated by Linear Feedback Shift Registers

Let us define the function G(D) = 1/g(D), where D is the delay unit and g(D) denotes

a Generator Polynomial (GP). Every output sequence of the Linear Feedback Shift Register

(LFSR) is periodic with a period of P ≤ 2S − 1. If the polynomial g(D) of degree S can

be factorised into lower-order polynomials, it is referred to as ’reducible’. On the other

hand, if it cannot be further factorised, it is termed as ’irreducible’. In terms of system

design, we are interested in finding a subset of sequences, which leads to the definition of

a Maximum Length (linear) Shift Register (MLSR) sequence [3]. Irreducible polynomials

of degree S that generate an MLSR sequence of period P = 2S − 1 for all non-zero initial

vectors are referred to as ’primitive’ polynomials. Figure 5.2 illustrates a classification of

LFSR sequences [3, 72].

By exploiting the available a priori knowledge about how PN codes are generated with

the aid of LFSRs, the PN sequence is generated by feeding these S chips into the LFSR-

based PN-code generator, which produces (2S−1) chips. More explicitly, a (2S−1)-chip PN

code can be generated with the aid of a LFSR using a specific Primitive Polynomial (PP),

once the associated S-stage LFSR was filled with the S number of chip values [72]. This

beneficial property can also be exploited by the initial acquisition scheme at the receiver,

because once we estimated S number of channel-contaminated chip values, the acquisition

scheme is capable of reconstructing the entire (2S − 1)-chip code. Figure 5.3 portrays the

LFSR structure for the PP g(D) = D15 +D + 1 [72].
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15thstage 1ststage

D15 D1
1

Figure 5.3: An example of LFSR sequence generator having g(D) = D15 +D + 1

5.3.2 Modulo-2 Squaring

If a sequence is represented by G1(D) = 1
g1(D) , then the new sequence G2(D) = 1

g2(D) =

[ 1
g1(D) ]

2 generated using modulo-2 squaring represents the original sequence with a zero

inserted between each pair of chips. For example, after modulo-2 squaring of G1(D) =

1
1+D2+D3 = 1 0 1 1 1 0 0 ···, we have [G1(D)]2 = 1

1+D4+D6 = 10 00 10 10 10 00 00 ···.
Then, modulo-2 squaring may be further exemplified as follows [72]:

(1 +D)2 = 1 +D2, (1 +D)4 = 1 +D4 and (1 +D)2n = 1 +D2n.

In our scenario, we selected the GP g1(D) = D15 + D + 1 [43, 59], which is a PP. The

detailed procedure of the modulo-2 squaring operation is as follows:

g2(D) = [g1(D)]2 = (D15 +D + 1)(D15 +D + 1)

= D30 + D16 + D15 + D16 + D2 + D + D15 + D + 1

= D30 + D2 + 1.

Higher order GPs are calculated by the repeated Modulo-2 squaring as follows:

g1(D) = D15 +D + 1.

g2(D) = D30 +D2 + 1.

g3(D) = D60 +D4 + 1.

g4(D) = D120 +D8 + 1.

g5(D) = D240 +D16 + 1.

g6(D) = D480 +D32 + 1.

g7(D) = D960 +D64 + 1.
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Based upon the above-mentioned operation, finally, the operation is generalised as gn(D) =

D15·2(n−1)
+D2(n−1)

+ 1, where n = 1,2,...

5.3.3 Sum-Product Algorithm

VN(j) = VN(6) 

CN(i) = CN(4) Y(i,j)

X(j,i)

Y(3) Y(4)

X(2) X(5) X(6)

Y(2)Y(1)

X(1) X(3) X(4)

Figure 5.4: An example of the sum-product algorithm, where the squares and circles denote
Check Nodes (CNs) and Variable Nodes (VNs), respectively, whilst the bold lines between
the CNs and VNs represent a cycle length of 6.

The Sum-Product Algorithm (SPA) constitutes the basic decoding algorithm of arbitrary

codes which can be described by graphs as exemplified in Figure 5.4. When all the opera-

tions of the SPA becomes local, it may be applied to graphs having cycles, which can also

be portrayed in Figure 5.4. There have been various applications of the SPA [137, 138, 139].

More explicitly, the employment of the SPA has not only been limited to the decoding of

Low Density Parity Check (LDPC) codes, it has been also applied for solving inference

problems in artificial intelligence, computer vision and statistical physics [137]. In the con-

text of statistical inference, it is referred to as the Belief Propagation (BP) algorithm [137],

which constitutes an efficient iterative decoding technique guaranteeing low-complexity im-

plementation [137]. The BP algorithm may also be considered to be a decentralised Message

Passing (MP) algorithm, because each node communicates with the corresponding nodes

connected to it. If the structure of the graph describing the detection/decoding problem

considered is not a tree, the BP algorithm has no definite termination point. However, a

popular detection termination rule selected is to make a hard decision after a predetermined
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number of iterations. The application of the BP algorithm for the detection of certain sys-

tematic linear block codes having low-density parity check matrices leads to well known

LDPC codes.

When considering graphs exhibiting cycles, there is no guarantee that the SPA will con-

verge [138, 139, 140]. In practice, the SPA converges with a near-unity probability only if

the code rate is below a certain value. Furthermore, even if the SPA does converge, there is

no guarantee that it will converge to the correct decision. Generally speaking, the specific

likelihoods associated with the most probable decisions may be too optimistic, since it is

assumed that all the messages contributing to this decision are independent values, whilst

in fact this is not entirely true, because the same messages are entered repeatedly into the

sum-product update owing to graphs exhibiting cycles. Accordingly, the achievable decod-

ing performance becomes sub-optimal. The results of the SPA applied to a factor graph

having cycles cannot be interpreted as exact function summaries. Nonetheless, some of

the most exciting applications of the SPA such as the decoding of LDPC codes have been

shown to perform well even for codes operating over graphs exhibiting ’not-too-short’ cycles

[138]-[140].

The underlying decoding principle devised for LDPC1 codes is to exchange messages

between the Variable Nodes (VNs) and Check Nodes (CNs) of the code’s Tanner graph

based representation. The SPA has been routinely used in the design of LDPC decoders.

We first briefly introduce the SPA with the aid of the specific message passing example of

Figures 5.5 and 5.6 and then provide their more general description.

For the sake of describing the operations carried out in Figures 5.4 to 5.6 in more detail,

a specific example of the Parity Check Matrix (PCM) was given in Equation 5.15.















1 0 1 1 0 0

1 1 0 0 0 1

0 1 0 1 1 0

0 0 1 0 1 1















. (5.15)

The matrix of Equation 5.15 may be directly mapped to Figure 5.4, since it illustrates the

1LDPC codes constitute linear parity-check codes having a parity-check matrix, which encompasses a
small number of ones. More explicitly, in order to find a correct codeword, every codeword C must satisfy
H ·C = 0, where C represents an (n × 1)-element binary vector and H denotes an (n − k) × n binary matrix,
where it is assumed that k input bits are mapped to n coded bits using (n − k) parity-check equations.
The iterative decoding of LDPC codes is often based on the hard-decision aided bit-flipping algorithm or on
the message-passing algorithm known as belief propagation. The message-passing algorithm is particularly
popular due to its powerful decoding capability. Further details on the decoding of LDPC codes may be
found in [141].
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underlying principle of the SPA. More explicitly, in Figure 5.4, X(j, i) represents the message

passed from the jth VN indicated by the circles to the ith CN denoted by the squares, Y (i, j)

represents the message passed from the ith CN to the jth VN and X(j) indicates the LLR

of the soft value received from the AWGN channel. Furthermore, V N(j) is the set of

CNs linked to the jth VN and CN(i) represents the set of VNs connected to the ith CN. To

Y(1,1) X(4,1)
X(3,1)

Y(1)

X(1) X(3) X(4)

Figure 5.5: Message update in check-to-variable node message passing, where the circles
represent VNs and the squares deonte CNs. It is also often termed as CN-processing.

elaborate a little further, Figure 5.5 elucidates the message update rule of the CN processing.

Observe in Figure 5.5 that the message, Y (1, 1) is passed from the first CN to the first VN,

which was calculated from the messages denoted as X(3, 1) and X(4, 1), respectively. More

explicitly, we have Y (1, 1) = ln
(

1 + tanh(X(3,1)/2)·tanh(X(4,1)/2)
1− tanh(X(3,1)/2)·tanh(X(4,1)/2)

)

[142, 143]. By contrast, in

Figure 5.6, the VN-to-CN message passing update rule, which is also referred to as VN

processing, is described in detail. A message, X(1, 1) is passed from the first VN to the

first CN, which was generated by the VN message Y (1, 2) plus the estimate X(1) of the

soft signal received. More specifically, we have X(1, 1) = Y (1, 2) + X(1).

When considering the PCM of Equation 5.15 having the corresponding Tanner graph

based description of Figure 5.4, the following matrices can be defined:















Y (1, 1) 0 Y (1, 3) Y (1, 4) 0 0

Y (2, 1) Y (2, 2) 0 0 0 Y (2, 6)

0 Y (3, 2) 0 Y (3, 4) Y (3, 5) 0

0 0 Y (4, 3) 0 Y (4, 5) Y (4, 6)















, (5.16)
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Y(1,2)
X(1,1)

X(1)

Y(1) Y(2)

Figure 5.6: Message update in variable-to-check node message passing, which is also often
referred to as VN-processing.















X(1, 1) 0 X(3, 1) X(4, 1) 0 0

X(1, 2) X(2, 2) 0 0 0 X(6, 2)

0 X(2, 3) 0 X(4, 3) X(5, 3) 0

0 0 X(3, 4) 0 X(5, 4) X(6, 4)















, (5.17)

where the matrix of Equation 5.16 describes the extrinsic LLRs passed from the CNs to the

VNs as dictated by the positions of logical ones in the PCM of Equation 5.15. Similarly, the

matrix of Equation 5.17 represents the LLRs passed from the VNs to the CNs as dictated

by the positions of logical ones in the PCM of Equation 5.15. By contrast, the zeros in the

matrices of Equations 5.16 and 5.17 indicate the absence of connections among the CNs

and the VNs.

Finally, the generalised operation of the SPA is as follows [142, 143]:

1. Step 1: Initialisation of the log-likelihood ratio

As seen in Figure 5.4, the jth VN passes the Log Likelihood Ratio (LLR) X(j) of an

estimate of the soft signal r(j) received from the channel to the ith corresponding CN

in the set V N(j). As shown in Figure 5.4, the soft-estimate X(j, i) is expressed as

X(j, i) = X(j) = 4·r(j)·Ec
I0

[58, 98] 2, where X(j, i) represents the message passed

2After signal s(j) was transmitted over an AWGN channel, we may calculate the LLR of s(j) condi-

tioned on r(j) [58, 98] as X(j; s|r) = ln
“

P (s = +1|r)
P (s =−1|r)

”

= ln
“

P (r|s = +1)P (s = +1)
P (r|s =−1)P (s =−1)

”

. More specifically, X(j; s|r)

may also be expressed as X(j; s|r) = ln
“

exp(−(Ec/I0)(r − 1)2)

exp(−(Ec/I0)(r + 1)2)

”

+ ln
“

p(s = +1)
p(s =−1)

”

. Finally, X(j; s|r) becomes
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from the jth VN to the ith CN and (Ec/I0) is the Signal-to-Interference plus Noise

Ratio (SINR) per chip. The channel was assumed to be an AWGN channel.

2. Step 2: Horizontal step (Check-to-variable node message passing, also

termed as Check Node (CN) processing)

As seen in Figure 5.4, the ith CN forwards the extrinsic LLR to the jth VN, which is

described by [58] 3

Y (i, j) = ln

(

1 +
∏

j′∈CN(i),j′ 6=j tanh[X(j
′
, i)/2]

1 − ∏

j
′∈CN(i),j

′ 6=j tanh[X(j′ , i)/2]

)

, (5.18)

= 2·artanh





∏

j′∈CN(i),j′ 6=j

tanh[X(j
′
, i)/2]



 . (5.19)

A specific example of Step 2 is portrayed in Figure 5.5.

3. Step 3: Hard decision concerning the codeword generated

The summation of the extrinsic LLRs generated during Step 2 and the original intrin-

sic LLR value derived during Step 1 constitutes the resultant LLR to be subjected

to a hard decision, which is expressed as Λ
′

=
∑

i∈V N(j) Y (i, j) + X(j), where Λ
′

represents the a posteriori LLR of each VN. Then, a hard decision is performed for

each chip based on the following rule:

λ
′
(j) = ′1′ (if Λ ≤ 0) or ′0′ (if Λ > 0), (5.20)

where λ
′

represents the resultant logical value after a hard decision was performed.

The SPA will be terminated if either the predefined number of iterations was com-

pleted or if the hard-decision based codeword λ = [λ (1), λ (2), ..., λ (CN(i))] be-

comes a legitimate codeword and hence satisfies the parity check constraint equation

associated with the PCM, namely, H·λT = 0. A specific example of the PCM is

portrayed in the matrix of Equation 5.15, where logical ones indicate the presence of

connections among the CNs and the VNs.

4·r(j)·Ec

I0
.

3The joint LLR described in Figure 5.5 may be expressed as ln
“

(1 + exp[X(3,1)]exp[X(4,1)])
(exp[X(3,1)] + exp[X(4,1)])

”

[58, 98]. By

induction, the LLR is also equivalent to

ln
“

(exp[X(3,1)] + 1)(exp[X(4,1)] + 1) + (exp[X(3,1)] − 1)(exp[X(4,1)] − 1)
(exp[X(3,1)] + 1)(exp[X(4,1)] + 1)− (exp[X(3,1)]− 1)(exp[X(4,1)] − 1)

”

. By employing the relationship

tanh(a/2) = (exp[a]− 1)
(exp[a]+ 1)

[58], where a is an arbitrary variable, finally we arrive at Y(1,1) =

ln
“

(1 + tanh[X(3,1)/2]tanh[X(4,1)/2])
(1− tanh[X(3,1)/2]tanh[X(4,1)/2])

”

, as portrayed in Figure 5.5.
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4. Step 4: Vertical step (Variable-to-check node message passing, also termed

as Variable Node (VN) processing)

As seen in Figure 5.4, the jth VN passes the message X(j, i) to the ith CN, but

excludes the intrinsic message Y (i, j) which is described as X(j, i) =
∑

i′∈V N(j), i′ 6=i Y (i
′
, j) + X(j). Then, the procedure will return to Step 2. A specific

example of Step 4 is illustrated in Figure 5.6.

5.3.4 Offset-based Min-Sum Algorithm

When considering the SPA associated with the decoding of LDPC codes, the complexity of

CN processing may become excessive. Therefore, in practice an efficient implementation of

the SPA is highly recommended. In order to minimise the complexity of the MP algorithm,

especially that of the CN processing, the corresponding calculations may be carried out in

the log-likelihood domain, leading to the Min-Sum Algorithm (MSA), which has become

a popular design alternative [139, 140, 143]4. However, the performance of the MSA is

about 0.5 dB worse than that of the SPA, depending on the propagation environment

encountered [141]. Hence a variety of modified MSAs have been proposed in the literature

[141, 144, 145, 146, 147, 148, 149, 150, 151, 152]. Here we briefly allude to some recent

results, which are capable of partially closing the performance gap between the MSA and

SPA based schemes.

The solutions proposed in [144]-[147] facilitated the employment of a corrective term at the

output of the CNs in the MSA. More explicitly, in [144, 145] a performance degradation was

reported for the MSA at low SINR values, since at high-SINRs the MSA can be interpreted

as an approximation of the SPA. Therefore, finding more accurate approximations of the

SPA that are valid even for low SNR values is desirable. For the sake of narrowing the

performance difference between the MSA and SPA, the approximation of the correction term

was further simplified5. Using a simple correction term in the context of CN processing is

capable of eliminating the performance gap between the MSA and the SPA [144, 145], in fact,

4As shown in Figure 5.5, the joint LLR formulated in the context of the CN pro-

cessing is expressed as ln
“

(1 + exp[X(3,1)]exp[X(4,1)])
(exp[X(3,1)] + exp[X(4,1)])

”

[58, 98], which can be approximated by

sgn[X(3, 1)]sgn[X(4, 1)]·min(|X(3, 1)|, |X(4, 1)|) [58], where sgn [·] denotes the ’signum’ function assum-
ing values of either 1 or -1, and min (·) denotes an operator, which selects the smaller value of its two
arguments.

5As an example of the MSA shown in [144], when considering only two messages in Step 2, the equation

can be approximated by sgn[X(3, 1)]sgn[X(4, 1)]·min(|X(3, 1)|, |X(4, 1)|) + ln
“

1 + exp[−|X(3,1)+X(4,1)|]
1 + exp[−|X(3,1)−X(4,1)|]

”

.

The second term represents the original form of the correction term.
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it may even become capable of providing a slight performance advantage for the modified

MSA over the original SPA. By contrast, in [146, 147], look-up tables and a piecewise linear

approximation were used for the correction term shown in [144]. Both methods resulted in a

similar approximation of the correction term of [144, 145]. The employment of a piece-wise

linear function approximating the correction term exhibits the best achievable performance,

which appears to suffer an almost negligible loss of less than 0.05 dB at a modestly increased

complexity [146].

In order to narrow the performance difference between the MSA and SPA, the approach

of [148] was to normalise the output of the CN processing, whereas in [141, 149], the so-

called offset-based MSA has been proposed. More explicitly, an optimised offset value was

used for substituting the magnitude of the VNs’ outputs in the graph. The normalised

MSA slightly outperforms the offset-based MSA, but may also be slightly more complex to

implement. The performance gap between the MSA and modified MSA is about 0.5 dB.

However, by using either the normalised or offset-based MSA, the gap can be reduced to

about 0.05 dB. In [150], the authors employed both conditional and unconditional correction

terms for improving the performance of the offset-based MSA, where the unconditional

correction term directly leads to the original offset-based MSA of [141]. Finally, in [151]

both normalisation and a modified offset-based MSAs were also proposed. Similarly to

the methods of [141], an optimised offset value was used for substituting the magnitude of

the outputs of the VNs in the graph. However, the definition of the offset was different

from that proposed in [141]. All the above-mentioned approaches [141]-[151] have been

aiming for minimising the complexity of CN processing, while improving the achievable

performance. Based on references [141]-[151], our goal is to design the best possible CN

processing algorithm.

For a graph having short cycles, the incoming messages of a CN and VNs exhibit an

interdependence throughout the iteration process, since the messages passed through the

edges of the bipartite graph in the BP algorithm are statistically dependent. In this scenario,

the BP algorithm is no longer optimal, because it mistakenly assumes having an increased

reliability on average. In other words, this implies that the real reliability of these messages

is lower than that derived by the BP algorithm under the assumption of having a cycle-free

graph. Accordingly, the offset-based MSA is capable of compensating for the over-estimated

reliabilities. By employing this, the performance of the BP algorithm can be enhanced by

scaling down the log likelihood ratios [141].
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From the range of the modified MSA found in the literature [141]- [152], we opted for a

technique referred to as the offset-based MSA of CN processing [141], because it has the

added benefit of a 0.5 dB gain compared to the pure MSA, which is achieved at a modest

increase of the complexity. More specifically, during the CN processing shown in Figure 5.5,

an optimised offset value was used for substituting the magnitude of the outputs of the VNs

in the graph. This algorithm can be represented as [141]

X(j, i)
′

= sgn [X(j, i)] ·max [|X(j, i)| − β, 0] , (5.21)

where sgn [·] denotes the ’signum’ function assuming values of either 1 or -1, X(j, i) rep-

resents a message passed from a VN to a CN across an edge connected to it in the graph

and max [·] denotes an operator, which selects the largest value between two arguments.

Finally, β is a nonnegative number selected by optimising a threshold of the offset-based

MSA of Figure 2 seen in [141]. The optimum value was found to be β = 0.15. It is worth

noting that all extrinsic messages having reliability values lower than β are set to 0, in order

to ensure that no contribution is provided for the ensuing VN processing.

5.3.5 Decoding Procedure of the Iterative Message Passing Algorithm

In the field of engineering, many problems have been solved by ’divide-and-conquer’ based

approach. Similarly, a variety of problems may be solved by using MP algorithms, where

the messages are passed back and forth among simple processors. After a sufficiently high

number of information exchange steps we may approach the global solution of a problem. In

this spirit, this MP algorithm requires amongst the processing nodes, which carry out sim-

ple operations such as storage and addition of integers. A popular graphical model derived

for characterising diverse probability distributions is constituted by the Tanner graph [153].

The Tanner graph is a bipartite graph, which characterises the relationship of the sym-

bols of a codeword and the code constraints for the sake of constructing a valid codeword.

A factor graph is a straightforward generalisation of the Tanner graph [139]. The factor

graph is also a bipartite graph, which has a VN for each variable and a CN for describing

the corresponding relationship among these VNs. In probabilistic modelling of arbitrary

systems, the factor graph may be used for representing the joint probability density of vari-

ables describing the system. Factorisation of this joint probability density function into

individual density functions encompasses vital information regarding the statistical depen-

dencies among these variables. The calculation of a conditional probability corresponds to

the so-called marginalisation of the related messages entered to each node [138].
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Y (NI − 1 − S)

X (NI − 1)

Y (0)

X (0)

Figure 5.7: Tanner graph based acquisition structure for the PN sequence employing the
GP of g1(D) = D15 +D + 1. The squares and circles denote CNs and VNs, respectively.

The graphical model seen in Figures 5.7 and 5.8 can also be used for visualising the

Parity-Check (P-C) constraints represented by connecting the VNs to the appropriate CNs.

The simplest possible graphical model is based on a single CN, which checks the parity

of the specific binary variables connected to it. When considering a MP algorithm that

repeatedly passes messages across the Tanner graph’s edges in both directions, the MP

algorithm merges and marginalises the messages related to the VNs by taking into account

the constraints imposed by the CNs. Similarly, each CN will collect soft-decision information

from the VNs connected to it. This soft information gleaned from the VNs connected to

a CN is then combined in order to generate soft-decision based estimates, which are then

subjected to a hard-decision, once the affordable number of iterations has been exhausted.

Figure 5.7 depicts the schematic designed for PN sequences generated using the GP of

g1(D) = D15 +D + 1 [43, 59], whilst Figure 5.8 portrays the schematic designed for PN

sequences generated using the GPs of g1(D) = D15 +D + 1 and g3(D) = D60 +D4 + 1

[59], where the squares and circles represent CNs and VNs, respectively. Each CN in

Figures 5.7 and 5.8 gleans soft-decision information from the three VNs connected to it.

This constraint obeys the structure of g1(D) as well as either g1(D) or g3(D) for Figures 5.7

and 5.8, respectively. To elaborate a little further, in case of g1(D), the first CN Y(0) is

directly connected to X(0), X(14) and X(15), corresponding to the terms of D15, D and

1, respectively. Similarly, in Figure 5.8 Z(0) associated with g3(D) is mapped into X(0),

X(56) and X(60), corresponding to the terms of D60, D4 and 1, respectively. Moreover, each

node seen in Figures 5.7 and 5.8 represents a random variable, whereas each edge indicates

probabilistic constraints among the nodes connected to it. The procedure of generating a

(2S−1)-chip PN sequence imposing redundancy according to the above-mentioned GPs may

be considered to be equivalent to incorporating redundant P-Cs into the standard PCM of
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Z (0)

Y (0) Y (NI − 1 − S)

X (NI − 1)

Z (NI − 1 − 4S)

X (0)

Figure 5.8: Tanner graph based acquisition structure for the PN sequence employing the
GPs of g1(D) = D15 +D + 1 and g3(D) = D60 +D4 + 1. The squares and circles denote
CNs and VNs, respectively.

classic LDPC codes and a similar technique has been applied also for the soft decoding of

classic channel codes in [154]. Each of the subgraphs corresponding to connections of the

upper and the lower half of Figure 5.8 is based on a different GP, namely on g1(D) and

g3(D), respectively. Mathematically, different reducible GPs may be used to generate the

same PN sequence [59, 154]. Similarly to the notation used in Figure 5.4, we define the

initial soft-decision based estimate in the form of X(j) at the VN, where X(j) represents an

jth chip-estimate of an NI -chip soft-sequence received, where we have j = 0, ..., (NI − 1).

The set of NI -chip received signal estimates becomes the initial input of all the related CNs.

Figure 5.8 can be also interpreted as a PCM in case of employing 1st and 3rd order GPs, as

further described in Figure 5.9. Generally speaking, a graphical model such as the Tanner

graph can be described by its corresponding PCM, which encompasses all the edges between

its VNs and CNs, as shown in Figure 5.9. Namely, assuming that the jth column directly

corresponds to the jth VN and that the ith row is directly related to the ith CN, the matrix

element denoted as hi,j becomes 1 if and only if the ith CN and the jth VN are connected,

otherwise we have hi,j = 0. Accordingly, each GP-related connection can be identified

as a subset of the corresponding PCM, which also constitutes a composite Tanner graph

structure, again as shown in Figures 5.8 and 5.9. The composite PCM is represented by the

vertical stacking of H1 and H3 corresponding to g1(D) and g3(D), respectively, where NI is

the number of columns, (NI−S) is the number of rows associated with g1(D) = D15+D+1,
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(NI − 4·S) represents the number of rows associated with g3(D) = D60 +D4 + 1. In both

H1 and H3 of Figure 5.9, every row encompasses a shifted version of the GP connection

set denoted as either [gS , .gs.., g0] or [g4·S , .gs.., g0], where gs is the sth coefficient of the GP

assigned.

0

0

0
0

g4S ······g0

g4S ······g0

g4S ······g0

g4S ······g0

H1 =

H3 =

gS ···g0

gS ···g0

gS ···g0

gS ···g0

NI X (NI − 4S)

NI X (NI − S)

Figure 5.9: Structure of a parity check matrix in case of employing 1st and 3rd order GPs

The employment of higher-order GPs will provide further potential performance improve-

ments at the cost of an increased hardware complexity. We will show in Chapter 6 that

designing GPs for attaining the best possible PD performance is achieved by investigating

a plethora of different GPs in this system context. Then we will demonstrate that the

achievable PD performance may be improved by beneficially combining several GPs, such

as 1st and 3rd as well as 1st, 3rd and 5th order GPs, which will be denoted as a 13 and 135

GP constellation, respectively, where the bold numbers represent the order of the individual

component GPs. We will demonstrate that a better performance may be achieved by the

135 GP combination, than in case of employing 1st, 2nd and 3rd order GPs, where the latter

combination is denoted by the acronym of 123. We used a Tanner-graph based MP de-

coder for detecting the reception of PN sequences generated using different-order GPs. The

rationale of our design choices is as follows: (i) This method facilitates the beneficial em-

ployment of the MP decoding algorithm originally derived for classic LDPC codes. (ii) The

performance of the corresponding Tanner-graph based decoder using a lower-complexity

MP algorithm approaches that of the Tanner-Wiberg graph based one [59] employing a

higher-complexity MP algorithm, where there is only a modest power loss of about 0.3 dB

6 [59]. (iii) Furthermore, when the employment of several combined GPs is considered, the

6Moreover, this performance loss can be compensated by using the offset-based min-sum algorithm of
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Tanner-Wiberg graph based decoder requires a quadrupled state metric memory [59]. We

will demonstrate in Chapter 6 that the acquisition schemes based on the GPs 135 and

13 become our favourite choices for the R = 1 and 4 scenarios using one and four receive

antennas, respectively, as a benefit of their improved performance in comparison to other

GP combinations.

5.4 System Description and Algorithms

5.4.1 Single-Stage Iterative Acquisition

5.4.1.1 Single-Stage Iterative Acquisition Employing a Single Component De-

coder

Transmitted DS spread signal for single−stage acquisition 

Tp Tf

Figure 5.10: The transmitted UWB signal designed for single-stage acquisition.

Figure 5.10 portrays the transmitted UWB signal designed for single-stage acquisition

using a single component decoder [43]. The transmitted UWB signal in Figure 5.10 are

characterised by low-duty-cycle pulse trains, where each signalling pulse has a very narrow

width [42, 43]. Depending on the logical value to be conveyed, a signalling impulse of Tp

duration and of the required polarity is allocated at multiples of the frame duration Tf ,

where Tf is defined as the pulse repetition period, i.e. the time between two consecutive

signalling pulses. The DS pulse train of the received DS-UWB DL signal is expressed as

[43],
R
∑

r=1





(NI−1)
∑

n=0

√

Ec·(−1)xn ·ωr(t− nTf − dTp) + Ir(t)



 , (5.22)

where this signal is generated by employing the PP g1(D) = D15 + D + 1, r = R is the

number of receive antennas, NI indicates the truncated PN sequence-length, Ec denotes

the pilot signal energy per PN code chip, xn ∈ (−1, 1) represents the chip pattern of the

PN sequence at the nth position, ωr(t) represents a chip waveform having a duration of Tp

and d is the unknown time shift jointly imposed by the oscillator’s frequency drift as well

[141].
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as the receiver’s mobility. Furthermore, Ir(t) is the AWGN having a variance of I0
2 at the

rth path.

Go to tracking mode

Generation of

based on ’S’
PN sequence

corresponding to the max−  
Find ’S’ consecutive chips  

N

Y

Y

N

chips received 

algorithm employing
selected GPs

Offset−based min−sum

overlapping segments    
imum among the   

Correlator
output

non−   

itr ≤ IM

NI

> Tv

Nv − chip

⌊NI/S⌋

Figure 5.11: Flow chart of our proposed algorithm designed for single-stage acquisition
scheme using a single component decoder, where the Tv is used for thresholding the corre-
lation peaks.

Figure 5.11 illustrates our proposed algorithm exploiting the offset-based MSA and ben-

eficially chosen higher-order GPs when using the single component decoder, where IM

represents the maximum allowable number of iterations, ⌊NI/S⌋ is the number of non-

overlapping segments of S consecutive chips in the NI -chip truncated PN sequence and

Tv is a threshold value assigned to the verification mode [59]. The specific details of our

iterative MP aided decoder were elucidated in Section 5.3.5. A single component decoder in
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our proposed scheme constitutes the beneficially combined GPs, such as 1st and 3rd as well

as 1st, 3rd and 5th order GPs denoted as 13 and 135, respectively, where the bold num-

ber represents the order of the individual component decoders. In our analysis we opted

for invoking ’Algorithm 1’ of [59] as a part of our basic iterative decoding MP algorithm,

rather than that of [43], because this algorithm leads to significant reduction of the average

number of iterations at the cost of a modest acquisition performance degradation. We also

investigated a technique referred to as the offset-based MSA of CN processing [141], because

it has the added benefit of a 0.5 dB gain compared to the pure min-sum one algorithm,

which is obtained at a modest increase on the complexity. The offset-based MSA was also

explained in Section 5.3.4. Hence the offset-based min-sum operation is invoked for our

basic iterative MP decoding algorithm. During the CN processing of our proposed scheme,

an optimised offset value was used for substituting the magnitude of the outputs of the VNs

in the graph describing the acquisition scheme.

More specifically, as described in Figure 5.11, our decoder is constituted by the offset-

based MSA [141], followed by a single correlator required for the verification of the S

consecutive chips estimated. After performing an iteration of the MP scheme in order to

obtain the NI estimated chips, the particular PN code phase associated with the highest

confidence is selected as the most likely correct phase from the non-overlapping segments

of S consecutive chips in the NI -chip-duration truncated PN-sequence. This code-phase is

found by identifying the highest correlation peaks of Nv number of chips, since the S chips

determine all the (2S − 1) PN code chips [59, 72]. More explicitly, the corresponding PN

sequence is then generated by feeding these S chips into the LFSR-based PN-code generator,

which produces (2S − 1) chips. Then, a single operation of the correlation between the

received and locally generated Nv chip sequences confirms, whether the correct code phase

of the PN sequence was indeed found or not by comparing the correlator output to the

decision threshold of Tv.

5.4.1.2 Single-Stage Iterative Acquisition Using Multiple Component Decoders

Figure 5.10 also depicts the transmitted UWB signal designed for single-stage acquisition,

when using multiple component decoders [43]. Further details of the transmitter were pro-

vided in Section 5.4.1.1. Here we also chose ’Algorithm 1’ of [59] as a part of our basic

iterative decoding algorithm, rather than that of [43], as shown in Section 5.4.1.1. The mul-

tiple component decoder constitutes a combination of several single component decoders.
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The maximum affordable number of iterations is considered to be 15, while the PD value of

the verification stage is assumed to be 1.0 [59]. For example, a multiple component decoder

is expressed as 13:135(3:12), where the value in ( ) represents the maximum affordable

number of iterations. Explicitly, the 13:135(3:12) represents a multiple component de-

coder, which activates the acquisition schemes using the GPs 13 and 135 for a maximum of

three and 12 iterations, respectively. More specifically, the scheme employing the GPs 13 is

activated up to three times and, then the decoder exploiting the GPs 135 is enabled for up

to 12 iterations. Figure 5.12 illustrates our proposed algorithm exploiting the offset-based

MSA and beneficially chosen higher-order GPs such as 13:135 when considering the em-

ployment of the multiple component decoder, where IM represents the maximum allowable

number of iterations, I1 is the number of the maximum iteration assigned, ⌊NI/S⌋ is the

number of non-overlapping segments of S consecutive chips in the NI -chip truncated PN

sequence and Tv is a threshold value assigned to the verification mode [59]. The remaining

details of our proposed decoder are exactly the same as those described in Section 5.4.1.1.

5.4.2 Two-Stage Iterative Acquisition

Figure 5.13 illustrates the schematic of our proposed transmitter for two-stage acquisition

[42, 70]. It transmits not only a periodic pulse train for Timing Acquisition (TA) but also

a DS pulse train for PN Code Phase Acquisition (CPA).

Figure 5.14 portrays the transmitted UWB signal designed for two-stage acquisition, namely

for the TA and CPA stages [42, 70]. The specifically designed training signal transmitted

during the acquisition process is constituted by the superposition of the signals designed

for supporting TA and CPA stages. Observe in Figure 5.14 that the top trace indicates

a separate periodic pulse train used for supporting the TA stage, whilst the middle trace

portrays a DS pulse train employed for assisting the CPA stage. The periodic pulse train

designed for the TA stage at each receive antenna of the DS-UWB DL signal transmitted

is expressed as [42, 70]

r(TA)|ξ(t) =

(Ns−1)
∑

n=0

√

Ec·ω(t− 2nTf − dTp) + Iξ(t), (5.23)

where ξ = R is the number of receive antennas, Ns is the number of chips used for the TA

stage, Ec denotes the pilot signal energy per PN code chip, ω(t) represents a chip waveform

having a duration of Tp, d is the unknown time shift jointly imposed by the oscillator’s

frequency drift as well as the receiver’s mobility and Iξ(t) is the AWGN having a variance
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Figure 5.12: Flow chart of our proposed algorithm designed for single-stage acquisition
scheme employing multiple component decoders, where the Tv is used for thresholding the
correlation peaks.
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PN code generator Pulse generator

Pulse generator

Figure 5.13: The schematic of our proposed transmitter for two-stage acquisition.

of I0
2 . Similarly, the DS pulse train of the received DS-UWB DL signal designed for the

CPA stage is formulated as [43, 59]:

r(CPA)|ξ(t) =

(NI−1)
∑

n=0

√

Ec·(−1)xn ·ω(t− (2n+ 1)Tf − dTp) + Iξ(t), (5.24)

where NI indicates the truncated PN sequence-length used for the CPA stage and xn ∈
(−1, 1) represents the chip pattern of the PN sequence.

Transmitted signal for two−stage acquisition

Periodic pulse train for timing acquisition

DS pulse train for code phase acquisition

Tf
Tp

Figure 5.14: The transmitted UWB signal designed for two-stage acquisition, namely for
TA and CPA stages.

The schematic of the proposed receiver designed for both Single Input Single Output

(SISO) and Single Input Multiple Output (SIMO) scenarios is portrayed in Figures 5.15
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and 5.16, respectively. These schemes are constituted by the amalgam of the sliding corre-

lator used for the TA stage and the iterative CPA decoder, where TTA is a threshold value

assigned to the TA stage and TCPA is another threshold assigned to the verification mode

of the CPA stage [59, 70]. More specifically, the timing of the periodic pulse train at the

TA stage is recovered by correlating the received signal with the receiver’s own replica of

the periodic pulse train over the entire uncertainty region, which is twice Tf [42, 70] and

then comparing the correlator’s output to the decision threshold of TTA. More explicitly,

we consider the random search technique described in Section 1.3.4 at the TA stage. Once

the TA stage is completed, the chip boundaries of the DS pulse train have become known

and the CPA stage has to search for the correct phase across a single PN sequence duration.

The employment of both the MP decoding algorithm [43] originally derived for LDPC codes

and a single correlation required for the verification of the (2S−S−1) chips’ expected values

based on the S consecutive chips hypothesised are considered.

generator
Pulse train

generator
Pulse train

PN code generator

Iterative CPA
 decoder

Threshold
Comparison

Threshold
Comparison

PN code phase acquisition

Timing acquisition correlator
Sliding (TTA)

(TCPA)

Figure 5.15: Schematic of our receiver proposed for a SISO scenario.

Similarly to the decoders described in Sections 5.4.1.1 and 5.4.1.2, we opted for invoking

’Algorithm 1’ of [59] as a part of our basic iterative decoding algorithm, rather than that of

[43]. This algorithm is used for the iterative CPA decoder. Figure 5.17 further illustrates our

proposed algorithm designed for the two-stage detection aided acquisition scheme, where

IM represents the maximum affordable number of iterations and ⌊NI/S⌋ is the number

of non-overlapping segments of S consecutive chips in the NI -chip truncated PN-sequence

used for the CPA stage. The offset-based MSA and other specific details of our iterative

CPA decoder were provided in Sections 5.3.4 and 5.3.5, respectively. More explicitly, as
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generator
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PN code generator

Iterative CPA
 decoder

Threshold
Comparison

Threshold
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PN code phase acquisition

Timing acquisition correlator
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R
1

... (TTA)
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Figure 5.16: Schematic of our receiver proposed for a SIMO scenario.

described in Figure 5.17, our decoder designed for the CPA stage is constituted by the

offset-based MSA [141], followed by a single correlator required for the verification of the S

consecutive chips estimated. After performing an iteration of the MP scheme for the sake of

obtaining the NI estimated chips, the particular PN code phase associated with the highest

confidence is chosen as the most likely correct phase from the non-overlapping segments

of S consecutive chips in the NI -chip-duration truncated PN-sequence. This code-phase is

found by identifying the highest correlation peaks of Nv number of chips, since the S chips

determine all the (2S − 1) PN code chips [59, 72]. More specifically, the corresponding PN

sequence is then generated by feeding these S chips into the LFSR-based PN-code generator,

which produces (2S −1) chips. Then, a single correlation computation between the received

and locally generated Nv chip sequences confirms, whether the correct code phase of the

PN sequence was indeed found or not by comparing the correlator output to the decision

threshold of TCPA.

5.5 Correct Detection and False Alarm Probabilities

Having a realistic channel model, which encapsulates all the main characteristics of a spe-

cific channel becomes a crucial prerequisite for the system’s analysis. The IEEE 802.15.3A

standard’s channel model is often used for DS-UWB systems, which is typically subdivided

into four different models, depending on both the characteristics of the multi-path channel
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Figure 5.17: Flow chart of our proposed algorithm designed for two-stage acquisition
scheme, where the TTA and TCPA are used for thresholding the correlation peaks.



5.5. Correct Detection and False Alarm Probabilities 203

and on the model parameters [62]. We will adopt some of the characteristics of the DS-UWB

channel models in [62], which mimic the characteristics of multi-path indoor environments,

as it was further illustrated in Section 5.2. When considering a realistic UWB channel, the

numerical analysis of serial search based schemes becomes intractable for the CIR consti-

tuted by sparse clumps of multi-path components [62]. However, recently a random search

aided scheme was proposed as a realistic alternative for the analysis of the UWB channel

model [63], because the random search makes no particular assumption regarding the chan-

nel model and hence can be applied to arbitrary channel models. Furthermore, based on

the results of Figure 6 in [63], the performance of the serial search based scheme approaches

that of the random search. Accordingly, we will use the random search technique of [63]

for our benchmarker as well as for the TA stage of our proposed scheme. The schematic of

the random search aided receiver is exactly the same as that of the serial search based one

seen in Figure 1.3 of Chapter 1, except that the search algorithm shifts the code phase of

the local sequence by a random amount selected between 0 and (ν − 1), where ν represents

the number of chips in the entire uncertainty region to be searched. Further details on the

receiver schematic of the related scheme can be found in Figure 2 of [63]. It is also worth

noting that the channel coefficients are assumed to be real-valued [43, 59, 62, 63]. Similarly

to code acquisition in the DS-CDMA DL [3], that of the DS-UWB DL also dispenses with

any prior information on channel knowledge at the receiver. The channel-induced impair-

ments imposed on the DL are constituted by the superposition of the background noise, plus

the serving-cell interference imposed by both the multi-path signals and the other users as

well as the other-cell interference. Further details on the calculation of the total interference

may be found in [3].

For the sake of deriving the Probability Density Function (PDF) conditioned on both the

hypotheses of the desired signal being present and absent, let us assume that the amplitude

is fixed [3]. The vector hosting the signal received via the single path considered of multi-

path components may be expressed as (r1, r2, ...rNs
). Then, we introduce the PDFs of each

sample denoted as rn, which may be expressed in the context of an AWGN channel [3] as

p0(rn) =
1√
2πI0

· exp

[

− r2n
2I0

]

, (5.25)

p1(rn) =
1√
2πI0

· exp

[

−(rn − αl

√
Ec)

2

2I0

]

, (5.26)

where the variance is I0
2 and αl represents the amplitude of the lth multi-path compo-

nent. We also need the likelihood functions based on the absolute value of the sum
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Y = |∑Ns
n=1(rn)|, because both PD and PF will be the complement of the cumulative

distribution function corresponding to the normalised Gaussian RV derived. We arrive at

the likelihood functions conditioned on both the hypothesis p0(Y ) and p1(Y ) of the de-

sired signal being absent and present, respectively, in the context of an AWGN channel.

Therefore, the likelihood function in the absence of the desired signal is expressed as

p0(Y ) =
1√

2πNsI0
· exp

[

− Y 2

2NsI0

]

, (5.27)

where the variance is Ns(
I0
2 ). By contrast, the likelihood function of the signal being present

may be expressed as

p1(Y ) =
1√

2πNsI0
· exp

[

−(Y − αlNs

√
Ec)

2

2NsI0

]

, (5.28)

where the mean of Equation 5.28 becomes αlNs

√
Ec. By using integral manipulations, the

probability of false alarm is finally obtained as follows [63]:

PF (θ) = P (|Y | > Th|H0) = 2Q

(

√

NsEc

I0

)

, (5.29)

where θ represents a normalised threshold value associated with Th being TTA, where

Th is set to Th = Ns

√
Ecθ, while Hx associated with x = 0 represents the hypothesis

of the desired signal being absent and Q(x) ≡
∫∞
x (1/

√
2π) exp[−y2/2]dy. Similarly, the

probability of correct detection is expressed as [63]

PDl(θ) = P (|Y | > Th|H1) = Q

(

√

NsEc

I0
(θ − αl)

)

+ Q

(

√

NsEc

I0
(θ + αl)

)

, (5.30)

where Hx using x = 1 represents the signal being present. In case of R = 1, both Equa-

tions. 5.29 and 5.30 will be used for the achievable MAT calculation of both our benchmarker

and of the TA stage. On the other hand, when using multiple receive antennas, there is

a different way of efficiently detecting, when the desired signal was received. In [10, 155],

the authors employed the Coincidence Detection (CD) method 7. In our R = 4 scenario,

CD method based scheme is adopted for both our benchmarker and TA stage. Finally, the

probability PFtot of false alarm for the CD method is expressed as [155]

PFtot =
A
∑

m=B

[

A!

m!(A−m)!

]

Pm
F (1 − PF )(A−m). (5.31)

7If at least B of a total of A number of samples exceed the predetermined threshold, Th the initial
acquisition is deemed to be successfully accomplished. The parameters A and B are considered to be 4 and
2, respectively, because these values were shown to result in a sufficiently good performance [10].
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Similarly, the probability PDltot of correct detection for the CD method is formulated as

[155]

PDltot =
A
∑

m=B

[

A!

m!(A−m)!

]

Pm
Dl(1 − PDl)

(A−m). (5.32)

Similarly to the case of R = 1, in the R = 4 scenario, both Eqs. 5.31 and 5.32 will be

employed for the MAT calculation of both our benchmarker and of the TA stage. In case

of the CPA stage, the derivation of the correct detection and false alarm probabilities is

unfeasible at the current state-of-the-art owing to its iterative behaviour. Hence, they will

be evaluated by simulation.

5.6 Mean Acquisition Time

5.6.1 Single-Path Scenario

It may be shown that the generalised expression formulated for calculating the MAT of the

serial search based code acquisition scheme is given by [43]:

E[TACQ] =
1

2PD
[2 + (2 − PD)(ν − 1)(1 + KPF )] · τD, (5.33)

where ν is the total uncertainty region to be searched, K denotes the false locking penalty

factor expressed in terms of the number of chip intervals required by an auxiliary device for

recognising that the code-tracking loop is still unlocked whilst PF represents the false alarm

probability of the Single Dwell Serial Search (SDSS) scheme employed and τD indicates the

integral dwell time over which the received samples are accumulated during the correlation

operation. For simplicity, we will consider an idealised scenario, where we have PD = 1.0 and

PF = 0.0 [43, 70]. Naturally, these idealised conditions may only be satisfied asymptotically,

with a certain probability, when we have a sufficiently high Ec/I0 value, i.e. Ec/I0 = −10

dB. More explicitly, the PD value of the TA stage recorded for Ns = 512 may approach PD

= 1.0 for Ec/I0 = −10 dB in Figure 5 of [43]. In this spirit, we may consider that the PD

value of the CPA stage also approaches PD = 1.0 for Ec/I0 = −10 dB, when employing a

135 GP combination and NI = 1024. Accordingly, the MAT formula of Equation 5.33 is

further simplified to [43, 70]:

E[TACQ] =
(ν + 1)

2
·τD ∼= ν

2
·τD. (5.34)

Let us now investigate the attainable performance gain of our Two-Stage Iterative Acqui-

sition (TS-IA) arrangement, also referred to as the TA-CPA scheme. We consider four
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different schemes, which are as follows: (A) Single-Stage SDSS (SS-SDSS) [6], (B) Two-

Stage SDSS (TS-SDSS) [70], (C) Single-Stage Iterative Acquisition (SS-IA) [59] and (D)

TS-IA. Owing to the inherently low duty-cycle of the DS-UWB signals seen in Figures 5.10

and 5.13, the uncertainty region ν is increased by a factor of (
Tf

Tp
), because the number of

candidate frame timing instants to be searched is proportional to (
Tf

Tp
) [43]. More specifi-

cally, for SS-SDSS we have ν = (
Tf

Tp
)·(2S − 1). By contrast, in case of the TS-SDSS scheme

we have ν = 2(
Tf

Tp
) + (2S − 1) owing to the two-stage approach used [42, 70]. On the other

hand, when the iterative acquisition scheme invokes ML decisions based on an NI -chip seg-

ment of the PN sequence received [43], the number of legitimate positions to be searched

within the uncertainty region of the CPA stage becomes one. In the SS-IA and TS-IA

scenarios we have ν = (
Tf

Tp
) and ν = (2

Tf

Tp
+ 1), because the former carries out simultaneous

TA and CPA, whereas in the latter a two-stage approach is used [42, 70]. By employing

the simplified MAT formula of Equation 5.34 and the above-mentioned ν values considered,

the corresponding four different MAT formulas may be expressed as:

E[TACQ](A) =
1

2
·(Tf

Tp
)·(2S − 1)·Ns· [Tf ], (5.35)

E[TACQ](B) =
1

2
·
[

2(
Tf

Tp
) + (2S − 1)

]

·2Ns [Tf ], (5.36)

E[TACQ](C) =
1

2
·
[

(
Tf

Tp
− 1)·(NI + NV IM )

]

+ (NI + NV IA) [Tf ], (5.37)

E[TACQ](D) =
1

2
·
[

2
Tf

Tp
2Ns

]

+ 2 [(NI + NV IA)] [Tf ], (5.38)

whereNs was defined as the number of chips over which the correlator output is accumulated

in the TA stage for the SDSS scheme of scenarios A,B and D. Furthermore NV is the number

of chips used for the verification mode, while IA represents the average number of iterations

and Tf is the basic unit of the MAT.

5.6.2 Multi-Path Scenario

In this section we consider two different schemes, which are (A) Single-Stage Random Search

(SS-RS) [5, 6, 45, 63] and (B) our novel proposed Two-Stage Iterative Acquisition (TS-IA).

Owing to the inherently low duty-cycle of the transmitted DS-UWB signals seen in Fig-

ures 5.10 and 5.13, the uncertainty region ν is increased by a factor of (
Tf

Tp
), because the

number of candidate frame timing instants to be searched is proportional to (
Tf

Tp
) [43]. More
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specifically, for SS-RS we have ν = (
Tf

Tp
)·(2S − 1). On the other hand, the iterative acquisi-

tion scheme invokes Maximum Likelihood (ML) decisions based on an NI -chip segment of

the PN sequence received [43], when considering the signal being present. In this scenario,

the number of legitimate timing positions to be searched within the uncertainty region of

the CPA stage becomes one. Hence only code phase estimation is required. Accordingly,

in the TS-IA scenario we have ν = ν|TA + ν|CPA = (2
Tf

Tp
+ 1) [42, 70]. For the sake of

simplifying our MAT formulation, a single hypothesis test per chip is assumed.

The analysis of random search based code acquisition stipulates no particular assumptions

regarding the arrival times of the multi-path components and hence can be applied to both

conventional wideband channel models and the IEEE 802.15.3a models. The H1 cells of

the random search are dispersed randomly among the H0 cells, hence the overall transfer

function may be derived by considering that when the process is located in a H0 cell, it

has a (1 − L/ν) probability of transitioning to a H0 cell in the next step and then a 1/ν

probability of transitioning to each of the L H1 cells. Accordingly, the transfer function

related to exiting an H0 cell is expressed as [63]

H0(z) = (PF z
K+1 + (1 − PF )z)·

[

(ν − L)

ν
H0(z) +

1

ν

L
∑

i=1

Hi(z)

]

, (5.39)

where Hi(z) represents the transfer function derived for exiting the ith H1 cell. On the

other hand, when the search is located in the ith H1 cell, it may move on to the acquisition

state having a probability of PDi, to a H0 cell having a probability of (1 − PDi)(1 − L/ν)

and to each of the remaining H1 cells having a probability of (1 − PDi)(1 − 1/ν). Hence,

the transfer function from the ith H1 cell is obtained as [63]

Hi(z) = PDiz + (1 − PDi)z·





(ν − L)

ν
H0(z) +

1

ν

L
∑

j=1

Hi(z)



 , i = 1, 2, ..., L. (5.40)

The transfer functions of Hi(z)s and H0(z) may be calculated by solving the (L + 1) equa-

tions derived from Equations 5.39 and 5.40, because the search has a (1 − L/ν) probability

of starting in a H0 cell and a 1/ν probability of commencing in each of the H1 cells. Hence

the effective transfer function leading to the acquisition state may be expressed as [63]

H(z) =
(ν − L)

ν
H0(z) +

1

ν

L
∑

i=1

Hi(z). (5.41)

By employing the derivative of Equation 5.41 multiplied by the integral dwell time, τ at

z = 1, it may be shown that the generalised MAT expression of the random search based
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code acquisition scheme is given by [63]:

E[TACQ]|(benchmarker) =
[PFK(ν − L) + ν]

∑L
l=1 PDl

· τ, (5.42)

where PF represents the false alarm probability of the SS-RS scheme employed, whilst K

denotes the false locking penalty factor expressed in terms of the number of chip intervals

required by an auxiliary device for recognising that the code-tracking loop is still unlocked.

Still considering Equation 5.42, L indicates the number of the multi-path components con-

sidered and τ indicates the integral dwell time over which the received samples are accu-

mulated during the correlation operation. When considering the multi-path components

delayed with respect to the LOS component, their Ec/I0 values are typically at least 3dB

lower. However, in order to analyse the attainable performance of the worst-case scenario,

it is assumed that all the 15 paths have equal power [91] in our analysis. We considered

the initial acquisition scenario, where only the timing of the strongest LOS or NLOS paths

must be acquired, but not those of the further delayed ones. Furthermore, the employment

of all the paths within 10 dB of the strongest path is feasible, when determining the number

of paths. The number of the paths in CM-2 was chosen to be L = 15 [62] in our analysis.

It is also reasonable to assume that the minimum Ec/I0 value required for finger-locking in

the initial acquisition is set to -12 and -15dB for the R = 1 and 4 scenarios, respectively

[43, 59].

Let us now investigate the attainable performance gain of our TS-IA arrangement. The

main advantage of using our two-stage scheme is to reduce the entire search space. In the

TA stage, our objective is to achieve a coarse timing of the received signal within a frame

duration. Hence the TA stage does not suffer from having an excessive uncertainty region

compared to SS-RS. When considering this reduced uncertainty region, we are capable of

selecting both a sufficiently high threshold value TTA and a sufficiently long accumulation

period, because even if both conditions may lead to increasing the achievable MAT having

a tight threshold value significantly decreases the false alarm probability. Therefore, at

a given minimum Ec/I0 value the value of PFK(ν − L) in Equation 5.42 may become

negligible. Finally, the MAT formula of Equation 5.42 is simplified as follows:

E[TACQ]|(TA)
∼= ν
∑L

l=1 PDl

· τ. (5.43)

When deriving the MAT formula of our proposed scheme, the presence of a false alarm

during the TA stage is directly related to the derivation of the MAT formula to be described

below during the CPA stage. However, based on the aforementioned conditions, the MAT
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formula of the TA stage in Equation 5.43 may be modified for characterising the MAT of the

CPA stage, as outlined below. In [59], the PD value of the verification was assumed to be 1.0,

..
Start Acquisition

PDZTD

PFZTF

PMZTM

Figure 5.18: State Diagram of CPA stage

but the authors of [59] did not elaborate on how the corresponding stage operates. However,

achieving PD ≈ 1 plays a pivotal role in deriving the MAT formula of the CPA stage, because

unless PD = 1 is ensured during each iteration, the corresponding transfer function exhibits

two branches corresponding to the correct detection and missed detection events. Hence, in

order to simplify our problem formulation, the value of NV in the verification is assigned to

be 1024 and 896 chips for the R = 1 and 4 scenarios, respectively. These values lead to PD

≈ 1 for Ec/I0 values in excess of the minimum required for finger-locking. Then, similarly to

the transfer function describing the state diagram of Figure 2 in [21], Figure 5.18 portrays

the state diagram of the CPA stage considered. The transfer function of the CPA stage

shown in Figure 5.18 is described as

U(Z) =
PDZ

TD

(1 − (PMZTM + PFZTF ))
(5.44)

=
PDZ

TD

(1 − PD)ZTM
, (5.45)

where TD represents the processing time of a correct detection event, PM is the missed

detection probability, TM denotes the processing time of a missed detection event and TF

represents the processing time for a false alarm event, which is also equivalent to the false

locking penalty time 8. There are some differences in our formulation compared to the

derivation of the MAT formula in a scenario supported by the transmission of a dedicated

8In conventional ML acquisition schemes [21], the false locking penalty time is expressed in terms of
the number of chip intervals required by an auxiliary device for recognising that the code-tracking loop is
still unlocked. Therefore, both the processing time based on a single hypothesis test and the penalty time
assigned are associated with the false alarm event. On the other hand, in our proposed scheme, a value of
TF is sufficiently high and hence after the processing time elapsed, we assumed that this hypothesis test
corresponded to a false alarm.
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acquisition preamble [21] as follows. First of all, there is no average reset time for a missed

detection, because a specific continuous pilot channel pattern is transmitted. Then, TF also

incorporates the false locking penalty factor during the CPA stage. Furthermore, the impact

of PF during the TA stage was eliminated and hence the PFZ
TF term in the denominator

of Equation 5.44 disappears, which was also described by an inner circle denoted by the

broken line in Figure 5.18. Then, by exploiting the well-known relationship of PD + PM +

PF = 1 [21, 43] associated with ML acquisition, the transfer function becomes dependent

upon PD only. The definitions of TD and TM are TD = (NI + NV ·IAD)(2Tf ) and TM =

(NI + NV ·IM )(2Tf ), respectively, where IAD represents the average number of iterations.

Setting the derivative of Equation 5.45 leads to the MAT formula of the CPA stage as

follows:

E[TACQ]|(CPA) =
dU(Z)

dZ
|Z=1 = TD +

(1 − PD)

PD
TM . (5.46)

Therefore, the corresponding MAT formulas of the TA and CPA stages in our TS-IA scheme

are constituted by Equations 5.43 and 5.46 9. The combined MAT formula of our proposed

two-stage scheme is expressed as

E[TACQ]|(TOT ) =
ν

∑L
l=1 PDl

· τ +

[

TD +
(1 − PD)

PD
TM

]

. (5.47)

Equation 5.47 will be exploited for the analysis of the achievable MAT performance in the

following chapter.

5.7 Chapter Summary and Conclusions

In this chapter, we have provided a detailed study of our proposed code acquisition schemes

designed for the SIMO aided DS-UWB DL. Following a brief introduction in Section 5.1, we

continued by describing the UWB channel model, which exhibits both large-scale and small-

scale fading. We have described the S-V model in Section 5.2. Then the preliminaries of code

acquisition designed for the DS-UWB DL were presented in Section 5.3. More specifically,

the characteristics of PN codes were highlighted in Section 5.3.1, followed by the detailed

calculation of modulo-2 squaring in Section 5.3.2, and by the in-depth illustration of the

SPA and offset-based MSA in Sections 5.3.3 and 5.3.4, respectively. In Section 5.3.5 the

9We briefly note that in Single-Stage Iterative Acquisition (SS-IA) [59] the exact MAT formula becomes
intractable owing to the presence of sparse clumps of multi-path components. However, if it is assumed that
the location of the multi-path components is spread uniformly across the entire uncertainty region, where ν

is defined as ν = (
Tf

Tp
), the value of ν is decreased by a factor given by the number of multi-path components

considered. Then, the MAT performance of SS-IA and TS-IA schemes can be roughly compared.
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decoding procedure of the iterative MP algorithm was elucidated in detail. We also showed

in Section 5.3.5 that the iterative acquisition scheme exploiting the characteristics of the

higher-order GPs further improved the attainable performance.

Both single-stage and two-stage iterative acquisition schemes were highlighted in Sec-

tions 5.4.1 and 5.4.2, respectively. More explicitly, in Section 5.4.1, single-stage iterative

acquisition employing both a single- and multiple-component decoder was described. In

Section 5.4.2, we proposed a search space reduction aided code acquisition scheme for the

sake of reducing the MAT, which employs the iterative MP technique. Then the underly-

ing formulas of both the correct detection and false alarm probabilities were presented in

Section 5.5 for the random search based code acquisition scheme, when considering both

the SISO and SIMO aided DS-UWB DL. The MAT analysis of our proposed schemes was

provided for both the SISO and SIMO aided DS-UWB DL in Sections 5.6.1 and 5.6.2, re-

spectively, when considering both single- and multi-path propagation environments. Finally,

in Section 5.7 our summary and conclusions were provided.

Based on the preliminaries of Sections 5.3 and 5.4, as well as on the formulae of Sec-

tions 5.5 and 5.6, in Chapter 6 the specific characteristics of our code acquisition schemes

will be analysed in both the SISO and SIMO aided DS-UWB DL.



Chapter 6

Performance of Code Acquisition

in the Co-located SIMO Aided

DS-UWB Downlink

6.1 Introduction

In this chapter, we will provide a quantitative performance analysis of our proposed iterative

code acquisition schemes in the co-located SIMO DS-UWB DL. In Section 6.2 we will outline

the system parameters used. Based on Sections 5.3, 5.4, 5,5 and 5.6, in Section 6.3 will

provide our system performance results. More explicitly, Based on the algorithms outlined in

Sections 5.3.4, 5.3.5 and 5.4.1, in Section 6.3.1, we will commence with the correct detection

versus SINR per chip performance analysis of the iterative acquisition schemes employing

a variety of GPs, different number of the receive antennas and different values of the chip-

duration NI . Then, the correct detection versus SINR per chip performance of multiple

component decoders will be characterised in Section 6.3.1. The conceptual description of

the message passing used in our proposed scheme will be offered in Section 6.3.1. Finally,

the correct detection probability versus false alarm probability behaviour of the random

search based scheme will be analysed in Section 6.3.1 based on the formulae provided in

Section 5.5. With the aid of Sections 5.4 and 5.6, Section 6.3.2 provides a discussion on the

MAT performance of both the initial and post-initial acquisition in the co-located SIMO

DS-UWB DL. Our conclusions will be provided in Section 6.4.
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6.2 System Parameters

In our analysis, we set S = 15, hence the total length of the PN sequence becomes (215 − 1)

[43]. Furthermore,
Tf

Tp
is set to 200 for the single-path scenario [59], where we have Tp =

500 ps and Tf = 100 ns, whilst
Tf

Tp
is set to 160 for the multi-path scenario [69], where

Tp = 500 ps and Tf = 80 ns [69] as defined in the context of Figures 5.10 and 5.14. It is

assumed that Tf is longer than the channel’s maximum delay spread [62, 69]. The time

separation between two successive cells is equal to Tp [69]. In our scenario, in order to

analyse the characteristics based on a sufficiently high number of multi-path components,

it is reasonable to assume that there are L = 15 paths arriving with a relative time delay

within Tf , which are assumed to have an equal magnitude 1. The measurements of DS-

UWB channels indicate that their fading amplitude does not obey a Rayleigh fading and

that either lognormal or Nakagami-m fading is considered to be a more accurate model

[62]. This is because the central limit theorem may become inapplicable for the relatively

high number of paths considered, which may result in effectively encountering an AWGN

channel. This assumption was considered in [43, 59] along with a specific case of Nakagami-

m fading. The maximum affordable number of iterations is considered to be IM = 15 [59].

Furthermore, NI is assumed to be 135, 512 and 1024, whilst the number of receive antennas

is assumed to be R = 1,2 and 4. In case of the single-path scenario, Ns and NV are assumed

to be 512. Based on our simulation results of the single-path scenario recorded at Ec/I0 =

−10 dB, we set IA = 3, where IA represents the average number of iterations. During the

TA stage of Figure 5.17 it was found to be sufficient to integrate the detector’s output over

Ns = 512 chips for both the R = 1 and 4 receive antenna scenarios, while the number of

chips over which the accumulator sums the |∑(·)| envelope detector’s output in the SS-RS

mode of our benchmarker is assumed to be 256 in both the R = 1 and 4 scenarios. The

false locking penalty factor of the benchmarker is assumed to be 2560 chip durations. When

considering the CPA stage of Figure 5.17, NI is assumed to be NI = 1024 or 512 chips in

the R = 1 and 4 scenarios, respectively. Furthermore, we assume NV = 1024 or 896 chips

in the R = 1 and 4 scenarios, respectively, because we should set NV to ensure that the

correct detection probability PD approaches 1.0 [59]. Furthermore, the highest GP orders

used are 7 and 6 for the R = 1 and 4 scenarios, respectively. The Spreading Factor (SF)

is set to SF = 128 [43]. The total uncertainty regions of the benchmarker and the TA

1The consideration of a specific root mean square delay spread value [62] is not necessary due to the
employment of our random search aided scheme, because the random search doe not employ any specific
parameters of the channel models except for the number of the multi-path components.
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Table 6.1: System Parameters
Impulse duration 500 ps

Frame duration 80 or 100 ns

Length of PN sequence 215 − 1

Number of receive
antennas

1,2,4

Number of paths
(Initial)

single and 15 path(s)

Number of paths
(Post-initial)

14 paths

Spreading factor 128

Maximum allowable number of
iterations

15

Average number of iterations in
single-path scenario at Ec/I0

3

Highest GP orders 7

Truncated PN sequence-
length

135,512 or 1024

Integration interval for the
verification mode

512,896 or 1024

Integration interval for the
TA stage

512

Integration interval for the
our benchmarkers (Single-
path scenario)

512

Integration interval for the
our benchmarker (Multi-
path scenario)

256

Integration interval for the
post-initial

256 or 384

Total uncertainty region
(Our benchmarker)

160 ∗ (215 − 1) hypotheses

Total uncertainty region
(TA stage)

320 hypotheses

Total uncertainty region
(Post-initial)

240 hypotheses

False locking penalty factor
(Initial)

2560 chip-durations

False locking penalty factor
(Post-initial)

2560 or 3840 chip-durations
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stage of our proposed scheme are assumed to entail 160 × (215 − 1) and 320 hypotheses,

respectively. All the MAT performance curves have been obtained at the threshold value

of Ec/I0 = -12 and -15 dB corresponding to the R = 1 and 4 scenarios, respectively. These

threshold values are considered as the minimum value required for reliable finger locking. In

case of the post-initial acquisition, the total uncertainty region is assumed to entail ±120,

which corresponds to a total of 240 hypotheses and L = 14 paths are considered. The false

locking penalty factors, K of the post-initial acquisition are assumed to be 2560 and 3840

chip durations corresponding to Ns = 256 and 384, respectively. The system parameters

employed are also summarised in Table 6.1.

6.3 System Performance Results

6.3.1 Correct Detection Probability

−8 −7.5 −7 −6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

SINR per chip (Ec/Io)

D
et

ec
tio

n 
P

ro
ba

bi
lit

y 
(P

d)

1
12
123
14
13
1234

Figure 6.1: Correct detection probability versus SINR per chip of the acquisition schemes
employing different GPs and R = 1, when considering NI = 135 and using the schematic
of Figure 5.11 and Table 6.1.

Figure 6.1 illustrates the PD versus Ec/I0 performance of the various combined GPs,

when considering NI = 135. Using NI = 135 leads to the employment of 4th order GPs.

Observe in Figure 6.1 that the Ec/I0 gain achieved by the GP combination of 13 and 14 is
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slightly higher than that of 123, where the beneficially combined GPs such as 1st and 3rd

order GPs are represented by the 13 GP constellation and the bold numbers indicate the

order of the individual component GPs. These findings suggest that using consecutive GP

orders - as in the 123 scheme - degrades the efficiency of the MP algorithm. For instance,

the joint employment of the GPs g1(D) = D15 +D+ 1 and g2(D) = D30 +D2 + 1 results

in a somewhat correlated pair of PN codes, which is associated with a regularly spaced

allocation of the connections between the CNs and VNs. More explicitly, the combination

of g1(D) and g2(D) may be expected to lead to a relatively localised set of P-C constraints,

consequently yielding a less beneficial regular - rather than random - PCM structure. This

trend suggests that the degree of correlation among the P-C constraints may be decreased

by using appropriately chosen GPs, such as 13 and 14. Finally, based on Figure 6.1 the

acquisition scheme employing the GPs 13 becomes our favourite choice for the R = 1

scenario, which is a benefit of the improved PD performance in comparison to other GP

combinations.
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Figure 6.2: Correct detection probability versus SINR per chip of the acquisition schemes
employing different GPs and R = 1, when considering NI = 512 and using the schematic
of Figure 5.11 and Table 6.1.

Figure 6.2 characterises the PD versus Ec/I0 performance of the various combined GPs,

when considering NI = 512. Observe in Figure 6.2, that the Ec/I0 gain achieved by the
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GP combination of 13 is almost similar to that of 123. Furthermore, as seen in Figure 6.2,

the gain achieved by the GPs 135 is better than that of 123. Again, these findings suggest

that using consecutive GP orders - as in the 123 scheme - degrades the efficiency of MP

algorithm. This trend manifests that the degree of correlation among the P-C constraints

may be decreased by using appropriately chosen GPs, such as 13. In contrast, employing

g1(D) = D15 + D + 1 and g4(D) = D120 + D8 + 1 results in a degraded performance,

because the number of P-C connections between the VNs and CNs is decreased by a factor

of (2n−1·S), n = 1,2,...,6, when the order of the GP is increased. Finally, based on Figure 6.2

the acquisition scheme based on the GPs 13 becomes our favourite choice for the R = 1

scenario, which is a benefit of the improved PD performance in comparison to other GP

combinations.
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Figure 6.3: Correct detection probability versus SINR per chip of the acquisition schemes
employing different GPs and R = 1, when considering NI = 1024 and using the schematic
of Figure 5.11 and Table 6.1.

Figure 6.3 illustrates the PD versus Ec/I0 performance of the various combined GPs,

when considering NI = 1024. Observe in Figure 6.3, that the Ec/I0 gain achieved by

the GP combination of 13 is slightly higher than that of 123. Furthermore, as seen in

Figure 6.3, the gain achieved by the GPs 135 is also better than that of 123. These

findings suggest that using consecutive GP orders - as in the 1234 scheme - degrades the
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efficiency of MP algorithm. This trend suggests that the degree of correlation among the

P-C constraints may be decreased by using appropriately chosen GPs, such as 13 and 135.

In contrast, employing g1(D) = D15 + D + 1 and g5(D) = D240 + D16 + 1 results in a

degraded performance, because the number of P-C connections between the VNs and CNs

is decreased by a factor of (2n−1·S), n = 1,2,...,7, when the order of the GP is increased.

Finally, based on Figure 6.3 the acquisition scheme based on the GPs 135 becomes our

favourite choice for the R = 1 scenario, which is a benefit of the improved PD performance

in comparison to other GP combinations.
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Figure 6.4: Correct detection probability versus SINR per chip of the acquisition schemes
employing a PP and R = 1,2,3 and 4, when considering NI = 512 and using the schematic
of Figure 5.11 and Table 6.1.

Figure 6.4 characterises the PD versus Ec/I0 performance of a PP aided decoder, param-

eterised with NI = 512 as well as R = 1,2,3 and 4. In comparison to the performance of

the GP 1 in Figure 6.3, the PD performance of the receiver having R = 1 antenna is 1dB

worse than that of NI = 1024. However, the attainable PD performance was improved by

up to 6 dB for R = 4 antennas. Furthermore, based on performance gains recorded for the

longer sequence, as described in Figure 6 of [43], further increasing the sequence length no

longer achieves further substantial performance gain. Hence the employment of multiple

receive antennas is essential for achieving a high performance, when using relatively short
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sequences. Figures 6.5 and 6.6 explicitly show the PD versus Ec/I0 performance of the
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Figure 6.5: Correct detection probability versus SINR per chip of the acquisition schemes
employing different GPs and R = 2, when considering NI = 512 and using the schematic
of Figure 5.11 and Table 6.1.

acquisition schemes using different GPs and R = 2 and 4, respectively, when considering NI

= 512. When using beneficially chosen GPs such as 13, an approximately 2.2 dB gain was

obtained compared to that of using GP 1. Accordingly, the employment of both multiple

receive antennas and beneficially chosen GPs leads to a combined gain of about 8.2 dB,

when employing R = 4. During the initial acquisition procedure, the receiver is capable of

maintaining a reliable operation, provided that finger-locking was achieved. This suggests

the achievable DS-UWB coverage extended by the proposed scheme.

In Figure 6.7, the PD versus Ec/I0 performance was recorded for the single-component

schemes 13, 135, 123 and 1234, as well as for the multiple-component decoders 13:135

and 1:13:135, where the value in ( ) represents the maximum affordable number of itera-

tions. Explicitly, 13:135(3:12) represents a multiple-component decoder, which activates

the acquisition schemes using the GPs 13 and 135 for a maximum of three and 12 iterations,

respectively. More specifically, the scheme employing the GPs 13 is activated up to three

times and, then the decoder exploiting the GPs 135 is enabled for up to 12 iterations. When

considering the multi-path components delayed with respect to the LOS components, their
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Figure 6.6: Correct detection probability versus SINR per chip of the acquisition schemes
employing different GPs and R = 4, when considering NI = 512 and using the schematic
of Figure 5.11 and Table 6.1.
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Figure 6.7: Correct detection probability versus SINR per chip of multiple component
decoders using the schematic of Figure 5.12 and Table 6.1.
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Figure 6.8: Relative complexity versus SINR per chip, when using the schematic of Fig-
ure 5.12 and Table 6.1.

Ec/I0 values are typically at least 3dB lower. Furthermore, some of the strongest LOS or

NLOS paths may have a 3 to 6dB higher signal strength than the remaining paths. We con-

sidered the initial acquisition scenario, where only the timing of the strongest LOS or NLOS

paths must be acquired, but not those of the further delayed ones. Hence, it is reasonable to

assume that the minimum Ec/I0 value required for finger-locking in the initial acquisition is

set to -12dB, where we have PD
∼= 0.94 [59]. Figure 6.7 suggests that the single-component

decoder denoted as 135(12) and three of the multiple-component decoders have a similar

PD performance. Hence we opted for using that particular decoder, which imposes the

lowest complexity. Figure 6.8 portrays the relative complexity versus Ec/I0 relationship for

the two single- and three multiple-component decoders. The complexity was defined as the

average number of iterations multiplied by the number of messages exchanged by the MP

algorithm. The relative complexity curves of Figure 6.8 were generated by evaluating and

plotting the complexity ratio, where the relative complexities of the five different types of

decoders were normalised by the complexity of the 135(15) scheme. Observe in Figure 6.8

that the 135(12) scheme exhibits a near-constant complexity, regardless of the Ec/I0 value.

Among the three multiple-component decoders the 13:135(3:12) arrangement imposes the

lowest complexity, indicating a complexity reduction of up to 30 % around Ec/I0 = -6dB.



6.3.1. Correct Detection Probability 222

Accordingly, we can strike an attractive trade-off between the best achievable performance

and the affordable complexity.
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Figure 6.9: Relationship between the number of P-C connections as well as the order of GP
relying on NI = 256, 512 and 1024, respectively

The left-hand illustration of Figure 6.9 portrays the relationship between the number

of P-C connections in the PCM as well as the order of the GP corresponding to NI =

256, 512 and 1024, respectively. By contrast, the illustration at the right of Figure 6.9

explicitly shows the number of P-C connections normalised by NI and recorded for the

three different lengths of NI = 256, 512 and 1024, respectively. Similarly to Figure 6.9,

Table 6.2 also characterises the relationship between the number of P-C connections in the

PCM and the order of the GP, where N1 represents the number of P-C connections in

the PCM when considering NI = 1024, whilst N2 is the number of P-C connections when

considering NI = 512. It is clearly shown in Figure 6.9 and Table 6.2 that the number of

P-C connections between the VNs and CNs is decreased by a factor of (2n−1·S), n = 1,2,...

when the GP order is increased. As an example, in the combined GPs of 135 designed for

NI = 1024 the number of P-C connections for 3rd order GP becomes 964, which is 94.14 %

of NI = 1024, whereas in case of 13 invoked for NI = 512 this becomes 452, which is 88.22

% of NI = 512. The best possible Ec/I0 gain can be obtained, when having a sufficiently

high number of P-C connections. Furthermore, when combining several GPs, we observed
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Table 6.2: Relationship between the number of P-C connections and the order of GP
corresponding to Figure 6.9

GP Order 0 1 2 3

Num. of Co. NI NI − S NI − 2S NI − 4S

N1 1024 1009 994 964

N1/NI 1 0.9854 0.9707 0.9414

N2 512 497 482 452

N2/NI 1 0.9707 0.9414 0.8828

GP Order 4 5 6 7

Num. of Co. NI − 8S NI − 16S NI − 32S NI − 64S

N1 904 784 544 64

N1/NI 0.8828 0.7656 0.5313 0.0625

N2 392 272 32

N2/NI 0.7656 0.5313 0.0625
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another dominant factor affecting the achievable performance. It is worth observing the MP

scheme of Figure 6.10 corresponding to each GP, characterising the specific relationships

among the GPs employed, where the GPs are g1(D) = D15 +D+1, g2(D) = D30 +D2 +1,

g3(D) = D60 +D4 +1, g4(D) = D120 +D8 +1 and g5(D) = D240 +D16 +1. For instance,

when replacing g1(D) by g2(D) in the top trace of Figure 6.10, the corresponding P-C region

in the PCM is increased by a factor of two, but g2(D) does not contribute independent P-

Cs in addition to those of g1(D) in the specific region of the PCM, where they overlap. In

contrast, when employing appropriately selected GPs, such as the GP combination of 13,

there is a twice larger region in the PCM compared to a case of 12, as described in the

bottom trace of Figure 6.10. Hence, it is surmised that the detrimental effects of having

correlated P-Cs may be considerably reduced. This trend clearly suggests that the degree

of correlation among the P-C constraints is decreased, when exploiting beneficially chosen

GPs such as 135. According to the results of Figures 6.1, 6.2, 6.3, 6.5, 6.6, 6.9 and 6.10 as

well as Table 6.2, both the combined GPs of 13 and 135 constitute an attractive tradeoff

between the detrimental effect of imposing correlation associated with the P-C regions in

the PCM and having a sufficiently high number of P-C connections for attaining the best

achievable PD as well as MAT performance. Hence, for the sake of achieving the best

possible PD performance, the employment of beneficially selected non-consecutive-order

GPs is recommended.

Figures 6.11 and 6.12 illustrate the correct detection versus false alarm probability, pa-

rameterised by both the number of receive antennas for R = 1 as well as 4 and the Ec/I0

value, when consideringNS = 512. The specific value of Ec/I0 is indicated in the parenthesis

next to the number of receive antennas such as R1 and R4 at the bottom right-hand corner

in both Figures 6.11 and 6.12. The three curves in Figure 6.11 were generated by using

Equations 5.29 and 5.30, whilst the other three curves seen in Figure 6.12 were generated

from Equations 5.31 and 5.32. The reliable operational range of the associated single-dwell

based schemes associated with the best possible MAT performance is around a false alarm

probability of 10−4, because a false alarm is expected to increase the MAT proportionately

to the corresponding false locking penalty factor. In case of Ec/I0 = -10dB, the R1 scenario

becomes capable of achieving a reliable performance, whilst the R4 requires Ec/I0 = -15dB.

Furthermore, when considering the random search technique of Section 5.6.2 for our bench-

marker and for the TA stage of our proposed scheme, a pair of PD and PF values generated

employing Equations 5.29, 5.30, 5.31 and 5.32 was used for calculating the achievable MAT

performance seen in Figures 6.11 and 6.12, since these values allowed us to minimise the
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Figure 6.11: Correct detection versus false alarm probability for R = 1, when considering
NS = 512 and employing Table 6.1.
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Figure 6.12: Correct detection versus false alarm probability for R = 4, when considering
NS = 512 and using Table 6.1.
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MAT.

6.3.2 Mean Acquisition Time Performance

Table 6.3: MAT performances of four different schemes considered at Ec/I0 = −10 DB
Schemes (A) SS-SDSS (B) TS-SDSS (C) SS-IA (D) TS-IA

MAT (Tf ) 1.68 ∗ 109 1.7 ∗ 107 8.69 ∗ 105 2.1 ∗ 105

In Table 6.3 the achievable MAT performance of the four different schemes of Section 5.6.1

is characterised at Ec/I0 = −10 dB. Figure 6.13 further illustrates the achievable MAT gain

at Ec/I0 = −10 dB, where the MAT values of the four different scenarios attained in a single-

path environment were normalised by the MAT of the SS-SDSS scheme in Section 5.6.1.

Observe in Figure 6.13 that the MAT performance of TS-SDSS scheme in Section 5.6.1 is

about two orders of magnitude better than that of the SS-SDSS scheme. Furthermore, when

considering our proposed TS-IA scheme, an almost four order of MAT improvement may be

achieved compared to that of the SS-SDSS arrangement. The TS-IA scheme also exhibits

an MAT reduction of up to 76 % at Ec/I0 = −10 dB against that of the SS-IA scheme.

Figures 6.14 and 6.15 elucidate the achievable MAT versus SINR per chip performance

of the TS-IA scheme employing beneficially chosen GPs for the R = 1 and 4 scenarios,

respectively. Observe in both Figures 6.14 and 6.15 that the MAT performance of our

proposed TS-IA scheme recorded in the multi-path scenario described in Section 5.6.2 is up

to 6200 times better than that of the SS-RS scheme. This suggests that more than three

orders of magnitude MAT improvements may be achieved compared to the MAT of the

SS-RS arrangement. The MAT performance of the CPA stage is up to about four as well

as seven times better than that of the TA stage for the R = 1 and 4 scenarios, respectively,

because a reliable but hence time-consuming verification test was used during the TA stage.

By contrast, during the CPA stage only correct code phase estimation was required. The

proposed scheme was shown to be capable of achieving an acceptable MAT performance

at the minimum Ec/I0 value required for reliable finger-locking in both the R = 1 and 4

scenarios, as evidenced by results of both Figures 6.14 and 6.15 2.

2We also briefly allude to the MAT performance comparison of our TS-IA and SS-IA schemes. Based
on Sections 5.6.2 and 6.2, when considering the achievable MAT performance at the minimum Ec/I0 value
required for reliable finger-locking, the approximate MAT formula of the most optimistic scenario based on
both PD = 1 and PF = 0, may become (4.3333TM + TD), where the uncertainty region ν|SS−IA becomes
(160/15) and the simple derivation of the MAT formula may be based on ν|SS−IA/2 [43]. The TS-IA scheme
exhibits an MAT reduction of around 80% at Ec/I0 = -12 and -15 dB corresponding to the R = 1 and 4
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Figure 6.13: MAT ratios of the schemes considered at Ec/I0 = −10dB using the schematic
of Figures 5.11 and 5.17 as well as Table 6.1.
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Figure 6.14: MAT versus SINR per chip performance of the two stage scheme employ-
ing beneficially chosen GPs and R = 1, when considering NI = 1024 and employing the
schematic of Figure 5.17 and Table 6.1.
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Figure 6.15: MAT versus SINR per chip performance of the two stage scheme employing
beneficially chosen GPs and R = 4, when consideringNI = 512 and employing the schematic
of Figure 5.17 and Table 6.1.
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Figure 6.16: An example of the post-initial timing acquisition in DS-UWB downlink
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In the DS-UWB DL, the main goal of the initial acquisition is to acquire a coarse timing of

any received signal path impinging at the receiver, because the DS-UWB channel exhibits a

number of multi-path components. The initial acquisition is required for both coarse timing

as well as for code phase alignment, since this timing information is used as that of the

reference finger in the Rake receiver. However, achieving accurate timing and code phase

alignment constitute a challenging problem owing to the extremely short chip-duration

[42, 43].

This leads to a huge search space represented as the product of two factors, namely

that of the number of legitimate code phases in the uncertainty region of the PN code

and the number of legitimate signalling pulse positions. This renders the problem of initial

acquisition critical. By contrast, the post-initial acquisition procedure that extracts the

accurate timing positions of the remaining delayed paths and identifies the appropriate paths

earmarked for processing by the MRC scheme of the Rake receiver has a major impact on the

performance of the Rake receiver [8]. There is a main difference between the initial and post-

initial acquisition procedures. Once the first Rake finger is synchronised, the uncertainty

region that has to be explored will be shrunk to ± ξ number of hypotheses surrounding

the specific time-instant, where the received path was found. This reduced interval will

be referred to as the ’reduced uncertainty region’, which will have to be explored after the

initial acquisition phase [7]. This search window width is also influenced by the dispersion of

the multipath propagation environment encountered. Figure 6.16 portrays the post-initial

timing acquisition scenario of the DS-UWB DL, assuming that the timing of the received

path was already acquired. The scenario portrayed in Figure 6.16 is based on Figure 5.1,

which describes the S-V UWB channel model. To elaborate a little further, Figure 6.16

encompasses four clusters, where each cluster has 10 resolvable multi-path components.

Figures 6.17 and 6.18 characterise the achievable MAT versus SINR per chip performance

of the post-initial acquisition scheme for the SS-RS scenario of Section 5.62 having R = 1

and 4, respectively. The MAT performances recorded in Figures 6.17 and 6.18 for R = 1

and 4 used N = 256 and 384. The employment of N = 256 is capable of satisfying the

reliable operation in the range of finger locking.

scenarios, respectively, in comparison to that of the SS-IA scheme.
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Figure 6.17: MAT versus SINR per chip performance of the post-initial acquisition scheme
for SS-RS having R = 1 scenario and using Table 6.1.
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Figure 6.18: MAT versus SINR per chip performance of the post-initial acquisition scheme
for SS-RS having R = 4 scenario and using Table 6.1.



6.4. Chapter Summary and Conclusions 231

6.4 Chapter Summary and Conclusions

In this chapter, we have analysed the performance of our proposed iterative acquisition

schemes in Figures 5.11, 5.12 and 5.17 of Section 5.4 in the co-located SIMO DS-UWB DL.

Our system parameters were provided in Section 6.2, followed by the analysis of the correct

detection versus SINR per chip performance of the iterative acquisition schemes employing

both single and multiple component decoder(s) in Section 6.3.1. This was followed in

Section 6.3.1 by a discussion of the message passing used in our proposed scheme. We also

analysed the correct detection probability versus false alarm probability performance of the

random search based scheme of Figures 6.11 and 6.12 in Section 6.3.1. Furthermore, we

investigated the MAT performance of both the initial and post-initial acquisition schemes in

Figures 6.13, 6.14, 6.15, 6.17 and 6.18 in the co-located SIMO DS-UWB DL in Section 6.3.2.

In order to highlight the main benefits of the proposed iterative acquisition schemes,

the most salient results are emphasised again in Figures 6.19 and 6.20. More specifically,
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Figure 6.19: Correct detection probability versus SINR per chip of the acquisition schemes
employing different GPs and R = 1, when considering NI = 1024 and using the schematic
of Figure 5.11 and Table 6.1.

Figure 6.19 illustrates the PD versus Ec/I0 performance of the various combined GPs,

when considering NI = 1024. Observe in Figure 6.19, that the Ec/I0 gain achieved by



6.4. Chapter Summary and Conclusions 232

the GP combination of 13 is slightly higher than that of 123. Furthermore, as seen in

Figure 6.19, the gain achieved by the GPs 135 is better than that of 123. These findings

suggest that using consecutive GP orders - as in the 1234 scheme - degrades the efficiency

of the MP algorithm. This trend suggests that the degree of correlation among the P-C

constraints may be decreased by using appropriately chosen GPs, such as 13 and 135. In

contrast, employing g1(D) = D15+D+1 and g5(D) = D240+D16+1 results in a degraded

performance, because the number of P-C connections between the VNs and CNs is decreased

by a factor of (2n−1·S), n = 1,2,...,7, when the order of the GP is increased. Finally, based

on Figure 6.19 the acquisition scheme using the GPs 135 becomes our favourite choice for

the R = 1 scenario, which is a benefit of its improved PD performance in comparison to

other GP combinations.
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Figure 6.20: MAT versus SINR per chip performance of the two stage scheme employing
beneficially chosen GPs and R = 4, when consideringNI = 512 and employing the schematic
of Figure 5.17 and Table 6.1.

Figure 6.20 elucidates the achievable MAT versus SINR per chip performance of the TS-

IA scheme employing beneficially chosen GPs for the R = 4 scenario. Observe in Figure 6.20

that the MAT performance of our proposed TS-IA scheme is up to about 6200 times better

than that of the SS-RS scheme. This suggests that more than three orders of magnitude

MAT improvements may be achieved compared to the MAT of the SS-RS arrangement.

The MAT performance of the CPA stage is up to about seven times better than that of the
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TA stage for the R = 4 scenario, because a reliable but hence time-consuming verification

test was used during the TA stage. By contrast, during the CPA stage only correct code

phase estimation was required. The proposed scheme was shown to be capable of achieving

an acceptable MAT performance at the minimum Ec/I0 value required for reliable finger-

locking in the R = 4 scenario, as evidenced by results of Figure 6.20.

The benefits of the iterative code acquisition schemes were analysed in terms of their

achievable PD and MAT performances. With the aid of the Tanner graph based structure

of MP seen in Figures 5.7 and 5.8 in Section 5.3.5, we found that in order to achieve the

best possible PD performance, the employment of beneficially selected non-consecutive-

order GPs is recommended, as evidenced by Figures 6.1, 6.2, 6.3, 6.5 and 6.6. We also

found that the employment of multiple receive antennas was essential for achieving a high

target performance, when acquiring the correct timing of the entire sequence by using a

relatively short segment of the sequence, as evidenced by Figures 6.4, 6.5 and 6.6. Moreover,

the employment of appropriately selected multiple-component decoders leads to the lowest

possible complexity, as characterised in Figures 6.7 and 6.8. Finally, it was explicitly shown

in Figures 6.13, 6.14 and 6.15 that our proposed TS-IA scheme is capable of reducing the

MAT by at least three orders of magnitude compared to the benchmark scenario considered.

This benefit facilitates its employment in a variety of applications associated with long PN

codes.



Chapter 7

Summary and Future Research

7.1 Summary

In the thesis we analysed the performance of serial search based code acquisition in the co-

located and cooperative MIMO aided SC- and MC-DS-CDMA DL. We also characterised

the performance of iterative code acquisition in the co-located MIMO aided DS-UWB DL.

The summary of each chapter is as follows:

Chapter 1

In this chapter, we have provided a brief overview of a range of code acquisition schemes.

We commenced the chapter with a brief classification of the family of the code phase acqui-

sition techniques and a generic structure of searcher and Rake receiver on the mobile station

in Section 1.1. Then we contrasted the code acquisition procedures of the DL and UL in

Section 1.2. This was followed by a discussion on various search strategies in Section 1.3.

The underlying serial search based code acquisition was presented in Section 1.3.1, followed

by the parallel search (maximum-likelihood) based code acquisition scheme in Section 1.3.2.

Then the set of known sequential estimation based code acquisition schemes were classi-

fied into four categories in Section 1.3.3, which includes rapid acquisition using sequential

estimation, recursion-aided RASE, majority logic decoding based RASE and recursive soft

sequential estimation. Finally, in Section 1.3.4, random search based code acquisition was

presented.

234
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We introduced a variety of widely used detector structures in Section 1.4. More specifi-

cally, NC code acquisition was highlighted in Section 1.4.1. Specifically, both a chip based-

DC detection scheme and a Full-Period Correlation (FPC) based DC detection scheme were

highlighted in Section 1.4.2. In Section 1.4.3, the concepts of both single-dwell and multiple-

dwell based techniques were presented. The widely-used post-detection integration concept

of practical code acquisition receivers was highlighted in Section 1.4.4. In Section 1.5, we

have briefly summarised the characteristics of various code acquisition schemes designed for

Multi-Carrier DS-CDMA systems. Then, code acquisition schemes designed for the DS-

UWB DL have been briefly presented in Section 1.6. We summarised the historic evolution

of sequential estimation based code acquisition as well as that of DC acquisition schemes

in Tables 1.1 and 1.2, respectively. Section 1.7 has briefly summarised Sections 1.1 to 1.6.

Then, in Section 1.8 the outline of the thesis was given. Figure 1.14 also classified the out-

line of the various schemes used in the following chapters. Finally, the novel contributions

of the thesis were summarised in Section 1.9.

Chapter 2

In this chapter, we have provided the preliminaries of serial search based code acquisition

schemes. Following a brief introduction in Section 2.1, we continued by describing our single-

and multi-path channel model, the fading conditions as well as the effects of both spatial

and inter-subcarrier fading correlation for our performance analysis provided in Section 2.2.

Furthermore, the four most wide-spread MIMO types were briefly summarised in Table 2.1.

It was noted that code acquisition schemes specifically designed for scenarios of both SDM

and Space-Time Coding MIMOs are considered.

Then the underlying formulae of both the correct detection and false alarm probabilities

were derived in Section 2.3 in a co-located MIMO element scenario. The Neyman-Pearson

criterion was introduced in Section 2.3.1, followed by the derivation of the decision variable

PDFs of a co-located MIMO aided NC code acquisition scheme designed for both the SC-DS-

CDMA and MC-DS-CDMA DL, when communicating over a spatially uncorrelated Rayleigh

channel in Section 2.3.2 in terms of using both a direct approach and a PDF based one. In

Section 2.3.3 the decision variable PDFs of a co-located MIMO aided DC code acquisition

scheme used for both the SC-DS-CDMA and MC-DS-CDMA DL, when communicating over

a spatially uncorrelated Rayleigh channel were investigated. Finally, the decision variable

PDFs of a cooperative MIMO aided NC code acquisition scheme designed for the SC-DS-

CDMA DL in Section 2.3.4 in terms of using a PDF based approach were derived. The MAT
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analysis of both SDSS and DDSS employed in our code acquisition schemes was provided for

both single- and multi-path scenarios in Section 2.4. The specific definition of Ec/I0 with

respect to a DS-CDMA system was introduced and then the in-depth relationship between

the Ec/I0 distribution and the number of users per sector was analysed in Section 2.5.

Finally, the chapter’s summary and conclusions were provided in Section 2.6.

Chapter 3

In this chapter, we have provided details of the performance analysis of serial search based

code acquisition in the co-located MIMO aided SC- and MC-DS-CDMA DL as well as of

the cooperative MIMO aided SC-DS-CDMA DL. We commenced the chapter by a brief

introduction in Section 3.1, followed by the correct detection versus false alarm probability

analysis of serial search based code acquisition employed in the co-located MIMO aided

SC-DS-CDMA DL in Section 3.2. This was followed by a discussion of both initial and post-

initial acquisition in the serial search based co-located NC MIMO aided SC-DS-CDMA DL

in Section 3.3. We analysed the performance of code acquisition in the co-located MIMO

aided MC-DS-CDMA DL in Section 3.4. Furthermore, we also investigated the performance

of code acquisition in the cooperative NC MIMO assisted SC-DS-CDMA DL in Section 3.5.

Finally, the chapter’s summary and our conclusions were offered in Section 3.6.

Throughout the above-mentioned sections covering serial search based code acquisition

in both the co-located MIMO aided SC- and MC- DS-CDMA DL, ironically, our findings

suggest that increasing the number of transmit antennas in a MIMO-aided SC-DS-CDMA

system results in combining the low-energy, noise-contaminated signals of the transmit an-

tennas. Furthermore, increasing both the number of transmit antennas and that of the

subcarriers in a co-located MIMO-aided MC-DS-CDMA system also results in combining

the low-energy, noise-contaminated signals of both the transmit antennas and the subcarri-

ers. This fact ultimately reduces the correct detection probability, and accordingly increases

the MAT by an order of magnitude, when the SINR is relatively low. However, it is ex-

tremely undesirable to degrade the achievable acquisition performance, when the system

is capable of attaining its target bit error rate performance at reduced SINR values. This

phenomenon also has a detrimental effect on the performance of Rake receiver based syn-

chronisation, when the perfectly synchronised system is capable of attaining its target bit

error rate performance at reduced SINR values, as a benefit of employing multiple transmit

antennas and/or frequency diversity. Hence it may be concluded that the achievable cell
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coverage determined by the received pilot channel power may be reduced, as the number

of transmit antennas is increased, which is a highly undesirable phenomenon, since it has

grave repercussions in terms of having to tolerate a high number of handovers per cell.

Based on the above-mentioned results justified by information theoretic considerations, our

acquisition design guidelines are applicable to diverse co-located NC MIMO aided scenarios.

In contrast to the detrimental effects of sharing the total transmit power across multiple

transmit antennas in the co-located and cooperative MIMO based scenarios in Sections 3.2

to 3.4, our findings suggest that employing distributed MIMO elements acting as RSs com-

bined with multiple receive antennas leads to an improved MAT performance. However,

these gains are only achievable, if the RSs can afford to contribute toward supplying the

extra power used in the ’increased-power-scenario’ of Section 3.5. By contrast, when having

a high link imbalance, only marginal MAT performance gains may be achieved, regardless

whether single-path or multi-path propagation scenarios are considered. Therefore, in or-

der to efficiently exploit the diversity benefits of RS-aided transmissions, the employment of

at least two RSs might be recommended. When additionally invoking multiple co-located

receive antennas at the MS, further diversity gains may be achieved.

Chapter 4

In this chapter, we have provided a detailed performance analysis of both DC and NC serial

search based code acquisition in the co-located MIMO aided both SC- and MC- DS-CDMA

DL. We commenced with a brief introduction in Section 4.1. We continued by characterising

the achievable performance of the code acquisition scheme in the co-located MIMO aided

SC-DS-CDMA DL in Section 4.2. This was followed by a discussion on the performance

of the code acquisition in the co-located MIMO aided MC-DS-CDMA DL in Section 4.3.

Finally, the chapter’s summary and our related conclusions were provided in Section 4.4.

Throughout the above-mentioned two topics discussed in the context of the DC serial

search based code acquisition in the co-located MIMO aided SC- and MC- DS-CDMA DL,

our findings suggest that increasing both the number of transmit antennas and that of the

subcarriers in a co-located MIMO-aided MC-DS-CDMA system results in combining the

low-energy, noise-contaminated signals of both the transmit antennas and the subcarriers.

Furthermore, the MAT performance degradation imposed by the DC scheme is less severe

than that of its NC counterpart. This fact ultimately reduces the correct detection prob-

ability, and accordingly increases the MAT by an order of magnitude, when the SINR is
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relatively low. It is extremely undesirable to degrade the achievable acquisition perfor-

mance, when the system is capable of attaining its target bit error rate performance at

reduced SINR values. This phenomenon also has a detrimental effect on the performance of

Rake receiver based synchronisation, when the perfectly synchronised system is capable of

attaining its target bit error rate performance at reduced SINR values, as a benefit of em-

ploying multiple transmit antennas and/or frequency diversity. Hence it may be concluded

that the achievable cell coverage determined by the received pilot channel power may be

reduced, as the number of transmit antennas is increased, which is a highly undesirable

phenomenon, since it has grave repercussions in terms of having to tolerate a high number

of handovers per cell. Furthermore, based on the above-mentioned results justified by infor-

mation theoretic considerations, our acquisition design guidelines are applicable to diverse

co-located DC MIMO aided scenarios.

Before providing guidelines for designing NC MIMO aided schemes, the characteristics of

NC MIMO aided code acquisition schemes are emphasised again in terms of the achievable

MAT performance.
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Figure 7.1: MAT versus Ec/I0 performance comparison between the NC-based DDSS and
SDSS code acquisition schemes parameterised with the number of transmit antennas, when
using the schematic of Figure 2.5 and Table 3.3.
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Figure 7.1 illustrates the attainable MAT versus Ec/I0 performance of the NC-based

DDSS and SDSS code acquisition schemes as a function of the number of transmit antennas

for P = 1, 2 and 4 as well as that of the number of receive antennas for R = 1. In the

results of Figure 7.1, the solid lines indicate the performance curves of the DDSS schemes,

whereas the dashed lines represent the performance curves of the SDSS schemes. Observe

in Figure 7.1 that as the number of transmit antennas is decreased, despite the potentially

reduced transmit diversity gain, we experience an improved MAT performance for the single-

path scenario of the SDSS scheme. Similarly to the conclusions of the SDSS scenario,

as the number of transmit antennas is decreased, all the curves seen in Figure 7.1 for

the single-path scenario of the DDSS scheme illustrate an improved MAT performance.

However, a useful transmit diversity gain is experienced only for the case of ′P2R1′, and

even this gain was limited to the specific SINR range of -4 and -11 dB. To illustrate the

above fact a little further, in the case of ′P2R1′ the DDSS scheme exhibits a better MAT

performance in comparison to the ′P1R1′ arrangement across the specific SINR range shown

in Figure 7.1. It is worth noting that the total uncertainty region of this scenario was

assumed to entail 65534 hypotheses for Figure 7.1. On the other hand, the total uncertainty

region was assumed to entail 512 hypotheses in both Figures 7.3 and 7.4, as a consequence

of the different PN code length. Accordingly, a better correct detection probability was

achieved owing to the beneficial transmit diversity gain found in terms of the achievable

MAT performance of Figure 7.1 in comparison to the results of both Figures 7.3 and 7.4.

This fact clearly implies that DDSS benefits from a significantly higher diversity gain than

SDSS. The performance degradation imposed by employing multiple antennas becomes

more drastic, as the number of transmit antennas is increased for both the SDSS and DDSS

schemes, since the length of coherent summation is highly limited by the clock-drift-induced

frequency mismatch. Furthermore, the associated MAT performance discrepancy between

the SDSS and DDSS schemes becomes more drastic.

Figure 7.2 illustrates the achievable MAT versus SINR per chip performance of the DDSS

code acquisition scheme parameterised with both the grade of link imbalance and with the

number of receive antennas for a single RS and a single propagation path, when consider-

ing the increased-power scenario. Observe in Figure 7.2 that when the link imbalance is

decreased, we experience an improved MAT performance. In the absence of link imbalance,

the MAT performance approaches that of having two receive antennas. On the other hand,

in case of having a 6 dB imbalance, only a marginal diversity gain is achieved, hence the

attainable MAT performance improvement also becomes negligible. The above-mentioned
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Figure 7.2: MAT versus SINR per chip performance of the code acquisition system for
DDSS parameterised with link imbalance and the number of receive antennas for one RS
and a single path (increased-power scenario), when employing the schematic of Figure 2.11
and scenarios of Figure 3.19 as well as Table 3.10.

conclusions explicitly demonstrate that employing a single RS is beneficial in terms of the

achievable MAT performance, and as expected, the achievable improvements depend on the

value of the link imbalance. However, employing a single RS cannot guarantee maintaining

a high diversity gain due to the fluctuation of the RS’s link quality.

Figure 7.3 illustrates the achievable MAT versus Ec/I0 performance comparison between

the DC- and NC-based SDSS code acquisition schemes parameterised with the number of

transmit antennas for U = 1 and U = 4 subcarriers, respectively. In the results of Fig-

ure 7.3, the solid lines indicate the performance curves of the DC-based SDSS scheme for

the U = 1 scenario, whilst the dashed lines represent the performance curves of the NC-

based SDSS scheme for the U = 4 scenario. It is worth mentioning that the operating range

of both the NC-based SDSS scheme observed for U = 1 and that of the DC-based SDSS

scheme recorded for U = 4 is between that corresponding to both schemes characterised in

Figure 7.3. However, for the sake of avoiding obfuscating points in the figure, they were

omitted. Similarly to the conclusions of the scenario of Figure 7.1, as the number of trans-

mit antennas is decreased, all the curves explicitly indicate an improved MAT performance,

except for the ′P2R1′ scenario of the DC-based SDSS scheme recorded for U = 1. To

elaborate on the above observations a little further, a useful transmit diversity gain is only
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experienced for the case of ′P2R1′ for the single-path scenario, and even this was limited

to the specific SINR range of -13 to -16 dB. In the case of the MC-DS-CDMA system, the

NC SDSS scheme characterised for U = 4 in Figure 7.3 benefits from a specific diversity

order, which is determined by the number of subcarriers used. It is also assumed that the

total transmitted energy per chip is the same in all the scenarios considered. Accordingly,

the achievable diversity order is determined by the product of the number of subcarriers

and that of the number of transmit antennas. This phenomenon indicates that the employ-

ment of MC transmissions leads to exactly the same detrimental effect on the achievable

MAT performance, as that imposed by employing multiple transmit antennas owing to the

reduced ’per-diversity-branch’ power, as further argued below. As the number of transmit

antennas is decreased, all the curves of the NC SDSS scheme plotted for U = 4 in Figure 7.3

exhibit an improved MAT performance. Furthermore, as a benefit of the inherent perfor-

mance gain of the DC scheme over the NC one, the overall MAT performance results for the

DC scenario of Figure 7.3 are significantly better than those of the NC arrangement. This

trend explicitly illustrates that the SDSS-aided MC-DS-CDMA code acquisition scheme

considerably degrades the achievable MAT performance of SC-DS-CDMA. This is a conse-

quence of both the low per-antenna power imposed by using multiple transmit antennas for

the sake of achieving either a transmit diversity gain or a multiplexing gain as well as that

of the low per-subcarrier power imposed by having multiple subcarriers in order to attain

a frequency diversity gain. A low level of per-branch and/or per-subcarrier received signal

strength is expected to result in a low acquisition performance, despite achieving a high

transmit- and frequency-diversity gain.

Figure 7.4 illustrates the achievable MAT versus Ec/I0 performance of the NCDC and

NCNC DDSS code acquisition schemes parameterised with the number of transmit anten-

nas for U = 1 and U = 4 subcarriers, respectively. In the results of Figure 7.4, the solid

lines indicate the performance curves of the NCDC DDSS scheme for the U = 1 scenario,

while the dashed lines represent the performance curves of the NCNC DDSS scheme for a

U = 4 scenario. More specifically, the acronym NCDC in Figure 7.4 indicates that both

the NC code acquisition aided system used in the search mode and the DC code acquisi-

tion assisted scheme employed in the verification mode are characterised for U = 1. By

contrast, the DDSS system denoted by the acronym NCNC in Figure 7.4 employs the NC

code acquisition aided scheme in both its search mode and verification mode for U = 4.

It is worth mentioning that the operating range of both the NCNC-based DDSS scheme

observed for U = 1 and that of the NCDC-based DDSS scheme recorded for U = 4 are in
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Figure 7.3: MAT versus Ec/I0 performance comparison between the DC- and NC-based
SDSS code acquisition schemes parameterised with the number of transmit antennas for
U = 1 and U = 4 subcarriers, respectively, when employing the schematic of Figure 4.14
and Table 4.4.

between that corresponding to both schemes of Figure 7.4. However, for the sake of avoiding

obfuscating points in the figure, they were omitted. Similarly to the conclusions drawn for

the scenarios of Figures 7.1 and 7.3, as the number of transmit antennas is decreased, all the

curves explicitly indicate an improved MAT performance, except for the ′P2R1′ scenario of

the NCDC-based scheme in the single-path propagation environment, as recorded for the

specific SINR range between -13 and -16 dB. To elaborate on the above observation a little

further, in the scenario of ′P2R1′ the DDSS scheme exhibits a slightly better MAT perfor-

mance in comparison to the ′P1R1′ scenario right across the specific SINR range considered.

The results seen in Figure 7.4 also suggest that the overall performance improvement of the

DC scheme in the verification mode is significantly higher than that of the DDSS assisted

NC scheme. The DC scheme has a performance gain of just under 3 dB over the NC

arrangement, when considering their correct detection probability and false alarm proba-

bility. Hence we conclude that the MAT performance curves confirm the expected trends.

Moreover, the DC scheme has an advantage over the NC one in the low SINR range [17]

in terms of reducing the effects of both the AWGN and interference. Hence, this indicates

that the MIMO-aided NCDC scheme experiences a lower MAT performance degradation
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owing to the reduced transmit power of the individual transmit antennas than its NCNC

counterpart. Furthermore, this result explicitly illustrates that the DDSS-assisted MC-DS-

CDMA code acquisition scheme considerably degrades the achievable MAT performance

of SC-DS-CDMA. Although the results of the DDSS scenarios characterised in Figure 7.4

exhibit a similar trend to those seen in Figure 7.3, the performance degradation imposed

by employing both multiple antennas and multiple subcarriers becomes more drastic in

Figure 7.3, when the number of transmit antennas is increased.
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Figure 7.4: MAT versus Ec/I0 performance comparison between the NCDC- and NCNC-
based DDSS code acquisition schemes parameterised with the number of transmit antennas
for ′U = 1′ and U = 4 subcarriers, respectively, when using the schematics of Figures 4.14
and 4.15 as well as Table 4.4.

The resultant relationship between the beneficial factors and detrimental factors govern-

ing the best attainable MAT performance of the co-located MIMO scenarios is depicted in

Figure 7.5. In this figure, the detrimental factors are classified according to the following

four categories: 1) Clock-drift-induced frequency mismatch, 2) Number of transmit anten-

nas, 3) Number of subcarriers and 4) Number of resolvable path1. On the other hand,

the beneficial factors are categorised according to the following three classes: 1) Length of

1For example, each of the two delayed paths arrived with a relative time delay of one chip and a 3 dB
lower magnitude for the first received path as well as 6 dB lower for both the second and the third received
paths, respectively, when compared to the LOS path of a single-path scenario. In other words, the total
power assigned to a single-path is exactly the same as that summed over three paths.
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1) Increased clock−drift−induced 
 frequency mismatch

4) Increased number of paths1

3) Increased mumber of non−LOS paths2

MAT performance degradation

MAT performance

MAT performance improvement 

Gaussian MAT−performance

Near−Gaussian MAT−performance on the fading channel

NC < DC

SDSS < DDSS

Schemes employed

Detrimental Factors (DF) Beneficial Factors  (BF)

1) Increased length of coherent summation
2) Increased number of receive antennas

2) Increased number of transmit antennas
3) Increased number of subcarriers

Figure 7.5: Relationship between beneficial factors and detrimental factors in order to
achieve the best attainable MAT performance of the co-located MIMO scenarios.

coherent summation, 2) Number of receive antennas and 3) Number of resolvable path2.

Both NC < DC and SDSS < DDSS seen in the lower half circle situated below the abscissa

of Figure 7.5 indicate that the more sophisticated DDSS and/or DC schemes are capable

of providing further MAT performance in comparison to using SDSS and/or NC schemes.

By optimising the corresponding system parameters a near-Gaussian MAT-performance

may be achievable. However, the inherently detrimental factors nonetheless limit the best

attainable MAT performance. The term Gaussian MAT-performance is used as the best

attainable reference, when communicating over an AWGN channel. The normalised-power

scenarios of the cooperative MIMO arrangement also exhibit similar trends to those of the

co-located MIMOs.

In contrast to the detrimental effects of sharing the total transmit power across multiple

transmit antennas in the co-located and cooperative MIMO based scenarios, the resultant

relationship between the beneficial factors and detrimental factors governing the best at-

tainable MAT performance for the increased-power scenario of the cooperative MIMOs is

portrayed in Figure 7.6. In this figure, the detrimental factors are classified according to the

following three categories: 1) Clock-drift-induced frequency mismatch, 2)The grade of link

2For instance, each of the three paths arrives with a relative time delay of one chip with respect to the
previous one and has the same magnitude for the first received path as the single-path channel, as well as 3
dB lower for the second and 6 dB lower for the third received paths, respectively. The total power assigned
to a single path is less than that accumulated over three paths.
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Figure 7.6: Relationship between beneficial factors and detrimental factors in order to
achieve the best attainable MAT performance for the increased-power scenario of the coop-
erative MIMOs.

imbalance and 3) Number of resolvable path3. On the other hand, the beneficial factors are

categorised according to the following four classes: 1) Length of coherent summation, 2)

Number of relay stations, 3) Number of receive antennas and 4) Number of resolvable path4.

SDSS < DDSS seen in the lower half circle situated below the abscissa of Figure 7.6 indicate

that the more sophisticated DDSS scheme is capable of providing further MAT performance

improvements in comparison to the SDSS scheme. By optimising the corresponding system

parameters a near-Gaussian MAT-performance may be achievable. However, the inherently

detrimental factors nonetheless limit the best attainable MAT performance. The termi-

nology of Gaussian MAT-performance is used to indicate the best attainable performance

reference, when communicating over an AWGN channel.

Guidelines for Designing NC MIMO Aided Schemes

3For example, each of the two delayed paths arrived with a relative time delay of one chip and a 3 dB
lower magnitude for the first received path as well as 6 dB lower for both the second and the third received
paths, respectively, when compared to the LOS path of a single-path scenario. In other words, the total
power assigned to a single-path is exactly the same as that summed over three paths.

4For instance, each of the three paths arrives with a relative time delay of one chip with respect to the
previous one and has the same magnitude for the first received path as the single-path channel, as well as 3
dB lower for the second and 6 dB lower for the third received paths, respectively. The total power assigned
to a single path is less than that accumulated over three paths.
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Based on this treatise, the following conclusions for the co-located MIMO scenarios may be

inferred:

1) In general, coherently detected space-time transmission schemes benefit from having

explicit knowledge of the CIR. However, this is unavailable during the code-acquisition

phase.

2) Using multiple transmit antennas typically leads to an MAT performance degradation,

owing to the reduced per-antenna power, except for specific scenarios, when encountering

a single-path environment, also depending on the allocated bandwidth. In the multi-path

scenarios considered all the schemes fail to show a transmit diversity gain. Therefore,

during code acquisition activating only a single transmit antenna might be recommended

for the sake of maximising the achievable MAT performance of the code acquisition scheme

investigated.

3) Using a relatively low number of chips, over which integration or accumulation is carried

out imposes further limits on the attainable benefits of MIMO aided schemes [112, 113],

as evidenced by all the figures associated with both the MAT performance and the correct

detection probability in Chapters 3 and 4.

4) Employing the more sophisticated DDSS and/or DC schemes may provide a rather

limited further diversity gain in comparison to using SDSS and/or NC schemes, as suggested

by all the figures associated with the MAT performance in Chapters 3 and 4.

5) Exploiting multiple receive antennas increases the achievable receiver diversity gain

and has the potential of compensating for the MAT degradation imposed by the low per-

branch power of both multiple transmitters and multiple subcarriers, as suggested by all

the figures associated with the MAT performance in Chapters 3 and 4.

6) Since no channel coding is used for the pilot signal, no time diversity gain associated

with interleaving and channel coding can be achieved [124]. However, the MIMO aided code-

acquisition schemes are only capable of achieving a rather limited time diversity, namely,

using a sufficiently high number of PDI stages is also available for minimising MAT [3, 45].

7) When the detection threshold θ2 of Figure. 4.2 is reduced, the resultant code phase

estimate often cannot be confirmed by the verification stage of Figure. 4.2 and hence the

false alarm probability is increased. At the same time, the correct detection probability

is also increased. However, when aiming for the best achievable MAT performance, the
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detection threshold optimisation has to strike a balance between increasing the false alarm

probability and the correct detection probability, because after a false alarm event the

system may require 1000 chip-durations to return to its search mode.

8) The effect of using a pair of fixed thresholds of θ1 and θ2 in Figure. 4.2, which are

optimised for a specific Ec/I0 value also limits the attainable MAT performance, since the

acquisition threshold should be optimised and controlled as a function of the Ec/I0 value

encountered.

9) For the sake of acquiring the exact timing information of the received paths without

any potential performance degradation that might be imposed on the NC MIMO aided

scenarios, specifically designed preambles, such as that of the P-SCH of W-CDMA [115]

combined with TSTD [116] might be recommended, which is capable of achieving a diversity

gain with the aid of a single transmit antenna [113, 114]. In practical scenarios, the received

path timing differences of the signals arriving from multiple transmit antennas might be

distributed within a fraction of a chip duration [117], although they may vary owing to the

time-variant propagation delay, hence using multiple transmit antennas may degrade the

performance further. In addition to initial acquisition, the classic pilot channel may also be

used for other purposes, such as frequency error correction and channel estimation so as to

support coherent MIMO aided scenarios [118].

Furthermore, the following conclusions may be inferred for the cooperative MIMO sce-

narios:

1) Sharing the total transmit power across multiple transmit antennas in the co-located

and cooperative MIMO based scenarios leads to similarly detrimental effects.

2) Employing multiple relay stations increases the achievable transmitter diversity gain,

as suggested by all the figures associated with the MAT performance in Chapter 3.

3) The value of link imbalance gravely affects the achievable MAT performance. When

having a high link imbalance, only marginal MAT performance gains may be achieved,

regardless whether single-path or multi-path propagation scenarios are considered. There-

fore, in order to efficiently exploit the diversity benefits of RS-aided transmissions, the

employment of at least two RSs might be recommended.

4) When additionally invoking multiple co-located receive antennas at the MS, further

diversity gains may be achieved.
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Chapter 5

In this chapter, we have provided a detailed study of our proposed code acquisition schemes

designed for the SIMO aided DS-UWB DL. Following a brief introduction in Section 5.1, we

continued by describing the UWB channel model, which exhibits both large-scale and small-

scale fading. We have described the S-V model in Section 5.2. Then the preliminaries of code

acquisition designed for the DS-UWB DL were presented in Section 5.3. More specifically,

the characteristics of PN codes were highlighted in Section 5.3.1, followed by the detailed

calculation of modulo-2 squaring in Section 5.3.2, and by the in-depth illustration of the

SPA and offset-based MSA in Sections 5.3.3 and 5.3.4, respectively. In Section 5.3.5 the

decoding procedure of the iterative MP algorithm was elucidated in detail. We also showed

in Section 5.3.5 that the iterative acquisition scheme exploiting the characteristics of the

higher-order GPs further improved the attainable performance.

Both single-stage and two-stage iterative acquisition schemes were highlighted in Sec-

tions 5.4.1 and 5.4.2, respectively. More explicitly, in Section 5.4.1, single-stage iterative

acquisition employing both a single- and multiple-component decoder was described. In

Section 5.4.2, we proposed a search space reduction aided code acquisition scheme for the

sake of reducing the MAT, which employs the iterative MP technique. Then the underly-

ing formulas of both the correct detection and false alarm probabilities were presented in

Section 5.5 for the random search based code acquisition scheme, when considering both

the SISO and SIMO aided DS-UWB DL. The MAT analysis of our proposed schemes was

provided for both the SISO and SIMO aided DS-UWB DL in Sections 5.6.1 and 5.6.2, re-

spectively, when considering both single- and multi-path propagation environments. Finally,

in Section 5.7 the chapter’s summary and our conclusions were provided.

Chapter 6

In this chapter, we have analysed the performance of our proposed iterative acquisition

schemes of Section 5.4 in the co-located SIMO DS-UWB DL. Our system parameters were

provided in Section 6.2, followed by the analysis of the correct detection versus SINR per

chip performance of the iterative acquisition schemes employing both single and multiple

component decoder(s) in Section 6.3.1. This was followed in Section 6.3.1 by a discussion

of the message passing in our proposed scheme. We also analysed the correct detection

probability versus false alarm probability performance of the random search based scheme

in Section 6.3.1. Furthermore, we investigated the MAT performance of both the initial
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and post-initial acquisition schemes in the co-located SIMO DS-UWB DL in Section 6.3.2.

Finally, in Section 6.4 our chapter’s summary and conclusions were offered.

In order to highlight the main benefits of the proposed iterative acquisition schemes, the

most salient results are emphasised again in Figures 7.7 and 7.8. More specifically, Figure 7.7
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Figure 7.7: Correct detection probability versus SINR per chip of the acquisition schemes
employing different GPs and R = 1, when considering NI = 1024 and using the schematic
of Figure 5.11 and Table 6.1.

illustrates the PD versus Ec/I0 performance of the various combined GPs, when considering

NI = 1024. Observe in Figure 7.7, that the Ec/I0 gain achieved by the GP combination of

13 is slightly higher than that of 123. Furthermore, as seen in Figure 7.7, the gain achieved

by the GPs 135 is better than that of 123. These findings suggest that using consecutive

GP orders - as in the 1234 scheme - degrades the efficiency of MP algorithm. This trend

suggests that the degree of correlation among the P-C constraints may be decreased by using

appropriately chosen GPs, such as 13 and 135. In contrast, employing g1(D) = D15+D+1

and g5(D) = D240 +D16 +1 results in a degraded performance, because the number of P-C

connections between the VNs and CNs is decreased by a factor of (2n−1·S), n = 1,2,...,7,

when the order of the GP is increased. Finally, based on Figure 7.7 the acquisition scheme

based on the GPs 135 becomes our favourite choice for the R = 1 scenario, which is a

benefit of the improved PD performance in comparison to other GP combinations.
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Figure 7.8: MAT versus SINR per chip performance of the two stage scheme employing
beneficially chosen GPs and R = 4, when consideringNI = 512 and employing the schematic
of Figure 5.17 and Table 6.1.

Figure 7.8 elucidates the achievable MAT versus SINR per chip performance of the TS-IA

scheme employing beneficially chosen GPs for the R = 4 scenario. Observe in Figure 7.8

that the MAT performance of our proposed TS-IA scheme is up to about 6200 times better

than that of the SS-RS scheme. This suggests that more than three orders of magnitude

MAT improvements may be achieved compared to the MAT of the SS-RS arrangement.

The MAT performance of the CPA stage is up to about seven times better than that of the

TA stage for the R = 4 scenario, because a reliable but hence time-consuming verification

test was used during the TA stage. By contrast, during the CPA stage only correct code

phase estimation was required. The proposed scheme was shown to be capable of achieving

an acceptable MAT performance at the minimum Ec/I0 value required for reliable finger-

locking in the R = 4 scenario, as evidenced by results of Figure 7.8.

The benefits of the iterative code acquisition schemes were analysed in terms of the

achievable PD and MAT performances. With the aid of the Tanner graph based structure of

MP seen in Section 5.3.5, we found that in order to achieve the best possible PD performance,

the employment of beneficially selected non-consecutive-order GPs is recommended. We

also found that the employment of multiple receive antennas was essential for achieving a
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high target performance, when acquiring the correct timing of the entire sequence by using

a relatively short segment of the sequence. Moreover, the employment of appropriately

selected multiple-component decoders leads to the lowest possible complexity. Finally, it

was explicitly shown that our proposed TS-IA scheme is capable of reducing the MAT by

at least three orders of magnitude compared to the benchmark scenario considered. This

benefit facilitates its employment in a variety of applications associated with long PN codes.

7.2 Future Research

In future mobile communication systems a variety of multimedia mobile devices will be

available. Due to its typically small size, a mobile phone usually has a single receive antenna,

but using two λ/2-spaced receive antennas is feasible. On the other hand, a vehicle is

capable of accommodating a high number of co-located MIMO elements in order to achieve

more reliable data detection. A co-located eight-by-eight antenna MIMO aided mobile

system referred to as the WIreless BROadband (WIBRO) system [156] has been developed

and deployed in 2006. Therefore the number of co-located MIMO elements might range

from a single antenna to eight antennas. This fact definitely leads to different cell sizes,

depending upon the number of the co-located MIMO elements. Furthermore, initial and

post-initial acquisition associated with both NC and DC schemes employing co-located

multiple transmit antennas suffer from an acquisition performance degradation in the middle

to low SINR range, as argued in Chapters 3 and 4. As an example, a scenario of employing

four co-located transmit antennas and a single receive antenna results in a considerably

reduced cell size, over which reliable serial search based code acquisition can be attained,

as evidenced in both Chapters 3 and 4. The size of the cell is limited, because the increased

number of the co-located MIMO elements results in a reduced per-antenna power in terms

of both the NC and DC schemes, even for the idealised coherent schemes, when using a

single receive antenna. As a potential solution, transmitting an unmodulated pilot preamble

or uniquely designed pilot preamble is feasible in order to exploit the inherent advantages

of NC co-located MIMO systems.

Recently, various cooperative and RS-aided transmission schemes have been proposed.

Sharing the total transmit power across multiple transmit antennas in the co-located and

cooperative MIMO based scenarios leads to the same detrimental effects. However, employ-

ing multiple RSs increases the achievable transmitter diversity gain, as suggested by all the
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figures associated with the MAT performance in Chapter 3. Even though the degree of link

imbalance is is highly associated with the achievable MAT performance, the employment of

at least two RSs might result in the efficient diversity benefits of RS-aided transmissions,

regardless whether single-path or multi-path propagation scenarios are considered.

The research of UWB systems has recently attracted a significant interest in both the

academic and industrial community. The emerging UWB systems are capable of supporting

both wireless personal computers and home entertainment equipment, both requiring high

data rates. DS-UWB techniques are characterised by low-duty-cycle pulse trains having

a very short impulse duration, because the high bandwidth results in a fine resolution of

the timing uncertainty region. In the DS-UWB DL, initial acquisition is required for both

coarse timing as well as for code phase alignment and both of these constitute a challenging

problem owing to the extremely short chip-duration. This leads to a huge search space

size, which is represented as the product of the number of legitimate code phases in the

uncertainty region of the PN code and the number of legitimate signalling pulse positions.

In order to mitigate the problem regarding the huge search space in the initial acquisition

of the DS-UWB DL, the employment of beneficially selected non-consecutive-order GPs is

recommended. Furthermore, our proposed TS-IA scheme is capable of reducing the MAT

by at least three orders of magnitude compared to the benchmark scenario considered, as

evidenced in Chapter 6. This benefit facilitates its employment in a variety of applications

associated with long PN codes.

However, there are still idealised assumptions in our investigations of the co-located SIMO

aided DS-UWB acquisition scenarios. Our future research will focus on specifically design-

ing iterative LDPC-like acquisition schemes for both the co-located and cooperative MIMO

aided DS-UWB acquisition systems [42] for the sake of improving the performance of our

proposed iterative acquisition schemes. The following techniques may be taken into account:

(1) The characteristics of iterative acquisition schemes being analysed using EXtrinsic

Information Transfer (EXIT) band chart [157, 158];

(2) Iterative acquisition based upon the characteristics of LDPC codes employing the novel

concepts of the protograph [159, 160] and factor graph [161];

(3) The analysis of iterative acquisition in cooperative MIMO aided DS-UWB DL scenar-

ios [84];
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(4) The performance investigation of the iterative acquisition based on the Nakagami-m

distribution using various values of m [62].

(5) Investigations for finding methods showing a better performance than using random

search based methods [42];
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