
Developing a Framework to Implement Public Key Infrastructure Enabled
Security in XML Documents

Fawaz Alvi Shakeel A. Khoja Zohra Jabeen
Graduate Student Assistant Professor Graduate Student
SSUET, Karachi KIIT, Karachi SSUET, Karachi

Abstract: This paper concentrates on
proposing a framework to implement the PKI
enables security in XML documents, by defining
a common framework and processing rules that
can be shared across applications using common
tools, avoiding the need for extensive
customization of applications to add security.
The Framework reuses the concepts, algorithms
and core technologies of legacy security systems
while introducing changes necessary to support
extensible integration with XML. This allows
interoperability with a wide range of existing
infrastructures and across deployments.
Currently no strict security models and
mechanisms are available that can provide
specification and enforcement of security policies
for XML documents. Such models are crucial in
order to facilitate a secure dissemination of XML
documents, containing information of different
sensitivity levels, among (possibly large) user
communities.
Keywords: XML, Web Services, Security, Public
Key Infrastructure

1.0 Introduction
Recent advancement in XML and increasing use
of World Wide Web allow users to use internet
as a document sharing and hosting system, with
certain security features. XML is becoming most
prevalent means through which documents and
data are encoded for distribution among users on
the web. At the network and document security
front, older security models, such as
public/private key encryption model, do provide
a set of core security algorithms and technologies
that can be used as a wrapper over XML
document, but don’t allow working within the
document itself and managing the contents.
Along with, these standards were not designed to
support common XML technical approaches for
managing content, such as specifying content
with uniform resource identifier strings or using
other XML standard definitions for providing
hyperlink services within XML content [1].

The best-known simplicity of XML is to provide
portability of data between disparate business
systems contrasts with the complexity of
traditional and very structured Public-Key

Infrastructure (PKI). A key architectural goal in
the XML Key Management Specification
(XKMS) is to shield XML application
developers from the complexity of PKI
implementation. It enables XML-based systems
to rely on complex trust relationships without the
need for specialized end-entity PKI application
logic on the client platforms where XML
processing is taking place, thus reducing
overheads.

To be able to understand the technology behind
XML security there is a necessity of explaining
some fundamental definitions. The second
section of this paper defines some explanations
of security and then the rest of the sections define
the proposed framework to implement security in
XML documents.

2.0 Traditional techniques used for
security of XML applications

There are various techniques that are being used
to secure applications that are using XML as
storage or communication medium. All these
techniques are wrapped over a XML document to
provide security features and none of them can
be embedded within the document.

Securing a XML document with SSL/IPsec is the
common way to provide security [2]. SSL uses
handshake to authenticate a requester and
responder with help of certificates. It also
encrypts the exchanged data. SSL can only
authenticate and encrypt a communication
between two points. Requesting and responding
to a XML based web service often takes more
routes than just one, providing an adequate
solution if the route of the message is known in
advance, but this is often not the case.
Additionally, SSL only protects the
communicated data during its transmission. Once
the data arrives to the end point, the end host has
to use other techniques to maintain the security.

For example if to points (A and D) with two
intermediate points (B and C) want to
communicate with each other, A has to go throw
B and C in order to get to D. In this case it
cannot use SSL to authenticate itself and D, since
SSL can only authenticate between two points. It

could use encryption, but this requires
intermediates B and C to be able to encrypt and
decrypt the messages in order to be able to
process them. Another problem with the SSL
techniques for XML Web services is that SSL
authentication and encryption consume a large
amount of CPU time and consequently the
transaction process is slowed down. Imagine how
slow and laborious it would be for a server, to
process several requests at the same time. A
consequence of the above mentioned security
lacks could is that exchanged messages get easier
to copy.

IPsec is a secure format of IP. It consists of two
parts, AH (Authentication header) for
authentication and ESP (Encapsulating security
payload) for encryption. IPsec is intended to
provide authentication, integrity and
confidentiality. This technique provides message
integrity, signature and encryption of exchanged
data, but lacks videlicet point to point
authentication and the possibility to crypt and
sign selective parts [2,3].

HTTPR is a protocol for the reliable transport of
messages from one application program to
another over the Internet, even in the presence of
failures either of the network or the agents on
either end. Traditional HTTP is a very insecure
protocol, for instance it never insures the
exchanged data to reach its destination. In order
to secure exchanging, the protocol has to
implement SSL or rely on underlying protocols.
Therefore an effort was made to create a new
more secure version of HTTP, called HTTPR [5].
HTTPR applies rules to make sure that all
exchanged messages get to their target once and
in the original form. If a message does not get to
the target, HTTPR notifies the sender that the
message was not received, and if a message is
received more then once, only the first instance is
retained. HTTPR provides definitions about how
to encapsulate a HTTP payload. To achieve the
same benefits as HTTPS, there is a mixed
version of HTTPR and HTTPS called, HTTPSR.

IP blocking is another method to provide
security. The users and their rights are restricted
by checking the IP address, where they are
coming from. The web service provider can
maintain a list with IP addresses, from which
requests are valid. The provider compares the
users IP address with the list. A problem occurs
with this technique when the IP list grows
phenomenally huge and becomes very difficult to
maintain. Sometimes unauthorized access can
also be obtained through IP spoofing.

With the help of XML signatures, one can sign
only desired parts of an XML document. With
the help of XML encryptions, one can also
asymmetrically/symmetrically encrypt parts of
an XML document. XML signatures become
useful in the cases where a part of system needs
to be protected and other parts are kept open to
public.

XML signature contains information about used
signature techniques such as hashing and
encryption algorithms. With this technique,
assurance is granted that data has not been
changed. XML Signatures differs from ordinary
checksums, through association between the
signature and the key. XML Signatures can be
done in three ways i.e.

• to reside the signed data inside the
signature

• opposite to the above, the signature
resides inside the signed data

• Both the signed data and signature
resides a different XML file [4].

3.0 XML encryption techniques
XML encryption ensures that data cannot be read
by unauthorized users. Unlike SSL, this
technique enables the data to be protected both in
transport and on the user’s computers. This
specification gives guidelines about algorithms,
key information etc. XML encryption can use
both symmetric and asymmetric keys, but more
widely symmetric since these techniques are less
CPU intensive and are therefore more suitable
for larger data exchange.

XML Key Management Specification (XKMS)
To be able to use PKI, a system that can handle
certificates and keys must exist. XML version of
PKI handling is called XKMS (XML Key
Management Specification). XKMS gives
guidelines on how to integrate keys, certificates
with applications and guidelines about
registration, revocation and updates. XKMS uses
SOAP over an HTTP based network. XKMS
consists of three parts, i.e. X-KISS (XML Key
Information Service Specification), X-KRSS
(XML Key Registration Service Specification)
and Protocol binding specification [5,9].

In order to achieve high security these standards
need to be used in conjunction. An XML
encryption must be able to use signatures or else
the sender cannot be trusted and the XML
signature has to use XKMS to handle keys that
are exchanged. An important issue to be
considered concerning XML encryption and
signatures is that, these techniques are new and

there is not an implemented prototype using
these techniques.

SAML and XACML
SAML (Security Assertion Markup Language) is
a standard that gives recommendation about how
security information should be exchanged, using
Internet. SAML gives guidelines on assertions to
request and response messages in order to
provide authentication and authorization. SAML
shows how single sign on can be achieved when
several web services are interacting. This means
that a web service does not need to authenticate
itself every time it needs a further web service, it
can authenticate itself towards a trusted web
service and delegate that it is authenticated when
requesting for usage of other Web services.
SAML can provide these adding XML
assertions. SAML, like vice Ws security, uses
techniques such as XML signature and
encryptions.

XACML is a set of rules of how authorization
over the internet should take place. XACML
defines the representation for rules that specify
the who, what, when and how of information
access. XACML can be considered as a
complementary to SAML. When a web service
finds a SAML element in the XML document, it
processes the request by checking its XACML
policy through PRP (Policy Retrieval PDP).

SOAP-Sec
SOAP, the Simple Object Access Protocol, is
XML syntax for exchanging messages. SOAP is
both language and platform independent. SOAP
uses the same port as HTTP, and is therefore a
common used protocol for exchanging data
between networks. Since SOAP messages
consists of XML code, anyone who sniff’s up the
messages can see the exchanged data. A major
problem with SOAP messages is that they are
one way transmissions giving the consequence it
gets easier to steal, sniff, and resent the
messages. In order to overbuild some of the
security problems in SOAP, a new technique was
proposed by IBM and Microsoft, called SOAP-
sec. SOAP-sec enables message signing by using
an added header to SOAP [5,10].

WS Security
WS security specification was worked on by
some major companies such as IBM, Microsoft
and Verisign. WS security was formed to
overbuild the lack of security that exists in Web
services and also to provide a standard for secure
message exchange, signing etc. WS security does
not solve all the security problems and nor does
it give a specific model on how web services

should be built. It only gives guidelines. But it is
important to notice that is just one specification
in a row of others. The specifications focus is on
SOAP extensions.

The extensions provide authentication, message
integrity confidentiality and signature to
messages. The general guidelines in WS security
are focused on Authentication and Encryption.
WS security does not limit itself to a specific
model or mechanism; on the contrary it has
support for several models and security
mechanisms. For instance, a developer can use
software tokens as well as hardware tokens.
Although, WS security has several requirements
on system, such as:

• The Web service language must support

multiple security tokens
• Several cryptography technologies
• Sender to requester security
• Transport security [6].

4.0 Designing of a Framework to secure
XML

An essential requirement of new security
framework is that it should work naturally with
content created using XML. The overall
objective of designing a XML Security
Framework is to guarantee the aspects of
integrity, confidentiality, authentication and
accountability (key management). These aspects
shall be taken as high level requirements to the
design of framework and should be further
elaborated to arrive at more tangible
requirements.

The XML Security Framework is designed with
a goal to fit together the ideas of the XML
Encryption and XML Digital Signature in the
light on the specifications as provided by W3C
into one high performance implementation.
There are many technical reasons why various
available XML based security providing
standards could not be used together separately.
All of the guidelines available on the web related
to applying security in XML Documents are
relatively new and are made specifically to focus
on some specific aspect. Not a lot of work is
being done on the integration of such aspects and
developers find it difficult to incorporate security
inside their XML based setups despite of having
very robust set of traditional available security
tools. The major goal of the XML Security
Framework is to provide an easy way implement
security in any XML based application in
integration with traditional cryptographic
techniques.

XML Security Framework is intended to
introduce security in XML applications or web
services. The framework make use of available
native XML technologies as discussed earlier but
gives a consistent singular API/Design to
developers to introduce security into their
applications.

4.1 Components of Framework
The Framework defines the security system in
forms of components. These components will be
independent and will be providing atomic
operations that are needed while implementing a
secure XML based application. The components
should be designed with respect to the level they
are categorized into, such as level 1 and level 2
components.

At the first layer are level 1 components,
consisting of all the basic level functionality that
is required by any security systems. The level 1
components will give an interface to the next
level components to use the traditionally
available methods for security and also provide
XML parsing capabilities to the higher level
components, such as parsers, request / response
management components and inter-
communication components.

The level 2 components are XML
transformations components, key management
components, encryption/decryption components,
signature/validation components and access
control components, forming the core of the
framework. These components will be providing
the methods and their implementations that are
defined or outlined in the various XML security
related specifications provided by the W3C.
There is one very important consideration of
these components that is they will be talking
XML as input and after successful operation the
output will also be an XML document. Thus a
true XML developer will be enjoying the fun of
using XML and also making the framework
conforming to one of property of XML
documents i.e. XML in and XML out. All the
information is in XML format.

There will be a two way flow of XML data
inside the framework. One way the XML data
will move to get secure and as it moves towards
the end the relevant security assertions are
inserted over it and when it gets out, the resultant
XML will be a perfect secure XML following all
the standard XML security standards. The other
way in, will be the secure XML document and its
output will be the XML that would be extracted
as the result of applying the various XML
security assertions or access control policies. A
simple flow diagram is shown in figure 1.

4.1.1 XML Encryption and Signing
Component

In the Encryption and Signing process, there can
be a possible need of counter signature, or partial
encryption, the framework proposes that it is
better to performs signature or encryption by
processing input XML along with a
stencil/template that specifies a signature or
encryption skeleton, the way to use
transformation component, the usage methods
for traditional cryptographic/algorithms
components, and the way to interface with XML
key management component for key selection
process. This stencil document will be an XML
document itself with same in structure as the
desired result but some of the nodes will be left
empty and will be filled by the XML
encryption/signature components after
performing relevant computations. XML
Security Frameworks gets the key for
signature/encryption from the key managers in
the key management component using the
information from the stencil document, does
necessary computations and puts the results in
empty nodes of the given stencil, as shown in
figure 2. Signature or encryption component
controls the whole process and stores the
required temporary data. Since the Stencil
information is also a XML file, it might be
created in advance and saved in a file and can be
given to the application as an input otherwise the
security framework API will have to generate a
stencil by itself gathering information by itself.
This logic allows application to create stencils
without using XML Security Framework
functions. Also in some cases stencil should be
inserted in the signed or encrypted data (for
example, if you want to create an enveloped or
enveloping signature). Signature verification and
data decryption do not require template because
all the necessary information is provided in the
signed or encrypted document (fig 4)[7].

Request
Management
Component

Response
Management
Component

Support Libraries /

Components

XML Access
Control and
Management
Component

Figure 1: General Diagram of the
Framework

Privacy and Right

Component

XML Encryption /
Decryption
Component

XML Signature /
Verification
Component

Traditional

Cryptographic
Libraries

Inter Process
Communuication

Libraries

XML
Parsing Libraries

Figure 2: Signing or Encryption module

4.1.2 XML Transformation Component
XML Digital Signature and XML Encryption
standards are very flexible and provide an XML
developer many different ways to sign or encrypt
any part or even parts of an XML document. The
key for such great flexibility is the transforms
model defined by these specifications.
Specifications define transform as a method of
pre-processing binary or XML data before digest
or signature calculation/verification. XML
Security Framework extends this definition and
names "transform" any operation performed on
the data: reading data from an URI, XML
parsing, XML transformation, calculation digest,
encrypting or decrypting. Each transform
provides at least one of the following callbacks:
"push binary", "push XML", "pop binary" or
"pop XML".

In order to simplify transforms development,
additional "execute" callback is added. This
callback updates internal transform buffers and is
used by the "default" XML/binary push and pop
callbacks, as shown in figure 3. For example,
most of the crypto transforms could be
implemented by just implementing one "execute"
callback. However, in some cases using push/pop
callbacks is more efficient. When necessary,
XML Security Framework constructs a
transforms chain as specified in the template or
document and processes data by "pushing" or
"popping" through the chain. For example, then
binary data chunk is pushed through a binary-to-
binary transform, it processes this chunk and
pushes the result to the next transform in the
chain. The following transforms chain might be
constructed during digest calculation.

Fig 3: Transformational Flow Diagram

The XML Security Framework transforms
engine makes sure that output data type (binary
or XML) of previous transform matches the input
data type of the next transform by inserting XML

Figure 4: Decryption or Verification Module

parser or default C14N when necessary [8].
Custom transforms could be added by the crypto
plug-in or application at any time.

4.1.3 Key Management Component
A key in XML Security Framework is a
representation of the <dsig: KeyInfo/> element
and consist of several key data objects. The
"value" key data usually contains raw key
material (or handlers to key material) required to
execute particular crypto transform. Other key
data objects may contain any additional
information about the key. All the key data
objects in the key are associated with the same
key material. For example, if a DSA key material
has both an X509 certificate and a PGP data
associated with it then such a key can have a
DSA key "value" and two key data objects for
X509 certificate and PGP key data, shown in
figure 5. XML Security Framework has several
"invisible" key data classes. These classes never
show up in the keys data list of a key but are
used for <dsig:KeyInfo/> children processing
(<dsig:KeyName/>, <dsig:EncryptedKey/>, ...).
As with transforms, application might add any
new key data objects or replace the default ones.

Key Managers
Processing some of the key data objects require
additional information which is global across the
application (or in the particular area of the
application). For example, X509 certificates
processing require a common list of trusted
certificates to be available. XML Security
Framework keeps all the common information
for key data processing in a a collection of key
data stores called "keys manager":

Figure 5: Key Information framework Structure

Keys manager has a special "keys store" which
lists the keys known to the application. This
"keys store" is used by XML Security
Framework to lookup keys by name, type and
crypto algorithm (for example, during <dsig:
KeyName/> processing). The XML Security
Framework provides default "flat list" based
implementation of a simple keys store. The
application can replace it with any other keys
store (for example, based on an SQL database).
Keys manager is the only of component in Level
2 of the XML Security Framework which is
supposed to be shared by many different
components. Usually keys manager is initialized
once at the application startup and later is used
by XML Security Framework routines in "read-
only" mode. If application or crypto functions
need to modify any of the key data stores inside
keys manager then proper synchronization must
be implemented. In the same time, application
can create a new keys manager each time it needs
to perform XML signature, verification,
encryption or decryption.

Inter-Process Communication Component
Application may control XML Security
Framework engines behavior using several
context objects. New context objects are created
for each operation and could not be reused. XML
Security Framework also uses context objects to
store temporary data and return additional
information to the application.

5.0 Summary
This concluded the high/middle level design of
the framework, there are a lot of issues will come
during the exact implantation of the framework.
A portion of the framework is currently being
implemented. There is still a lot that can be done
on this framework. The features of the
framework that are lacking to be discussed in this
paper are access control component and digital
rights protection component.

The XML Security framework is not the exact
solution to the problems of XML based security,
but it is basically to show the way of how all the
various available methods of implementing
security can fit together to provide what is
actually needed. In Future this framework will
improve as implementation will be done
completely and as maturity level increase it may
one day can act as the exact solution.

The planned future work for this paper is to
implement the framework up to its current status
and then apply various software testing schemes
to make the implementation mature, efficient and
reliable. Other research oriented areas in relation
to this paper can be the up gradation of the
framework to satisfy the upcoming security
needs like Access Control and Rights
Management and also improving the already
implemented models.

6.0 References
[1] A. Menezes, P. van Oorschot, and S.

Vanstone (1996), “Handbook of
Applied Cryptography” CRC Press
USA, 1996.

[2] Blake Dournee (2002): “XML Security”
McGraw Hill Inc USA, 2002

[3] Jake Sturm (2002): “Developing XML
Solutions”, Microsoft Press Inc, USA
2002

[4] R Allen Wyke, Sultan Rehman & John
Brad (2001): “XML Programming”,
Microsoft Press Inc, USA, 2001

[5] E. Bertino & E. Ferrari (2002), “Secure
and Selective Dissemination of XML
Documents”: ACM Transaction on
Information and System Security, Vol 5
No. 3 August 2002

[6] Deutsch, A., Fernandez, M., Florescu,
D., Levy, A., And Suciu, D. (1999),
“Securing XML documents”
Proceedings of the International
Conference on World Wide Web, W3C.

[7] H-ref: “XML Encryption” W3C XML
Encryption Working Group,
http://www.w3c.org/Encryption.html

[8] H-ref: “XML Digital Signature” W3C
XML Digital Signature Working Group,
http://www.w3c.org/Signature.html

[9] H-ref: “XKMS” W3C XKMS Working
Group, http://www.w3.org/2001/XKMS

[10] H-ref: “XKMS and the Microsoft.Net
framework,”
http://www.XMLtrustcenter.org/xkms/do
tnet/index.htm

http://www.w3c.org/Encryption.html
http://www.w3c.org/Signature.html
http://www.w3.org/2001/XKMS
http://www.XMLtrustcenter.org/xkms/do

