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The efficient allocation of the limited energy resources of a wireless sensor network in a way that
maximises the information value of the data collected is a significant research challenge. Within
this context, this paper concentrates on adaptive sampling as a means of focusing a sensor’s
energy consumption on obtaining the most important data. Specifically, we develop a principled
information metric based upon Fisher information and Gaussian process regression that allows
the information content of a sensor’s observations to be expressed. We then use this metric to
derive three novel decentralised control algorithms for information-based adaptive sampling which
represent a trade-off in computational cost and optimality. These algorithms are evaluated in the
context of a deployed sensor network in the domain of flood monitoring. The most computationally
efficient of the three is shown to increase the value of information gathered by approximately 83%,
27%, and 8% per day compared to benchmarks that sample in a näıve non-adaptive manner, in
a uniform non-adaptive manner, and using a state-of-the-art adaptive sampling heuristic (USAC)
correspondingly. Moreover, our algorithm collects information whose total value is approximately
75% of the optimal solution (which requires an exponential, and thus impractical, amount of time
to compute).

Categories and Subject Descriptors: H.1.1 [Models and Principles]: Systems and Information
Theory—Information theory, Value of information; I.2.11 [Artificial Intelligence]: Distributed
Artificial Intelligence—Intelligent agents, Multiagent systems

General Terms: Algorithms, Management, Measurement.

Additional Key Words and Phrases: Adaptive sampling algorithm, decentralised decision mecha-
nism, gaussian process regression, information metric.

1. INTRODUCTION

Wireless sensor networks (WSN) have recently generated significant research inter-
est within the academic literature of computer science and electronic engineering.
Networks of battery-powered sensor nodes, wirelessly communicating information
sampled from the environment to a base-station, have many advantages over their
wired counterparts, and they have been demonstrated in applications ranging from
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environment and habitat monitoring [De Roure 2005; Padhy et al. 2005; Werner-
Allen et al. 2006; Mainwaring et al. 2002; Cardell-Oliver et al. 2005], smart buildings
[Guestrin et al. 2005], object tracking [Ledeczi et al. 2005; He et al. 2006], structural
health surveillance [Chintalapudi et al. 2006], to other security and health related
applications [Kroc and Delic 2003; Lo and Yang 2005].

A key requirement within all of these applications is effective energy management,
and this is often addressed through adapting the sensing (or sampling) policies of
the sensor nodes. Other energy management techniques in the literature include
data compression [Kimura and Latifi 2005] and data fusion (i.e. data aggregation)
[Chu et al. 2002; Makarenko and Durrant-Whyte 2004]. However, the effectiveness
of the compression techniques is highly dependent on the processing power of the
nodes. Here, the total computational overhead increases as both the source and
destination node, now, have to spend some processing energy in order to compress
and decompress data accordingly. The data fusion technique, however, is typically
applied for applications that explicitly consider the spatial correlations of sensor
nodes (not the temporal correlations as we have here). Given this and the fact
that our target applications have limited resources at each node, we focus on the
sampling option.

Sampling policies generally describe a node’s sampling rate (i.e. how often a node
is required to sample during a particular time interval) and schedule (i.e. when
a node is required to sample), and much recent work has explored decentralised
algorithms that enable the sensor nodes to autonomously adapt and adjust their
own sensing policies (see Section 7 for more details). Such solutions are attractive
in our context since they remove the bottleneck of a central decision maker (and
the need to inform this decision maker of the energy state of each sensor node), and
they fully exploit the ever increasing computational capacity of the sensor nodes
themselves [Heeks 1999]. Furthermore, they are also more robust than centralised
alternatives since there is no single point of failure, and even in the case that
communication with the base-station fails (perhaps due to the failure of a node
on a multi-hop route to the base-station), the sensor nodes are able to continue to
autonomously operate in the absence of any external direction until communication
is restored.

To date, such decentralised algorithms have typically been applied to sensor net-
works deployed for environmental monitoring, and they have specifically considered
networks composed of battery powered nodes that exhibit finite lifetimes. Since a
sensor node sampling at its maximum rate would deplete its battery in a short pe-
riod of time, effective sensing policies in this context seek to balance the lifetime of
the sensor network as a whole against the value of the information that it collects.
To do so, they typically invoke domain specific heuristics that depend upon one or
more user specified parameters. For example, the USAC algorithm of Padhy et al.
[2006], which is representative of the state-of-the-art in this area, models tempo-
ral variations in the environmental parameter being sensed as a piece-wise linear
function, and uses a pre-specified confidence interval parameter in order to make
real-time decisions regarding the sampling rate of the sensor nodes.

However, in many applications, sensor nodes are also capable of harvesting energy
from their local environment through different sources (e.g. solar power, wind
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energy, or vibration energy). In such cases, additional operating modes become
possible, and a common alternative to that described above is to require that the
sensors maintain energy neutral operation; balancing energy harvesting against
energy consumption, in order that they exhibit an indefinite lifetime [Kansal et al.
2007]. In this context, an effective sensing policy must maximise the information
that a sensor collects over a particular time interval subject to energy constraints,
and this typically involves planning exactly when, within the specified time interval,
to take a constrained number of samples. To actually achieve this within a general
setting without resorting to domain specific heuristic requires that (i) we can predict
the information content of a sensor’s future samples, given a particular sampling
schedule, and (ii) that we can then optimise this sampling schedule, subject to
energy constraints, in order to maximise the information that will be collected by
a sensor node over a particular time interval.

Thus, against this background, in this paper we address these two complementary
challenges. In particular, we describe a principled information measure based upon
Fisher information and Gaussian process regression, and we present three decen-
tralised algorithms (representing a trade-off in computational cost and optimality)
that allow individual sensors to maximise this information measure given their in-
dividual energy constraints. In more detail, we make the following contributions:

—We develop a novel generic information metric for sensor networks. This metric
represents the temporal variation in the environmental parameter being sensed
as an unknown function, and then uses Gaussian process (GP) regression to
infer the characteristics (specifically its temporal correlation and periodicity) and
value of this function, over a continuous interval, conditioned on samples made at
discrete times within the interval. We then use the mean Fisher information over
the entire interval (including periods between which sensor samples were taken)
as a measure of the information content of these actual sensor samples. Thus,
informative sensor samples are those that minimise uncertainty in the value of
the environmental parameter over the entire interval1.

—Using this information metric, we describe three novel decentralised control al-
gorithms for information-based adaptive sampling which represent a trade-off in
computational cost and optimality. The first uses GP regression within each
sensor node to optimise (using the metric described above) the time at which
a constrained number of future sensor readings should be taken. This process
is exponential in the number of sensor readings taken, and thus, the second
algorithm we present again uses GP regression within the sensor nodes, but per-
forms a greedy approximate optimisation in order that it is more computationally
tractable. Finally, we further reduce the computational cost by using a heuristic
algorithm within each sensor node, rather than the GP regression, in order to
select the times at which future sensor readings should be taken.

—In order to ground and evaluate this approach, we need to exercise it in a par-
ticular domain and here we choose flood monitoring and, in particular, the

1Note that this is somewhat similar to the use of mutual information by Krause et al. [2006] to
select the most informative subset of sensor placements from an initial trial deployment, but here
we consider temporal rather than spatial correlations (see Section 7 for more details).
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(a) (b)

Fig. 1. (a) The deployed FLOODNET system in the River Crouch, East Essex in eastern England.
(b) A FLOODNET node on site.

FLOODNET sensor network (more details of which can be found in Section
2). In this setting, the heuristic algorithm is empirically shown to increase the
value of information gathered by approximately 83%, 27%, and 8% per day com-
pared to benchmarks that sample in a näıve non-adaptive manner, in a uniform
non-adaptive manner, and using a state-of-the-art adaptive sampling heuristic
(USAC), correspondingly. Furthermore, it provides information whose total value
is approximately 75% the optimal solution (which requires an exponential, and
thus impractical, amount of time to compute).

The rest of the article is organized as follows. Section 2 briefly describes the
FLOODNET domain. In Sections 3 and 4 respectively, we detail the sampling
problem we face in a general manner and how we use a GP package to calculate our
information metric. Section 5 formulates the three decentralised control algorithms
for adaptive sampling. Their performances are then empirically evaluated against
a number of benchmarks in Section 6. We then outline the main types of existing
adaptive sampling algorithms in the literature in Section 7 and highlight their
limitations. Finally, conclusions and areas of future work are discussed in Section
8.

2. THE FLOODNET SENSOR NETWORK

To illustrate our methods, we choose flood detection as our target domain and, given
its accessibility, we choose FLOODNET as the specific sensor network [De Roure
2005]. The ultimate aim of FLOODNET is to provide early warning of flooding
such that actions can be taken to alleviate risks to people and property. To this end,
it is currently deployed to gather precise tide height readings to enable a calibrated
hydrological model of the deployment area to be constructed. The network must
withstand long term unmanned operation without any significant human interven-
tion as nodes are deployed at a number of hostile and not easily accessible locations
where periodic data collections also might not be possible particularly in extreme
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Fig. 2. The centralised FLOODNET infrastructure.

environment conditions (for instance during floods). The network, thus, incurs less
costs in terms of setup, operation, and communication compared to equivalent data
logging devices.

As can be seen from Figure 1(a), FLOODNET consists of twelve nodes. Each
node, shown in Figure 1(b), is based around a BitsyX Single Board Computer
(SBC). Since the SBC consumes a significant amount of power (1000mW) when
providing field processing capabilities, it is in sleep mode for most of the time.
A wireless LAN PC card is used to send and receive data wirelessly from the
neighbourhood nodes (requiring an additional 910mW and 640mW of power re-
spectively). Tide height measurements are made with a water-depth transducer
sensor module that consumes 70mW of power when activated, and each node is
equipped with a rechargable lead-acid battery and a solar panel, such that it can
harvest solar energy to recharge the battery during the day.

Like many other similar applications, FLOODNET currently adopts a centralised
regime to control its system whereby each FLOODNET node is centrally pro-
grammed to have fixed sampling and transmission rates. Each FLOODNET node
currently takes samples and stores them locally on the memory at five minute in-
tervals, and activates the SBC with the corresponding transceiver modules every
two hours for the purpose of transmitting the collected data to the base-station via
multi-hop routing. The base-station subsequently relays the data to a Geographical
Information System (GIS) database using General Packet Radio Service (GPRS).
Scientists from the Geography Department of the University of Southampton then
use this real-time incoming data within a hydraulic prediction model to make ac-
curate and timely flood forecasts.

The incoming sensed data (together with meteorological data) also influences the
programmer in setting the nodes’ next sampling and transmission rates (see Figure
2). Our ultimate aim is to remove this centralised point of control (for the reasons
described in Section 1), and deploy our decentralised information-based adaptive
sampling algorithms within the FLOODNET nodes themselves.
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3. PROBLEM DESCRIPTION

We now formalise a description of the generic sampling problem that we face
(of which FLOODNET is but one specific instance). To this end, let n be the
number of sensors within a sensor network system and the set of all sensors be
I = {i1, i2, ..., in}. The sensor network is tasked with monitoring some environ-
mental parameter over multiple days, and we divide the day into a fixed number of
time slots, and denote these time slots by the set H = {1, .., w}.

Each sensor i ∈ I can sample at s different rates. The set of possible sampling
rates is denoted by Ci = {ci

1, c
i
2, ..., c

i
s} where Ci ⊆ Z+ and ci

1 < ci
2 < ... < ci

s.
Specifically, each element of this set, ci

k, is a positive integer that describes the
number of times that the sensor samples during a time slot.

An algorithm (that we devise within this paper) determines the actual sampling
rate that each sensor should use within any specific time slot. Thus, each sensor
i ∈ I, has an allocated set of sampling actions (i.e. sampling schedules) for each day
denoted by Alloci = {ai

1, a
i
2, ..., a

i
w}, where ai

k ∈ Ci, ∀k ∈ H . Thus, any element,
ai

k ∈ Alloci, represents the number of times that the sensor should sample within
any specific time slot within the day. Hence, at the end of a day, sensor i will have
collected a set of observations, Y i, at a corresponding set of sampling points, X i,
such that

∣∣X i
∣∣ =

∣∣Y i
∣∣ =

∑w

k=1 ai
k.

In general, the sensors within the network will deplete their energy resources at
different rates since they will have different sampling schedules. Assuming that the
remaining battery power available for sampling for sensor i at the beginning of a
day is Ei

r, and it requires a certain amount of energy es to sample an event, we
must ensure that any set of sampling actions satisfies:

w∑

k=1

ai
kes ≤ Ei

r (1)

such that the sum of all the energy required to do the sampling actions on that day
must not exceed the remaining battery power. Note that our choice of imposing the
energy constraint over a 24 hour period is a natural one since it represents a daily
cycle in which the sensor node recharges its battery during daylight, and gradually
depletes it during the night. Furthermore, note that we do not include the constant
transmitting and receiving variables into the equation since sensors transmit their
recorded readings in every two hour period to the base-station using a non-adaptive
multi-hop routing method (with a routing table created at system start up time)2.

A sensor’s preferences express the satisfaction of any particular action when faced
with a choice between different alternatives. In our case, the actions correspond
to the different sampling rates that a sensor may choose to perform within any
particular time slot, and the preferences express the information content of the data
collected by performing the corresponding actions. A preference structure brings
together all the alternatives, V , and represents a sensor’s preferences over the set
of possible outcomes. Now, there are several choices that can be made regarding

2Note that we also assume that the communication costs do not depend on the quantity of samples
taken. However, more complex relationships can also be modelled; the algorithms that we shall
consider are constrained to take a maximum number of samples within a 24 hour period, and the
details of how this maximum number is calculated are not restricted in any way.
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the definition of a mathematical model for preference structures (see Chevaleyre
et al. [2006] for a review), but here we choose a simple cardinal structure since it
allows a sensor to make individual comparisons between its sampling actions (i.e.
whether sensor i is obtaining greater information value by sampling at rate ci

u than
ci
z). Furthermore, in future work it will also allow comparisons between multiple

sensors (i.e. whether sensor i is obtaining a greater information value by sampling
at rate ci

u than sensor j operating at cj
r).

In more detail, a cardinal preference structure consists of a valuation function
(i.e. a utility function or a mathematical function used to calculate the value or
goodness of a certain action taken by nodes) given by v : V → V al, where V al is a
set of numerical values (typically, N,<, [0, 1], or <+).

4. INFORMATION METRIC

Building on the problem description above, an algorithm needs a way to value
the various observations that the sensors may make. Within the data fusion and
tracking literature, where spatially correlated sensor readings typically represent
the estimated position of a target, there are a number of standard techniques for
doing this. Most common, is the use of Fisher information, whereby the estimated
position of the target is represented as a multi-dimensional probability distribution,
and Fisher information is used to quantify the uncertainty represented by this
distribution [Bar-Shalom et al. 2001; Chu et al. 2002; Frieden 2004; Zhao and
Guibas 2004].

In this work, we follow a similar procedure. If at any point in time, we are able
to calculate an estimate of the value of the environmental parameter being sensed,
and this estimate is represented by a predictive distribution with mean, µ̂(t), and
variance, σ̂2(t), then the mean Fisher information over any period of time between
t1 and t2 is given by:

FI =
1

t2 − t1

∫ t2

t1

1

σ̂2(t)
dt (2)

The estimated value of the environmental parameter between times t1 and t2 is
informed by the samples that the sensor actually takes, and in the next section we
specifically describe how we can perform this estimation in a principled Bayesian
framework using Gaussian process regression.

Finally, we note that we consider the value of the information collected by the
sensor network as a whole to simply be the sum of the information collected by each
individual sensor, and thus, we are explicitly not considering correlations between
different sensors. Relaxing this assumption is a focus of our future work, and we
discuss it in more detail in Section 8.

4.1 Gaussian Process Regression

As described above, in order to calculate the mean Fisher information, we must use
the actual (and possibly noisy) samples taken by the sensor to estimate the value
of the environmental parameter being sensed over a continuous period of time (in-
cluding times between those at which samples were actually taken). Furthermore,
this estimate must represent a full predictive distribution with both a mean and a
variance. Hence, we use Gaussian process (GP) regression to generate this estimate.
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This principled approach allows us to perform Bayesian inference about functions;
in our case, the function representing the value of the environmental parameter
over time [Rasmussen and Williams 2006]. Such techniques have a long history in
geospatial statistics [Cressie 1991], and more recently have been used as a generic
non-parametric probabilistic model for spatially correlated phenomena [Guestrin
et al. 2005; Ertin 2007]. In contrast, here we use it with temporally correlated
sensor samples.

In more detail, a GP regression takes as inputs a set of g training or sampling
points, X = {x1, x2, ..., xg}, and a set of g noisy observations or target values,
Y = {y1, y2, ..., yg} [Mackay 1998; Seeger 2004]. Given a covariance function that
describes the correlation between sensor readings at any two times (we shall discuss
this function in more detail later), the GP is able to infer the posterior predictive
distribution (i.e. the conditional distribution available after the GP has observed
the training set, the target set, and the covariance function) of the environmental
parameter at any other set of n test points, X ′ = {x′1, x

′
2, ..., x

′
n}. This predictive

distribution is represented by a mean, µ̂(X ′) = {µ̂(x′1), µ̂(x′2), ..., µ̂(x′n)}, and a
variance, σ̂2(X ′) = {σ̂2(x′1), σ̂

2(x′2), ..., σ̂
2(x′n)}, given by:

µ̂(x′i) = kT (K + σ2In)−1Y (3)

σ̂2(x′i) = C(x′i, x
′
i) − kT (K + σ2In)−1k (4)

where K is a g × g matrix for the training set covariances, k is a g × 1 vector
identifying the training-test set covariances (i.e. a row vector of the covariances of
x′i with all variables in X), C(x′i, x

′
i) is the covariance of x′i, Ig is a g × g identity

matrix, and σ2 is added Gaussian noise of the training set accordingly.
The variance is then used to calculate the mean Fisher information of the interval

spanned by X ′ of n test points. Thus, the mean Fisher information, over the interval
X ′, conditioned on the set of observations represented by the sensor readings, Y ,
taken at times X , is given by:

FI(X) =
1

n

n∑

i=1

1

σ̂2(x′i)
(5)

Note that this is a discretization of Equation 2, whose resolution is determined by
the number of prediction points that cover the period of interest (i.e. by the value
of n). Furthermore, note that the value of Fisher information calculated above does
not depend directly on the actual samples (since there is no dependence on Y in
the expression for σ̂2(x′i) in Equation 3). Finally, we remark that the use of the
notation, FI(X), will become clear in Section 5.1 when we consider the calculation
of the Fisher information metric using just a subset of the samples in X .

4.2 Covariance Functions

A key assumption of the GP regression technique described above is that points in
time within X ′ that are close together are likely to have similar predicted values
within µ̂(X ′). Furthermore, training points in X which are close to estimation
points in X ′ are those that are most informative. This notion of closeness or
similarity is defined by a covariance function. The covariance function is a crucial
ingredient within GP regression. It allows prior information concerning the domain
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(a) GP regression with K = Csqe + Cnoi.
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(b) GP regression with K = Csqe + Cper + Cnoi.

Fig. 3. Gaussian Process regression applied to FLOODNET water level data using covariance
functions with and without period terms.

problem to be incorporated into the inference (for instance that the environmental
parameter being sensed varies smoothly over time and/or is periodic), and thus, it
influences the quality of the predictions made. While much empirical guidance for
the choice of covariance functions does exist, there is no formal methodology for
determining this choice automatically [Rasmussen 2004].

In our case, we choose a commonly used covariance function termed squared
exponential or Gaussian covariance function:

Csqe(x, x′) = vsqe · exp

[
−

(x − x′)2

Λ2
sqe

]
(6)

where vsqe is the weighting of this term, and Λsqe is the length scale which is the
correlation length that represents the length along which successive target values
are strongly correlated. We choose this because it is infinitely differentiable, and
thus, capable of modelling smoothly varying environmental parameters. Moreover,
Girard [2004] shows that this covariance function has good general modelling abili-
ties and predictive performance comparable with that of neural networks. However,
this choice is not fundamental to our algorithms and alternatives such as rational
quadratic, linear, or exponential could also be used in other cases. Furthermore,
these alternative forms can also be combined together (by summation or multipli-
cation) to derive a rich family of possible covariance functions3.

Since many WSNs monitoring environmental phenomena show a periodical pat-
tern between days in their readings (as we have with FLOODNET tide data), we
also use a periodic covariance function:

Cper(x, x′) = vper · exp



−
2 sin2

(
x−x′

p

)

Λ2
per



 (7)

3In general, if we use a covariance function with sufficient flexibility, then we can be confident
that the machinery of Bayesian inference will automatically reduce the weighting of terms that
are not necessary to describe the data that has been observed.
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Parameter Value

Variance for Csqe (vsqe) log 112.2733
Variance for Cper (vper) log 956.3368
Variance for Cnoi (vnoi) log 3.3753
Correlation length scale for Csqe (Λsqe) log 19.4994
Correlation length scale for Cper (Λper) log 0.7882
Unit period scale for Cper (p) log 736.3052

Table I. Example hyperparameters for the covariance functions learned from FLOODNET data.

where vper is the weighting of this term, p is the periodicity of the data, and Λper

is the length scale. In addition, an independent covariance function with weighting
vnoi is used to represent Gaussian distributed noise in sensor readings:

Cnoi(x, x′) = vnoi · κ, where κ =

{
1 if x = x′

0 if x 6= x′
(8)

These three separate terms are combined by simply adding them together, and
this combination is shown to provide accurate water level estimates for the FLOOD-
NET domain. For example, Figure 3 illustrates this by comparing (a) the case
where K = Csqe + Cnoi which excludes the periodic term, and (b) where K =
Csqe + Cper + Cnoi which includes it. In both cases, the markers represent the
sensor samples, the solid line indicates the mean of the predictive distribution, and
the shaded area represents its variance.

The weightings, vsqe, vper and vnoi, characteristic lengths, Λsqe and Λper, peri-
odicity, p, and sensor noise, σ2, are collectively termed hyperparameters, and in
general, we do not know their values a priori. However, a number of techniques
can be used to infer their values from the sensor readings themselves. Within the
GPML4 package that we use here, techniques for learning the hyperparameters are
based on maximisation of the log likelihood function using an efficient conjugate
gradient-based optimization algorithm [Bishop 2006]. However, there is no guar-
antee that the marginal log likelihood does not suffer from multiple local optima.
Thus, we use a multi-start process for setting good initial hyperparameters prior
whereby we restart the maximisation of log likelihood from a number of different
starting points, and select the one that results in the maximum log likelihood5. We
perform this learning prior to performing regression whenever new data is present,
and Table I shows an example of these hyperparameters.

Within the FLOODNET domain, whenever the water level raw data points are
closely related (i.e. they have a small covariance matrix or they are more frequently
sampled), the variances of the estimated values, σ̂2(X ′), will decrease. The Fisher
information value will, on the other hand, increase as it is the inverse uncertainty
of the estimate (see Figure 4). To illustrate this, consider the scenario illustrated
in Figure 5. Assume one of the FLOODNET nodes has a set of twelve noisy mea-
surements per hour for a given day. Thus, the node samples at five minute intervals
such that the total number of samples (g) on that day is 288 (12 samples/hour x 24
hours). Now, in order to find out the value of this set of data, the node performs

4http://www.gaussianprocess.org/gpml/
5In future work we intend to investigate the use of fully Bayesian approaches to maintain a
distribution over possible hyperparameter values [Osborne et al. 2008].
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Fig. 4. Fisher information value (FI) gathered over one day period plotted against the number
of samples. As expected, the value of information generally increases (i.e. we are more certain in
the value of the environmental parameter being sensed) as the sensor nodes takes more samples.
Note that in the case of a GP with fixed hyperparameters, we would expect to observe a concave
function since the observations are correlated.

(a) Regression on sampled data taken between
time unit 265 and 276, with 12 samples. Sensor 1
collects Fisher information value of FI = 0.1263.

(b) Regression on sampled data taken between
time unit 265 and 276, with 4 samples. Sen-
sor 1 collects Fisher information value of FI =
0.5168 · 10−1.

Fig. 5. GP regression example using sampled data collected from FLOODNET sensor 1 operating
on Oct 14th 2005. One time unit represents a five minute interval.

the GP regression utilizing the training and target sets (sets X and Y correspond-
ingly) to produce the predictive distribution with mean µ̂(X ′) and variance σ̂2(X ′).
Given this, Equation 5 can then be used to determine the information content of
the samples.

5. DECENTRALISED INFORMATION-BASED ADAPTIVE SAMPLING

Given the problem description and information metric, the objective in this work
is to now derive an algorithm that can automatically determine the allocation of
actions each day, Alloc, that will maximise the total mean Fisher information col-
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lected by the sensors (i.e. the utilitarian social welfare), subject to the energy
constraint (in Equation 1). To this end, we now present three novel decentralised
control algorithms for information-based adaptive sampling that achieve this. Each
algorithm represents a different trade-off between computational cost and optimal-
ity. We start with an exponential algorithm that maximises the Fisher information
metric by performing GP regression on the individual sensor nodes, and progress to
a more computationally efficient algorithm that uses a heuristic approach, rather
than the GP regression, in order to determine the allocation of actions each day.

Each of these algorithms follows the same broad pattern. On any specific day,
each sensor i ∈ I may be in one of two modes: an updating mode in which the
sensor samples at a predefined maximum rate throughout all time slots, or a stan-
dard sampling mode in which it samples according to the allocation, Alloci. The
algorithms use the samples taken whilst the sensor is in its updating mode to calcu-
late the allocation of actions, Alloci, to be used whilst the sensor is in its standard
sampling mode. The frequency with which the sensor enters the updating mode
is determined by the system designer, and depends on the variability of the en-
vironment. In relatively static environments the allocation will remain valid for
sometime, and thus, updating can occur less frequently. In more dynamic settings
the allocation must be updated more often6. Note that since the sensor samples at
its maximum rate whilst in the updating mode, then the more often updating is
performed, the less samples can be taken during any day whilst the sensor is in its
standard sampling mode (in order to maintain energy neutral operation). In the
experiments that we present in Section 6 the sensors update once every three days.

5.1 The Optimal Adaptive Sampling Algorithm

A first approach to providing a decentralised algorithm is to simply deploy the GP
regression algorithm on each node, and then to find the subset of the samples that
were taken whilst the sensor was in its updating mode that maximise our Fisher
information metric (whilst also satisfying the energy constraints of the sensor when
it is in its standard sampling mode). Thus, in more detail, if X i is the set of
sampling points taken whilst sensor i was in its updating mode, we wish to solve:

argmax
Xi

s

FI(X i
s) (9)

where FI(X i
s) is our Fisher information metric calculated using GP regression, as

described in Section 4, subject to the constraint that X i
s ⊆ X i and es

∣∣X i
s

∣∣ ≤ Ei
r.

Given this subset of sampling points, we then calculate the allocation of sampling
actions, Alloci = {ai

1, a
i
2, ..., a

i
w}, by simply counting the number of sample points

in each time slot such that:

ai
k =

|Xi|∑

j=1

{
1 if xi

j ∈ X i
s and in time slot k

0 otherwise
∀i ∈ I, ∀k ∈ H (10)

6We note that setting this parameter automatically is part of our future work. We expect that
this can be achieved by measuring the information content of samples collected each day, and re-
entering the updating mode when this shows a significant departure from that which is expected.
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Algorithm 1 Greedy Optimal Adaptive Sampling.
1: gpFI← {}
2: while addSamp > 0 do . While there is an additional sample to allocate
3: for each sampToTry ∈ remSP do . Iterates each remaining sampling point
4: preSampTemp← preSamp∪ sampToTry
5: gpFI← gpFI ∪ CalcFIUsingGP(preSampTemp) . Calculates GP information value
6: end for

7: [maxFI,indexOfNextSP]← Max(gpFI)
8: nextSP← NextSamplingPoint(indexOfNextSP) . Finds nextSP
9: preSamp← preSamp∪ nextSP . nextSP included into preSamp

10: remSP← remSP\nextSP . nextSP excluded from remaining sampling point (remSP)
11: gpFI← {}
12: addSamp← addSamp− 1
13: end while

Now, a näıve approach to finding this optimal subset is to simply enumerate all
possible combinations. This approach, however, is too computationally intensive
and works only for very small problems as it very rapidly becomes intractable. For
instance, in the case of FLOODNET in which a sensor takes 288 samples a day
whilst in its updating mode, but can only take 144 samples a day in its standard
sampling mode, this algorithm would need to evaluate more than 10100 (C288

144 )
solutions. This is clearly impossible to compute in a reasonable amount of time
regardless of processor speed (for more details, see Section 6.3.2 for the run time
performance of the algorithms that we present in this section).

5.2 The Greedy Optimal Adaptive Sampling Algorithm

Since the näıve enumeration approach is infeasible, we need a smarter means of
tackling this problem. Thus, we devise a greedy optimal adaptive sampling approx-
imation algorithm that again deploys the GP regression algorithm on the sensor
node, but then works by allocating one additional sampling point at a time until
there are no more samples to add. The allocated sampling points can not be altered
in subsequent iterations (i.e. they are fixed). This significantly reduces the number
of possibilities to compute compared to the näıve optimal algorithm which con-
siders the whole set of combinations of sampling points as possible solutions. For
example, in the case discussed above where 144 out of the possible 288 sampling
points must be selected, we need only evaluate 31104 solutions (as compared to
C288

144 solutions above). Nevertheless, this method is still reasonably slow to be run
on nodes with the type of limited computational power found in WSNs in general
and FLOODNET in particular.

In more detail, this algorithm works as follows (see Algorithm 1). At setup time,
the vector variable gpFI that temporarily records all the evaluated information
values (FI as in Equation 5), is initialized to a null set (line 1). Each sensor i ∈ I

then presets a number of samples (preSamp) and equally distributes them into
its time slots. Following this initialization phase, the sensor then uses its energy
resources to iteratively sample addSamp times more from the possible remaining
sampling points remSP (line 2). On each iteration, the sensor evaluates the in-
formation value of each remaining sampling point (line 5). It then allocates one
sample at the sampling point nextSP where the information value is increased the
most (lines 7-9). At the end, the chosen nextSP is included into the vector vari-
able preSamp (line 9). It is then excluded from the vector variable remSP and the
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variable gpFI is cleared (lines 10 and 11 respectively). This repeats until there are
no more samples to add.

The vector variable preSamp eventually contains the greedy selection of sampling
points, and thus, the allocation of sampling actions, Alloci = {ai

1, a
i
2, ..., a

i
w}, can

again be found by simply counting the number of sample points in each time slot
such that:

ai
k =

|Xi|∑

j=1

{
1 if xi

j ∈ preSamp and in time slot k

0 otherwise
∀i ∈ I, ∀k ∈ H (11)

Finally, we note that the GP regression algorithm itself is relatively computa-
tionally expensive, and thus, we next present a heuristic algorithm that enables the
sensor nodes to use a simpler means of valuing information in order to gain a faster
performance.

5.3 The Heuristic Information-Based Adaptive Sampling Algorithm

We first describe a simplified valuation function that avoids the need to perform
GP regression on the sensor node, and we then present the algorithm that we use
to select sampling points in order to maximise it.

5.3.1 The Valuation Function. In this algorithm, we value information heuris-
tically rather than computing it using Equation 5. We do this because the iterative
process of calculating the information value using the GP regression technique is
computationally expensive, and both the algorithms presented above require that
this process is performed repeatedly. Specifically, we use simple linear regression
and develop an information function that is based on the standard deviation of
the best-fit regression line. This is appropriate, since given a small enough time
window, the relationship between the time and environmental observations data
can be approximated as a piecewise linear function.

Using this method, the uncertainty in a set of sensor readings is expressed in
confidence bands about the linear regression line. The confidence band has the same
interpretation as the standard deviation of the residuals (termed SE in Equation
13, where p represents the number of data points and ŷ is the new value of y

calculated from the newly found slope b1 and intercept b0 variables), except that
it varies according to the location along the regression line. The distance of the
confidence bands from the regression line (τk) at point xk is:

τk = SE

√
1

p
+

(xk − x̄)2∑p

j=1(xj − x̄)2
(12)

where xk is the location along the x-axis data points where the distance is being
calculated and x̄ is the mean value of X.

SE =

√∑p

j=1(yj − ŷj)2

p − 2
(13)

where

ŷj = b0 + b1xj (14)
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and

b0 = ȳ − b1x̄ (15)

and

b1 =

∑p

j=1(xj − x̄)(yj − ȳ)
∑p

j=1(xj − x̄)2
(16)

In order to perform this simple linear regression properly, the input must consist
of at least three data points. This is because if there are only two data points they
will produce a smooth linear regression line (with no standard deviation), while
anything less than that will result in invalid inputs. For these reasons, we enforce
the fact that a sensor must at least sample once in every time slot (defined as the
minimum sampling rate, therefore, Ei

r ≥ w · es, ∀i ∈ I, where as defined in Section
3, w is the number of time slots and es is the energy required for one sample). In
this way, given the standard deviation and the confidence bands, we are able to
tell whether one set of observations is more valuable than another which, in turn,
allows us to define a value associated to every action.

Given the expressions above, we can now derive the total deviation, TD, for a
set of data points by calculating the area between the confidence bands, and this
total deviation represents our uncertainty over this period. Specifically, we use
a trapezoidal numerical integration method for this [Rabinowitz and Davis 2006].

The trapezoid approximation (i.e. trapezoid sum Ts) of
∫ b

a
f(x)dx that is associated

with the partition a = x1 < x2 < ... < xn = b is given by:

Ts =
1

2
[f(x1) + 2f(x2) + ... + 2f(xn−1) + f(xn)]∆x

=
1

2
[f(x1) + 2

n−1∑

j=2

f(xj) + f(xn)]∆x (17)

and, thus, we are now able to derive:

TDn =
1

2
[2τ1 + 4

n−1∑

j=2

τj + 2τn]∆x (18)

For example, consider the case shown in Figure 6 that uses real data collected
from Sensor 1 on Oct 14th 2005 between time unit 201 and 209 (where one time
unit represents a five minute interval). Figure 6(a) shows a case where 9 samples
are taken and Figure 6(b) shows another case where only 5 are taken. The X axis
represents the time unit, whilst the Y axis represents the water level. The solid line
denotes the simple linear regression line, whilst the curved dashed lines demarcate
the confidence bands (it represents the boundaries of all possible straight lines).
In the case where 9 samples are taken, the procedure just described allows us to
calculate the total deviation, TD, as 14.6050, while in the case of 5 samples, it
is 35.5968. In both cases, the total deviation is represented by the shaded area
between the confidence bands; less uncertainty is denoted by a smaller area.

Given this total deviation, we can now simply derive the gain in information
value (or the decrease in uncertainty) when different sampling decisions are made.
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Fig. 6. Example application of the linear regression based valuation metric applied to data col-
lected from Sensor 1 on Oct 14th 2005 between time unit 201 and 209. Two cases are shown; (a)
where 9 samples are taken and (b) where only 5 samples are taken.

More formally, Gaini
u(k) is defined as the reduction in total deviation that sensor

i can achieve by taking samples at rate ci
u rather than the minimum sampling rate

ci
1 in time slot k, and is given by:

Gaini
u(k) = TDci

1

(k) − TDci
u
(k), where ci

u ∈ Ci, i ∈ I, k ∈ H (19)

This minimum sampling rate is applied as a basis where a sensor gains zero value.
The data values for each sensor are often best represented in a table format, as

shown in Table II (this sampled data is chosen arbitrarily for illustrative purposes
and its values are calculated using Equation 19). In this table, the columns represent
the time slot, for instance where column = 3, if this particular sensor i chooses to
sense at sampling rate ci

2, ci
3, or ci

s, in return it will gain a corresponding reduction
in total deviation of 27.59, 43.79, or 55.23 (that is Gaini

2(3), Gaini
3(3), or Gaini

s(3)
respectively) compared to if it had only taken samples at its minimum sampling
rate (ci

1) during the same period.
As described earlier, when in its updating mode, each sensor samples at its

maximum rate (cs). Now, by taking subsets of samples (corresponding to the set of
actions specified in Table’s II row header) from the full set and performing the linear
regression on these subsets, we obtain a new total deviation for each subset. The
values that will be assigned to the table are the total deviation difference between
sampling at the minimum rate and at other rates. For instance where column = 3,
if the total deviation that is produced with a subset of samples ci

2 taken during
time slot 3 (TDci

2

(3)) has a value of 128.66, while that of a minimum sampling

rate ci
1 taken between the same period (TDci

1

(3)) is 156.25, then the value inside

column = 3 and row = 2 (Gaini
2(3)), will be 27.59.

5.3.2 The Algorithm. We now focus on how to search for an allocation of sen-
sor’s actions that maximises the information metric described above. For this pur-
pose, we introduce V as a s×w matrix with s number of actions and w number of
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1 2 3 ..... w

ci
1 Sampling Rate 0 0 0 ..... 0

ci
2 Sampling Rate 0.29 1.21 27.59 ..... 3.88

ci
3 Sampling Rate 0.31 1.51 43.79 ..... 8.92

ci
x Sampling Rate ..... ..... ..... ..... .....

ci
s Sampling Rate 0.33 1.55 55.23 ..... 13.45

Table II. Action-value table for sensor i.

time slots:

Vi =




vi
11 vi

12 . . . vi
1w

...
...

. . .
...

vi
s1 vi

s2 . . . vi
sw



 Di =




di
11 di

12 . . . di
1w

...
...

. . .
...

di
s1 di

s2 . . . di
sw





such that vi
uk represents the value that sensor i will get if it chooses to perform

action ci
u in time slot k (i.e. Gaini

u(k)). D is a matrix of binary values and each of
the elements corresponds to a decision variable (a “1” represents a state where the
sensor carries out the corresponding ci

u action, whilst a “0” represents another state
where the sensor does not carry out the corresponding ci

u action). For instance,
when di

11 = 1 then this sensor i chooses to perform action ci
1 in time slot 1. This

also means that di
u1 = 0, ∀u ∈ Ci\ci

1.
In more detail, the objective function to be maximised is defined in Equation 20.

The constraint in Equation 21 states that every sensor can only elect one action
at any particular point of time, whereas that in Equation 22 states that the total
number of samples taken by it must not exceed the maximum number of samples
it can take on that day:

{V i
max, Di

max} = arg max
{V i,Di}

∑

u∈Ci,k∈H

vi
ukdi

uk, ∀i ∈ I (20)

subject to:
s∑

u=1

di
uk = 1, ∀i ∈ I, ∀k ∈ H (21)

w∑

k=1

ci
1d

i
1k + ci

2d
i
2k + ... + ci

sd
i
sk ≤ N i, ∀i ∈ I (22)

where N i is calculated such that N ies ≤ Ei
r as described in Equation 1.

This problem, as formulated above, can be cast as a person-task assignment
problem7 [Yong et al. 1993]. Given this insight, we can solve the problem using
binary integer programming (BIP) [Chen et al. 2000], which is a subset of linear
programming. A popular method to solve this numerically is the simplex algorithm
and in this case we exploit the GNU Linear Programing Kit8 (GLPK) to do so.

7In the assignment problem, we want to assign a set of people to do a set of tasks. Each person
takes a certain number of minutes to do a certain task, or cannot do a particular task at all, and
each person can be assigned to exactly one task. The ultimate aim, here, is to minimize the total
time taken to do all of the tasks.
8http://www.gnu.org/software/glpk/
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Algorithm 2 Heuristic Information-Based Adaptive Sampling.
1: updSSched← TRUE . Sensor in updating mode
2: sRate←MAX S RATE . Sensor samples at maximum rate
3: readings← {}
4: loop

5: if sTime = NOW then . Time to sample
6: readings← PerformSampling(sTime)
7: if ¬updSSched then

8: timeSlot← TimeSlot(sTime)
9: sRate← GetSRate(timeSlot) . Changes sampling rate according to the timeSlot

10: end if

11: SetSTime(sTime + sRate) . Sensor sets its next sampling time
12: end if

13: if tTime = NOW then . Time to transmit
14: uError← CalcUError(readings) . Calculates information uncertainty in current readings
15: if dateChanged then

16: daysCount← daysCount + 1
17: if updSSched then

18: CalcTDReduction(readings) . Computes reduction in total deviation
19: FindSSchedule() . Binary integer programming solver
20: updSSched← FALSE
21: end if

22: end if

23: if ¬updSSched∧ HasEnoughEnergy() ∧ (daysCount ≥ CONST ) then

24: updSSched← TRUE . Schedule updated
25: daysCount← 0
26: sRate←MAX S RATE

27: end if

28: SetTTime(tTime + tRate) . Sensor sets its next transmitting time
29: readings← {}
30: end if

31: end loop

Having described the techniques that we use, we now seek to present the rest
of the heuristic information-based adaptive sampling algorithm (see Algorithm 2
and Figure 7). Specifically, the algorithm, which is distributed and installed on
each sensor in the network, provides a means for the individual nodes to adjust
their own sampling rates based only upon their local historical data and remaining
energy resources. Now, within the initialization phase, some required variables are
set. These include the boolean variable updSSched which is set TRUE to indicate
that the sensor starts in its updating mode, and then having calculated an allocation
of sampling actions for subsequent days, enters its standard sampling mode.

Following the initial updating phase, each sensor i ∈ I enters an infinite loop
state. On each iteration, it checks its sampling and transmitting time. Whenever
the current loop represents the time that it needs to sample (line 5 or state 2), the
function PerformReading instantiates a new reading and attaches it to the end
of the variable readings. Subsequently, if the sensor is not in updating mode, its
sRate is assigned a value equal to the sampling rate in its schedule, corresponding to
the appropriate time slot (line 9 or state 3). The sensor then sets its next sampling
time variable sT ime. Inside the same loop iteration, whenever the sensor is also
required to transmit its current readings (line 13 or state 4), it firstly calculates the
total deviation in this set of readings by using the simple linear regression method
described earlier (i.e. calling function CalcUError with Equation 18). Later, if
the sensor detects that it has entered the following day and it is also in updating
mode, it will call the function CalcTDReduction (with Equation 19) to compute
the reduction in total deviation that the sensor can achieve by taking more samples
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Fig. 7. State diagram of the algorithm.

than the minimum sampling rate. Function FindSSchedule then uses the BIP
GLPK solver to evaluate (in real-time) the best allocations of sensor i’s schedule
and resources that maximise the total deviation reduction (i.e. Equation 20), given
the sensor’s current energy constraints of Equations 21 and 22 (line 19 or state 5).
The allocation of sampling actions, Alloci = {ai

1, a
i
2, ..., a

i
w}, is thus determined by:

ai
k = ci

u, where u ∈ {1..s}|di
uk = 1, di

uk ∈ Di
max ∀i ∈ I, ∀k ∈ H (23)

6. EVALUATION

Having described the three decentralised algorithms for adaptive sampling, we now
turn to their evaluation in order to examine their performance and effectiveness.
We first describe the experimental setup and the benchmarks, and then go onto the
actual evaluation.

6.1 Network and Parameters Initialization

In our experiments, we use a simulation of the FLOODNET network, driven by
real data for batteries, tide readings, and cloud cover (used to model solar energy
harvesting). The experiments are run using FLOODNET’s actual topology with
a fixed number of nodes (twelve) at fixed locations (i.e. the nodes are immobile).
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The sampled data model (worth approximately eight days of measured data start-
ing from Oct 14th 2005 00.00AM) for each node was fixed for each instance of the
experiments. All the cloud parameters (including the cloud coverage, wind speed,
and cloud thickness) are initialized with realistic data (at FLOODNET’s site) avail-
able in METAR9 format. These are all done in order to reproduce the FLOODNET
scenario as realistically as possible. The remaining battery energy of each sensor
and its recharging rate are set to be low so that it can not continuously sample at its
maximum rate. Given these constraints, sensors must therefore allocate resources
and schedule themselves to determine how often and when to sample efficiently in
order to maximise their collected information value.

In a simulation run, nodes can fail due to their battery depletion, but they can
not be added or removed. For the sake of simplicity and in order to exploit all the
possible changes in the system, at this point of time, we only consider four different
actions (s = 4) describing the sensor’s sampling rate. Thus, sensors can either
sample one, three, six, or twelve times per hour (i.e. Ci = {1, 3, 6, 12}, ∀i ∈ I).

6.2 Benchmark Algorithms

In our experiments, the benchmark algorithms include:

—A Näıve Non-Adaptive Sampling Algorithm. This dictates that each sensor i ∈ I

should sample at its maximum rate, ci
s, whenever there is enough battery energy

to do so. The sensor’s sampling behaviour is therefore non-adaptive and can be
described as:

ai
k = ci

s ∀i ∈ I, ∀k ∈ H (24)

—A Uniform Non-Adaptive Sampling Algorithm. This dictates that each sensor
i ∈ I in the network should simply choose to divide the total number of samples

it can perform in a day (N i where N i =
Ei

r

es
) equally into its time slots, such

that:

ai
k = argmax

u
u where u ∈

{
ci
y ∈ Ci|ci

y ≤
N i

w

}
∀i ∈ I, ∀k ∈ H (25)

—A Utility-based Sensing And Communication (USAC) Algorithm. This is a state-
of-the-art algorithm that lets each sensor adjust its sampling rate depending on
the rate of change of its observations (see Section 7 for mode details). Specifically,
the algorithm uses a linear regression method which is run to determine the
next predicted data, dat(t + 1), with some bounded error (termed its confidence
interval, ci). If the next observed data falls outside ci, the node sets its sampling
rate to the maximum rate in order to incorporate this phase change. However, if
data falls within the ci, it implies that the node is allowed to reduce its sampling
rate for energy efficiency due to the presence of predictable information that
has a low value. The USAC algorithm does not have a notion of time slot (as
described in Section 3) and therefore, each sensor has the flexibility to change its
own sampling rate at any point of time10.

9http://weather.noaa.gov/weather/metar.shtml
10All other algorithms, on the other hand, dictate that each sensor should only change its sampling
rate at subsequent time slots.
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(a) GP Regression with Näıve Non-Adaptive Sam-
pling Algorithm collecting Fisher information value
of FI = 1.804 · 10−3.
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(b) GP Regression with Uniform Non-Adaptive
Sampling Algorithm collecting Fisher information
value of FI = 3.278 · 10−2.
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(c) GP Regression with Heuristic Information-
Based Adaptive Sampling Algorithm collecting
Fisher information value of FI = 7.396 · 10−2.
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(d) GP Regression with Greedy Optimal Adaptive
Sampling Algorithm collecting Fisher information
value of FI = 1.045 · 10−1.

Fig. 8. GP Regression evaluated on daily basis for Sensor 1 collecting samples on Oct 15th 2005.
One time unit represents a one minute interval.

Now, assuming that the sampling rate of sensor i ∈ I at t point of time, Sri(t),
is equal to ci

x, where ci
x ∈ Ci, then its sampling rate at t + 1 is defined as:

Sri(t + 1) =

{
ci
x−1 if Lo(ci) ≤ dat(t + 1) ≤ Up(ci)

ci
s otherwise

(26)

where Lo(ci) and Up(ci) are the lower and upper bound of ci respectively. As the
setting of ci is central to USAC’s operation, and because no guidelines are given
about what values to use, here we use the following range of values: 60%, 85%,
and 95%. This is, we believe, sufficient to fully examine USAC’s performance in
this domain.

—Unconstrained Sampling. This ignores the constrained energy of the sensor, and
allows the sensor to sample its maximum rate for the entire trial period. This
represents an absolute upper bound on the value of information that can be
collected, but clearly can not actually be implemented in practice (since the
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(a) GP Regression with USAC (ci=60%) collecting

Fisher information value of FI = 4.058 · 10−3.
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(b) GP Regression with USAC (ci=85%) collecting

Fisher information value of FI = 6.142 · 10−2.
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(c) GP Regression with USAC (ci=95%) collecting

Fisher information value of FI = 5.559 · 10−2.

Fig. 9. GP Regression with USAC using different values of ci evaluated on daily basis for Sensor
1 collecting samples on Oct 15th 2005. One time unit represents a one minute interval.

sensors will deplete their batteries before the end of the trial period).

6.3 Results

The aim of these experiments is to compare the total Fisher information value
gathered at the base-station from each of the individual sensors for the various
decentralised control regimes. To this end, Figures 8 and 9 show the comparison
of Fisher information values that are evaluated (on a daily basis using the GP re-
gression technique as per Equation 5) with different sets of Sensor 1 observations
collected using the different algorithms. It also shows that Sensor 1 obtains the
lowest uncertainty in its set of readings on that day and, hence, the highest in-
formation value (FI), when it collects samples using the greedy optimal adaptive
sampling algorithm. With the heuristic information-based adaptive sampling algo-
rithm, on the other hand, it collects slightly less information value. However, this
value is significantly higher compared to those collected using the two non-adaptive
and USAC benchmarks.
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(a) GP Regression with Uniform Non-Adaptive
Sampling Algorithm.
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(b) GP Regression with Heuristic Information-
Based Adaptive Sampling Algorithm.
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(c) GP Regression with Greedy Optimal Adaptive
Sampling Algorithm.

1170 1180 1190 1200 1210 1220 1230 1240 1250

50

100

150

200

250

Time Unit

W
at

er
 L

ev
el

 (
m

m
)

GP Regression with USAC (ci=85%)

Error Bars
GP Regression Line
Sampled Data

(d) GP Regression with USAC (ci=85%).
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(e) GP Regression with USAC (ci=95%).

Fig. 10. GP Regression on sampled data taken between time unit 1170 and 1250 from Sensor 1
operating on Oct 15th 2005. One time unit represents a one minute interval.
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(a) GP Regression with Uniform Non-Adaptive
Sampling Algorithm.
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(b) GP Regression with Heuristic Information-
Based Adaptive Sampling Algorithm.
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(c) GP Regression with Greedy Optimal Adaptive
Sampling Algorithm.
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(d) GP Regression with USAC (ci=85%).
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(e) GP Regression with USAC (ci=95%).

Fig. 11. GP Regression on sampled data taken between time unit 1380 and 1430 from Sensor 1
operating on Oct 15th 2005. One time unit represents a one minute interval.
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The actual σ̂2(x) in Figures 8 and 9 are too small to be visible on such a scale
(for enlarged versions and to show more clearly how the heuristic adaptive sam-
pling algorithms outperform the non-adaptive and USAC algorithms, see Figures
10 and 1111). Moreover, we also compare the computational time performance of
the various algorithms in order to provide the other side of the optimality and
computational time trade-off.

6.3.1 Information Value Analysis. As can be seen in Figure 12(a), the heuristic
information-based adaptive sampling algorithm performs well; compared to the
näıve and uniform non-adaptive approaches respectively, this algorithm consistently
increases the total Fisher information collected by about 83% and 27% per day over
the trial period. The plot clearly shows the superiority of the heuristic information-
based adaptive sampling algorithm and that the information value of the data
collected found by it is approximately 75% of the greedy optimal’s.

Furthermore, in comparison with case of sensors that can sample unconstrained
by power requirements (i.e. they can sample at the maximum rate throughout
the trial period) our heuristic information-based adaptive sampling algorithm is
approximately 66% of this upper bound. This upper bound corresponds to the
peaks in Figure 12, and thus, we do not show it as an additional line in this plot.

The heuristic information-based adaptive sampling algorithm also outperforms
USAC for all values of ci. The main reason is due to the absence of a forward planner
in USAC. In more detail, Figure 9(a) shows how USAC (ci = 60%) behaves poorly
with performance similar to that of the näıve one. With this non-carefully chosen ci

value, a small change in environmental readings will trigger each sensor to change its
sampling rate to its maximum (of which energy is never reserved for possible future
usage). As it does not have the power to continuously sample at this maximum
rate, it often runs out of energy during a day and so collects no information for a
long period of time. Figures 9(c), 10(e), and 11(e), on the other hand, show how
USAC (ci = 95%) performs in a similar fashion to the uniform non-adaptive one.
In this setting, the next predicted data is highly likely to fall within the bounded
error, ci, and hence, the algorithm dictates that each sensor should decrease its
sampling rate due to the presence of low value predictable readings. Here, the
harvested and renewable energy is not allocated effectively because the algorithm
does not maintain the nodes in energy neutral operation mode (i.e. balance the
amount of energy harvesting against that of energy consumption). USAC’s optimal
ci value for FLOODNET data is found to be 85% in which the algorithm collects
information with value 8% lower than that collected by our heuristic information-
based adaptive sampling algorithm over the trial period.

Additionally, Figure 12(b) shows more clearly how the adaptive sampling algo-
rithms achieve this performance. After leaving the schedule updating mode (i.e.
the second day of a simulation, as can be seen in Figures 13 and 14), a sensor is
able to perform adaptive sampling by conserving its battery energy in order to take
more samples during the most dynamic events, while taking fewer samples during

11In these figures, the GP regression using the näıve non-adaptive and USAC (ci = 60%) sampling
algorithms are not shown because the plots would simply be covered by the error bars as can be
seen from Figures 8(a) and 9(a) respectively.
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(a) Cumulative information gathered over an 8-day period plotted
against time.
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(b) Information gathered daily over an 8-day period plotted
against time.

Fig. 12. Information measurement graph performances.

the static ones. In our case, the dynamic events of a tide occur at the time it comes
in (specifically when the sensor rises off mud, between 07.00 and 09.00 in Figure
13), reaches the peak (between 10.00 and 11.00), and goes out (between 12.00 and
14.00). During these events, sensors normally set their sampling rates to a maxi-
mum value (i.e. in our case, at five minute intervals). As a result, from the second
day onward, Figure 12(b) shows a gain in information value collected (particularly
during the dynamic events), except when the sensors are in updating mode (on
Oct 17th and 20th). In this mode, all sensors sample at their maximum rates (as
discussed in Section 5.3.2), therefore on those dates, the information valuations of
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Fig. 13. Water samples gathered on the second day of the simulation using the heuristic
information-based adaptive sampling algorithm. Graph only displays some selected nodes for
better visibility.
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Fig. 14. Number of samples taken in each hour slot from Sensor 1 operating on Oct 15th 2005.
The heuristic information-based adaptive sampling algorithm behaves in the same pattern as the
greedy optimal one. Both generally samples more often during dynamic events while sacrificing
some energy to sample less during static ones.

the five approaches are the same.

6.3.2 Run Time Performance. The optimal adaptive sampling algorithm works
only for very small problems as it very rapidly becomes infeasible for even small- to
medium-sized ones. For instance, consider an adaptive sampling problem in which
a node has sufficient battery capacity to sample only 3 times from the possible
288 sampling points in a day. In this scenario, there are 105(C288

3 ) solutions to
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Fig. 15. Computational Time Performance.

enumerate, which is just about possible to do with a modern computer in a finite
amount of time. However, for a slightly larger problem, where a node has the
flexibility to sample 36 times from the possible 288 sampling points in a day, there
are now 1037(C288

36 ) solutions to enumerate, which is intractable in a reasonable
amount of time, even for a very fast computer. Assuming a 3GHz desktop PC on
which the GP regression technique takes approximately 5 seconds, we estimate this
would take 1030 years to compute. In more detail, Figure 15 shows a comparison
of the computation time of all the three algorithms that we consider.

The greedy optimal adaptive sampling algorithm significantly reduces the com-
putation time, since it reduces the number of possible combinations of sampling
points that must be compared. However, it is still too slow to be run on the nodes
that have similar computational power to FLOODNET’s. This is because there are
still 1

2 · addSamp · ((remSP − addSamp) + remSP )) possible solutions to iterate.
For instance, for a problem in which a node is capable of allocating 36 samples
from the possible 288 sampling points, there are still 9720 solutions to evaluate,
and experiments indicate that this takes approximately 14 hours to compute on a
standard 3Ghz desktop PC.

The heuristic information-based adaptive sampling algorithm, on the other hand,
runs in real time on the current configuration. This is due to the performance of
the linear programming optimization technique and the simplified information val-
uation metric. Again, consider the 36 sample problem for example, this algorithm
calculates the preferred solution in hundreds of milliseconds. Finally, due to the
similar nature of linear regression method used for valuing information, USAC also
executes in real time.

7. RELATED WORK

The three algorithms that we present in Section 5 all exploit temporal correlations
within the data from a sensor to select the most informative sampling points. The
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key intuition here is that when the data is highly correlated, and thus changing
slowly, there is no need to sample frequently. A number of other algorithms within
the literature also use temporal or spatial correlations (or both) in order to make
effective sampling decisions, and we review them here.

With respect to spatial correlations between sensors, Willett et al. [2004] have
studied the backcasting adaptive sampling method in which multiple nodes that
are spatially correlated form small subsets of nodes that then communicate their
information to a fusion coordinator. Based upon this information, the coordinator
then selectively activates additional nodes in order to achieve a target error level.
In our setting we do not attempt to fuse information from separate sensors, and
since we require a decentralised solution with minimal additional communication
between sensor nodes, we do not address the spatial correlations between the sensors
(although we acknowledge that these spatial correlations almost certainly do exist).

More similar to our work, Krause et al. [2006] use a Gaussian process to model
the spatial correlations between sensors, and then use these correlations to select
the subset of sensor placements that is most informative. The mutual information
metric that they use is very similar to the Fisher information metric that we present
here. Since they perform their selection after learning the covariance function of the
Gaussian process they can exploit the submodularity of their information metric
to place a bound on the performance of a greedy selection scheme. In our case,
the Gaussian process represents temporal correlations, and since we relearn the
hyperparameters of the Gaussian process based on the sampling schedule that we
have selected, we cannot exploit submodularity to derive a bound on our own greedy
optimal adaptive sampling algorithm (although the methodology is similar).

With regard to the Fisher information based metric that we presented in this
paper, we note that Fisher information has previously been within the sensor net-
work literature to value position estimates in tracking scenarios. Specifically, Chu
et al. [2002] describe Information-Driven Sensor Querying (IDSQ) for an array of
sensing nodes that are used to estimate the position of a target being tracked. The
algorithm is decentralised, and each sensor selectively chooses to fuse its own in-
formation with that of other available sensors, in order to update its current belief
about the target’s position. It is the job of IDSQ to direct each sensor to fuse the
most valuable data (i.e. data that more accurately represents the target’s position),
and to do so, a Fisher information measure is used. The approach is similar to ours
in that a valuation function is used to determine the value of previously collected
observations and this is then used to decide on the next sampling plans of each
sensor. However, the information metric derived here is based on a fused position
estimate, whereas we use Fisher information to value a set of temporally correlated
sensor samples.

Similarly, Makarenko and Durrant-Whyte [2004] describe a negotiation-based
Bayesian Decentralised Data Fusion (BDDF) technique for an array of wireless
nodes in a network. Their work accounts for the uncertainty inherent in such
tracking applications, and a Bayesian non-linear filtering method is used to aggre-
gate sensed data. The local filter of a node fuses the observations, and these fused
observations are used to decide the node’s next sensing plan.

In a somewhat different setting, but still concerned with the decentralised ap-
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proaches to decision making within sensor networks, Mainland et al. [2005] present a
market-based approach for determining efficient node resource allocations in WSNs.
Rather than manually tuning node resource usage, or providing specific algorithms
as we do here, Self Organising Resource Allocation (SORA) defines a virtual market
in which nodes sell goods (e.g. data sampling, data relaying, data listening, or data
aggregation) in response to global price information that is established by the end-
user. However, this approach again involves an external coordinator to determine
and set the prices in order to induce the desired global behaviour for the network.
Moreover, it is not clear how this should actually be done in practice.

Most similar to our work, and the one that exploits temporal correlations between
sensed data, is the Utility Based Sensing and Communication (USAC) algorithm
proposed by Padhy et al. [2006]. As discussed in Section 6.2, this is a decentralised
control regime for adaptive sampling, designed for an environmental WSN measur-
ing subglacial movement (Glacsweb). The adaptive sampling aspect of the algo-
rithm models temporal variations in the environmental parameter being sensed as a
piece-wise linear function, and then uses a pre-specified confidence interval param-
eter in order to make real-time decisions regarding the sampling rate of the sensor
nodes. Linear regression is used to predict the value of future measurements, and
if the actual sensor reading exceeds the confidence interval parameter, the sensor
starts sampling at an increased rate. However, this parameter (and several others
such as the window length and actual sampling rate) must be carefully selected, and
a poorly chosen value can result in very poor performance in our setting. Since the
algorithm does not explicitly perform any forward planning, the sensor can rapidly
deplete its battery if the increased sampling rate is constantly re-triggered by data
that is far from linear (as can be seen in Figure 12).

A limited amount of work also attempts to exploit both spatial and temporal
correlations. In particular, Rahimi et al. [2004] present a Nested Stratified Random
Sampling (NSRS) policy for a set of mobile nodes exploring three-dimensional en-
vironmental structure and phenomena. In their work, spatio-temporal correlations
exist between readings locally within each individual node, and the sampling distri-
bution of each node is determined by these correlations. The work, however, does
not model the uncertainty in sensor readings. Furthermore, with mobile nodes, we
believe that the information content of each node’s reading should be dependent
on the node’s position at the time when this reading is actually taken. However,
their work does not address this important issue.

More recently, Dang et al. [2007] have proposed an adaptive sampling algorithm
to find the optimal cruise path of a mobile sensor node in order to collect data that
maximally reduces the uncertainty of a data assimilation model (that is based on the
Sigma Point Kalman Filter). Here, the environment being monitored is modelled as
a set of grid points that are available for the sensor to sample at. The next sampling
point is chosen to be the point that results in the lowest trace of the predicted
covariance matrix indicating how uncertain the estimated environment state is.
However, with this algorithm, there is an issue of scalability as the computation
time of searching the next sampling point increases exponentially when extra nodes
are introduced.

Finally, Osborne et al. [2008] use a multi-output Gaussian process to explicitly
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model both temporal and spatial correlations between a small number of sensors.
The GP is used for adaptive sampling whereby it can determine both the time,
and the sensor from which the next sample should be taken, to ensure that the
uncertainty regarding the environmental parameter being measured at each sensor
location stays below a pre-specified threshold. However, as with the USAC algo-
rithm, there is no forward planning. Moreover, the algorithm is centralised, since
it requires information from all of the sensors in order to model the spatial corre-
lations between them, and it is relatively computationally expensive; the novelty
in the paper above, being a computationally efficient formalism of the GP. The
computational cost precludes it being deployed on the current generation of sensor
nodes, and furthermore, since it requires sensors to exchange data with one another,
it would also incur additional communication cost that could possibly outweigh any
saving achieved through more effective sampling.

8. CONCLUSIONS AND FUTURE WORK

In this article, we have focused on issues associated with energy management in
general and adaptive sampling in particular. We have developed a principled in-
formation metric based upon Fisher information and Gaussian process regression
that allows the information content of a sensor’s observations to be expressed, and
given a set of sensor readings, we have shown how an optimal and a greedy optimal
adaptive sampling approximation algorithm can be devised. They are, however,
only tractable for very small problems, and thus, we have developed a more prac-
tical, heuristic information-based adaptive sampling algorithm with the ultimate
aim of maximizing the information value of the data collected at a base-station,
given the limited energy resources available. This approach is a better choice for
larger sampling problems (beating the benchmarks and obtaining performance close
to the optimal one, but with much lower time complexity). The empirical results
show that all three decentralised control algorithms for information-based adaptive
sampling are effective in balancing the trade-offs associated with wanting to gain as
much information as possible by sampling as often as possible, with the constraints
imposed on these activities by the limited power available.

Although the effectiveness of these algorithms is evaluated within the FLOOD-
NET domain, the challenges that are involved here are very similar to those that
occur in the design of many other WSNs. Specifically, many WSNs are being de-
ployed in the domain of environmental phenomena monitoring, and data in these
settings typically exhibits periodic features (as we have with the tides) due to the
natural cycle of day and night. The GP regression algorithm learns this periodicity
from the data, and thus, can be applied directly. The linear programming tech-
nique, together with the utility functions and constraints, can also be adapted to
meet the design objectives of other WSNs in general.

Our ongoing research topics include: (i) developing an adaptive multi-hop routing
and transmitting algorithm that will allow sensors to make principled trade-offs
between using their energy reserves to take more samples, or to relay data from
another sensor to the base-station, (ii) the incorporation of spatial correlations
between sensors into both the information metric and the sampling algorithm, such
that sensors that are physically close together, and may be taking similar readings,
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can autonomously divide the sampling tasks between themselves, and (iii) real
deployment in order to investigate how well the algorithm scales and performs in
practice.
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