
1

Combining System Introspection with User-Provided Description to Support
Configuration and Understanding of Pervasive systems

Chris Greenhalgh1, Kevin Glover1, Jan Humble2, Jamie Robinson3, Steve Wilson3,

Jeremy Frey3, Kevin Page4, David De Roure4
1School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK

{cmg,ktg}@cs.nott.ac.uk
2Progress Software, 200 Rustat House, Clifton Road CB1 7EG Cambridge, UK

jan.c.humble@gmail.com
3School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK

{j.m.robinson, sw1703, j.g.frey}@soton.ac.uk
4School of ECS, University of Southampton, Southampton SO17 1BJ, UK

{krp,dder}@ecs.soton.ac.uk

Abstract

Pervasive computing systems such as smart spaces
typically combine multiple embedded and/or mobile
sensing, computing and interaction devices. A variety of
distributed computing approaches are used to integrate
these devices to support coordinated applications. This
paper describes how simple user descriptions of
(primarily) physical aspects of such a system can be
combined with information from system introspection to
make the system and its log recordings more
understandable to potential users, as well as supporting
easier configuration and monitoring, and allowing the
expression of certain kinds of system behaviour that are
otherwise hard to achieve.

Keywords: Pervasive Computing, Semantic Web.

1. Introduction

The field of pervasive computing is founded on the
proliferation of computing devices, including mobile
and personal devices (mobile phones, PDAs, laptops,
etc.), “traditional” desktop and server computers,
digitally augmented objects (from key rings to cars) and
diverse devices such as sensors and displays embedded
within buildings and other settings. Mark Weiser [1]
articulated one influential vision of how such devices
might work together in a ubiquitous computing
environment.

This paper describes how simple user descriptions of
(primarily) physical aspects of such a system can be
combined with information from system introspection to
make the system and its data logs more understandable
to potential users, as well as supporting easier
configuration and monitoring. We achieve this using

Semantic Web techniques, an established approach [2]
but applied here in a new way.

Many computational and informational applications
of computers are essentially independent of the specific
hardware they employ or its situation. For example,
information published through the World Wide Web or
large numerical simulations on supercomputers can
often be thought of just as ‘bytes’ or ‘flops’, essentially
independent of their physical manifestation (give or take
performance, latency, instruction set or access control).
However many pervasive computing applications are
fundamentally dependent on the particular hardware
used and its situation. For example, a sensor network [3]
consists of a coordinated array of sensor devices which
are each intended to sense something in particular, such
as the temperature or illumination, of the specific
physical setting in which they are placed. To run the
same sensing ‘task’ on devices somewhere else would
be nonsensical.

However, when viewed from ‘inside’ a
computational device, i.e. from within the digital or
informational domain (such as software running on one
of these sensors), the ‘view’ of the physical setting is
profoundly limited. In this example, the ‘temperature at
the eastern shore’ is likely to be a single fixed point
number, being captured from an unremarkable I/O
interface on one particular sensor node.

A variety of networking and distributed computing
approaches are used to support pervasive computing
systems and applications, and these can effectively
overcome many of the challenges that arise in such
systems. For example, the software running on the
sensor network nodes may establish and maintain a
spanning wireless network and coordinate data
collection, querying and archiving across the whole
sensor network, automatically reconfiguring the system
if a sensor node fails [4].

2

However, we argue that there are many things that
the supporting software will never be able to do without
information from ‘outside’ the pervasive computing
system, most commonly from the system’s (human)
designers or users. In this example, only the person
wiring up the sensor node knows which A/D input is
connected to the temperature sensor. Even if a system
used ‘smart’ (self-describing) sensors it would still not
know which of two temperature sensors was being used
for which particular purpose. Only the person physically
placing the sensor node knows exactly where it is. Even
if the system included a location system such as GPS it
would have limited precision, and would not capture
potentially important location-related information such
as whether it was in the lea of a nearby rock.

In section 2 we describe an instrumented chemistry
lab, and the way that this is represented through the
supporting software infrastructure. In section 3 we
present the Physical Configuration Manager, the proof
of concept application that we have developed using
semantic web technologies to combine system
introspection with user-provided description. Section 4
shows how this application – and the approach more
generally – can support configuration, visualisation and
specification of behaviours. In section 5 we consider
outstanding issues and reflections. Finally section 6
concludes this paper.

2. Background

The particular and practical example that we
consider in this paper is a chemistry lab in which
significant elements of an experiment can be automated
and left running unattended. However this means that
the chemist may not be present in order to observe
problems occurring during the experiment (such as a
failure of the air conditioning). In other situations (e.g.
anomalous results) it may be important to review the
circumstances surrounding the preparation for and
running of the experiment, with a view to ruling out
possible errors such as contamination of samples.

 In [5] we describe how we have previously used
embedded sensors (temperature, humidity, light, PIR
and door switches) and data feeds from other equipment
and devices in one chemistry lab to support remote
monitoring and historical review of lab conditions
during experiments. We are continuing to use the same
technologies within another nearby lab, which is the
specific example used in this paper.

Consider a single sensor, for example one PIR sensor
in a lab. The sensor’s output is physically wired to one
particular input on a data capture board, which in turn is
connected to a particular computer. Software running on
this computer, given the appropriate drivers, can
interface to the data capture board and check the current
state of each input, typically receiving a number which
corresponds to the input voltage. One of the main

concerns of this paper is: what does this number mean
and how does a user know this?

The prototype presented in this paper is built on top
of the EQUATOR Component Toolkit (ECT) [6], which
is a middleware for prototyping (primarily) smart spaces
and augmented artifacts. The primary building block in
ECT is a software component, of which there are
several kinds including hardware interface components,
behaviour specification components (such as scripts)
and user interface components (such as Processing
applets). ECT provides a framework in which such
components can be created, managed and inter-
connected across a distributed set of computers. It also
provides a set of user applications or tools for doing
this.

In the case of the instrumented chemistry lab, data
from the in situ sensors is initially exposed as messages
distributed over a MQTT (Message Queue Telemetry
Transport) protocol connection to an IBM Message
Queue (MQ)-based middleware as described in [5],
rather than via ECT. However a general purpose MQTT
Bridge component in ECT allows this live data to be
exposed within ECT in a similar way (in this case the
software configuration requires network details of the
MQ server to be used, and the message topics to
subscribe to).

Whether connected directly or via some other
middleware, the data from the PIR sensor (for example)
can be viewed and used within the ECT-based system,
e.g. to trigger other software components (such as
graphical interfaces), and can be recorded using ECT’s
general logging facilities.

However looking exclusively at the views available
from within the software – from within the digital
domain – it is not at all clear what that value represents,
i.e. that ‘1’ actually means ‘movement has been detected
in a certain portion of chemistry lab 5017’. This issue
may manifest as the system is deployed. It is even more
likely to become problematic as time passes and other
people get involved, both with the running system, and
with data logged or recorded from the system: what
does the data mean?

To expose the input from a PIR sensor in ECT a
compatible hardware interface component must be
created on the machine that is connected to the data
capture board, and this component must be configured
to communicate with the board (e.g. specifying a COM
port or other hardware identifier). The view of the
hardware interface component from within ECT will
then reflect the current state of each analogue input,
including the PIR sensor, as a set of component
property values.

3. The Physical Configuration Manager

The Physical Configuration Manager (PCM) (see
figure 1) is an alternative user interface for ECT which

3

combines information derived from introspection of the
running (software) system with user-provided
descriptions of the hardware in use and the physical
context. Work on the PCM was initially motivated by
the conjecture that pervasive systems such as this might
be easier to understand by having first-class
representations of the physical and hardware elements
of the system as well as the digital and software
elements. Although this prototype is built specifically as
a client for ECT, the same principles could be applied to
other middleware for pervasive computing.

This section describes the architecture and general
operation of the PCM; the following section gives
examples of its use and capabilities. The PCM is
implemented in Java using the Eclipse Rich Client
Platform (RCP), i.e. it is a “heavyweight” desktop
application. Its architecture is as shown in figure 2 and
described below. It is implemented using the JENA
open source RDF framework for Java.

The internal world model is defined using a
relatively simple OWL ontology and maintained in a
JENA RDF model (figure 2, centre). The graphical user
interface consists of a number of Eclipse/RCP views
which display different subsets and representations of
this common model, e.g. a “physical” view (figure 1,
top right), a software component view, a properties view
(figure 1, bottom centre). Changes in the JENA model

trigger events which cause the views to be updated (a
typical model-view-controller approach).

The system connects to a running ECT system (or
can start a new one), and continuously introspects the
running system to find: all computers that are part of the
system (such as that presented by the computer icon in
figure 1), all software components that are currently
running, all software components that can be created
and all links currently established between software
components. This introspection is a standard capability
of ECT. This information is mapped to the ontology and
published and maintained in the common model, which
therefore is kept up to date with the state of the software
system.

Through a simple drag and drop interface the user
can identify physical ‘things’ that are currently to be
considered as part of the system (figure 1, left, top &
bottom, and the ‘user-described’ items in the main
view). These can include: sensors such as the PIR
sensor, devices such as the data capture board, locations
such as the lab or other significant entities. Internally,
these are cloned from the ‘possible things’ RDF model
to the common model.

Linked to the common model is a forward-chaining
rule engine (the standard RETE engine provided in
JENA). As the model changes – due to user action or
changes in the software system – these rules can fire to
add or remove inferences to or from the current model.

Figure 1. Screen image of the Physical Configuration Manager showing a view of a
chemistry laboratory.

4

The rules include both standard entailments (more or
less those of RDF Schema) and rules specific to the
PCM. As statements are added to and removed from the
common model the user interface views will update or
animate accordingly. In addition, the presence of certain
kinds of statements will cause the software executive
(figure 2, bottom right) to make changes to the running
ECT system and components, for example creating new
software components, configuring them or connecting
them together.

4. Examples of use

We will demonstrate how the Physical Configuration
Manager (PCM) can provide help with: configuration
and initial deployment of a system; visualising and
understanding a system; and realizing higher-level
behaviours. The configuration example shows how user-
described things could cause software components to be
created and configured. The visualisation example
shows how the presence of software component(s) can
imply the existence of physical things, and also be used
to infer and show the state of physical things.

4.1. Configuration

In order to interface to the chemistry lab sensors
from ECT the user must create the right software
component to act as an MQTT bridge, and then
configure it with the correct IP address, port number
and topics of interest. Previously in ECT this would
have been done using the graphical software component
view. The PCM, through system introspection, has the
same knowledge of ECT software components, and can
render a similar software component view and editor.

However, the PCM also allows non-ECT elements of
the system to be described and worked with. In this

case, one of the authors has used the ontology to
describe a “SmartLab MQTT Broker” physical thing.
This RDF is initially loaded into the “possible things”
model, and is visible in the “possible things” view
(figure 1, top left). This description includes various
information about this physical thing, in particular the
kind of ECT software component that can interface to it,
and the configuration information required in this
particular case (IP address, port, topic). Now to connect
to this particular broker the end-user: drags it from the
“possible things” view to the main view (or to the
“active things” view); and visually connects it to the
ECT host computer in the main view (drawing a line
between them, visible in the top-left corner of the main
view in figure 1).

The standard PCM ontology and rule set support the
idea that ECT software components can be ‘proxies’ for
physical (external) things. Given the above description,
the creation of the visual connection between the
“SmartLab MQTT Broker” physical thing and the ECT
host computer creates an ect:Association in the common
model which causes rules to fire which: create a new
MQTT Bridge software component (via the creation of
a ‘ect:createComponentRequest’ statement, seen by the
software executive), set the configServerUrl,
configTopics and configured properties on the new
component, and establish in the world model a ‘proxy’
relationship between the user-described “SmartLab
MQTT Broker” physical thing and the corresponding
MQTT Bridge software component.

4.2. Visualisation

To continue with this example, the MQTT Bridge
software component connects to the external MQ broker
which is distributing the sensor messages from the lab.
As new messages are received it dynamically creates
new MqttTopic software components within the ECT
system to represent each message type (in this case this
corresponds to each sensor in the lab). These are
observed by the PCM as it monitors the ECT system,
and are directly reflected in the software component
view. Each MqttTopic (like the underlying message) has
a ‘topic’ property (e.g.
“/combeChem/30:5017/Calibrated/4/TP-1” – one of the
temperature sensors in the lab), a ‘value’ property (e.g.
“26.36”) and a date/time when this value was measured.

The configuration example showed how user-
described things could cause software components to be
created and configured; in this case the presence of
software component(s) implies the existence of physical
things, in particular a temperature sensor. A custom rule
causes a “genericMqttTemperatureSensor” from the
possible things view to be created for each topic that
matches the pattern “.*/TP-.*” (which is the common
practice adopted in the lab to assigning topics to
temperature sensor values). Note that this uses a custom

ECT

active
things

possible things

Combined internal
“world” model

Automatic
description of

software system

inferences

RETE Rule
engine Views

Software
executive

User

JENA/
RDF

introspection control

User-provided
description rules ontology

Figure 2. Internal architecture of the
Physical Configuration Manager.

5

rule engine function “CreateResource”, which in the
case copies the RDF subgraph describing an MQTT
temperature sensor. The iconic representation of this
inferred temperature sensor is visible towards the right
of figure 1.

Another set of rules identifies relationships between
described things and software components irrespective
of whether user-described things cause the creation of
the software components, or vice versa, or each is
independently created. This correspondence is generally
modelled by the software entity (component or
property) having a “ect:hasProxy” relationship to the
described (physical) thing. In this example the
“SmartLab MQTT Broker” thing in the physical view is
the proxy for the MQTT Bridge component, the
temperature sensor is the proxy for the appropriate
MqttTopic component, and in addition the gauge of the
temperature sensor representation is the proxy for the
MqttTopic’s ‘value’ property.

In this situation the rules infer that the property’s
value (in this case, the temperature) should also be
associated with the described thing (in this case, the
temperature sensor’s gauge). This associated value can
be used to animate the visual display in various ways,
for example in figure 1 the temperature sensor icon’s
central column moves up and down as the value changes
(like a mercury thermometer) while the PIR sensor’s
‘activity’ indicator (a red square on the icon in figure 1)
is visible only when the sensor is reporting activity. For
positional sensors, the position of icons in the physical
view can be modified as the sensed positions change.

Figure 1 also shows a plan of the lab space. This is
purely a user-described thing – there is no explicit
manifestation within ECT of that location. But within
the context of the PCM physical view it provides a
common reference frame for the placement of the
physical devices. The various devices can also be
dragged ‘into’ the lab location in that view and this
locatedness is explicitly represented and exploitable
within the common model.

Note that this visualisation or representation of the
combined physical-software system can be useful in a
number of different situations and contexts. During the
initial deployment and configuration of the system it
provides a common representation and at-a-glance
indication of the system state. While the system is in
ongoing use this view can provide a direct and hopefully
intuitive view of the state of the system. It also
encompasses a lot of the information that is needed
when updating, maintaining or trouble-shooting the
system (especially if the original hardware interfacing is
also done with ECT and the PCM). Finally, it can be
used to re-establish the context and meaning of
historical data, such as that captured using ECT’s
standard logging facilities (which can be used to record
all of the activity with the ECT system and re-play or
review it).

4.3. Behaviour

ECT (without the PCM) can be used to create a
range of interactive system behaviours. For example, the
various PIR sensor values from one room could be
connected to a scripting component which combines
their values to give a whole-room estimate of activity.
The output from this could be connected to a relay
output to switch a light or other indicator in another
office to indicate (in)activity in the lab.

However, the PCM enhances this in two ways. First,
given appropriate rules and descriptions the user can
work in terms of the items in the physical view, rather
than the generally intangible software components and
properties of the ECT system itself. In another context
we have been exploring the use of the PCM by museum
curators to prototype interactive Augmented Reality
installations, and in this application the main method of
configuring the installation is by selectively linking the
various described entities to imply specific relationships
and interactions [7].

Second, some forms of behaviour are relatively easy
to express in terms of RDF rules (in the PCM) but very
hard to express through the data-flow transformations
between component property values which are normally
used in ECT. For example, a ECT Phidget RFID reader
component publishes in ECT the IDs of the RFID tags
that are currently in range of the reader. In the PCM the
user-description can specify that a particular RFID tag is
actually attached to a particular chemical sample. A
straightforward rule can then infer that if (a) a certain
RFID reader is reading a certain ID and (b) it is known
(user-described) that that ID is associated with a certain
sample and (c) it is known (user described) that the
RFID reader is in a certain lab, then that sample must be
in that lab at that time (and the visualisation will be
updated accordingly). This is essentially the strategy
used in many semantically oriented pervasive
computing systems (e.g. [8]).

5. Discussion and future work

Having described the Physical Configuration
Manager and given examples of its utility we now
consider a number of other significant issues and
aspects, including areas for further development.

5.1. Initial experiences

As reported in [7], initial experiences with museum
curators and the Physical Configuration Manager have
been generally very positive. They found the tool easy
to use and easy to understand, and were able to quite
rapidly create and evolve a range of interactive systems
(in that case combining sensor and video inputs and
audio and 3D graphical outputs). This lends support to
the hypothesis that the “physical” perspective supported

6

by the PCM is accessible and comprehensible to users
with no knowledge or particular understanding of the
underlying software component infrastructure or
concepts.

The main limitation that they encountered was in the
range of behaviours and interactions that they could
specify, which is essentially the range of behaviours
specified in the rule set they were working with: without
being reasonably expert in RDF and inference they were
not in a position to “open the box” and extend the
capabilities of the system themselves (this is also
considered in section 5.3).

5.2. Performance and scale

Applying the PCM to the chemistry lab as presented
here has been reasonably straightforward. However we
have encountered some problems of scalability: when
first connecting to the MQTT broker, if all of the
available topics are received (several dozen) the PCM
runs out of memory in the process of creating the
various physical representations of the inferred sensors.
More generally, the current version has a single physical
view area (which can be zoomed in and out), and
consequently has limited support for working with large
systems or visualisations (e.g. no multiple pages, no
nested pages). The ECT system itself, which underlies
the PCM, is also limited in the scale at which it can
sensibly be used, specifically across a handful of
machines within a single organization (with a reliable
network).

Part of the vision which lies behind the work on the
instrumented chemistry lab in particular is the idea of
publication at source [9], which implies that data from
the lab – including relevant environmental data such as
that considered here – should be reachable as part of the
provenance trial of any academic publication which
ultimately reports on the work. The work presented here
contributes to this vision in that the PCM visualisation
and the user-provided and inferred description which
underlie it should make such data understandable to a
reviewer or researcher wishing to explore a trail of data
provenance. However neither ECT nor the PCM
currently have any direct link to the kind of large-scale
archival framework that this implies.

A light-weight starting point might simply be to
deposit a saved (RDF-XML) copy of the common
“world” model along with the corresponding ECT log in
whatever archival framework is being used. In addition,
where the system is actively evolving, the PCM
metadata can also be woven into the time-based ECT
log as it is generated. The Digital Replay System (DRS)
includes basic support for replaying ECT logs, which
can then be re-viewed using the PCM.

5.3. Extending and customising

The current version of the Physical Configuration
Manager incorporates the ontology (OWL in RDF-XML
format), possible thing descriptions (RDF-XML files)
and both the standard and component and application-
specific rules (in the textual format of the JENA rule
engine).

Adding support for a new purely physical thing (e.g.
a new room of interest) currently requires hand-
authoring of appropriate RDF thing description(s).
Support for another software component and/or
hardware device also requires hand-authoring of
appropriate RDF descriptions of the device, with
annotations that describe its relationship to the
corresponding software component(s) (e.g.
configuration property settings). To create new
descriptions automatically from running software
components (as in 4.2) also requires the specification of
the additional rules to do this. Specifying new rule-
behaviours obviously requires the specification of such
rules, but may also require supporting additions to the
ontology (if the behaviour depends on concepts or
properties that are not already modeled). Adding a new
kind of animation of visualisation requires extensions to
the Java implementation of the appropriate view
elements within the Eclipse/RCP implementation of the
PCM.

All of these tasks require skills and experience well
beyond that required to simply use the Physical
Configuration Manager (e.g. ability to write specific
RDF-XML). To some extent this issue is ameliorated
because much of this work need only be done once, e.g.
when a new software component is written. This can
then be included with the standard distribution (or
distributed through ECT with the software components
themselves, as is currently the case for the user
documentation of the software components).

There are other examples, however, where an end-
user might reasonably want to make additions to the
system, for example specifying new specific instances of
existing classes (another room, another MMQT broker,
another RFID-tagged sample holder). This implies that
the PCM user interface should also allow some limited
and specific additions – mainly to the set of possible
things – to be done simply and graphically by non-
expert users.

5.4. Related work

Our work extends a body of work in Semantic Web
and pervasive computing [1,8,10] by providing a case
study of introspection, configuration and
understanding. A clear parallel can be seen between this
and the semantic annotation of Web Services. However
the kinds of configuration and behaviour choices being
made in a system such as the one described are not

7

necessarily a good fit for a semantic service model. For
example, the challenge is not generally to find a
“semantically compatible” service (e.g. [11, 12]), but to
work in a coordinated way with the particular physical
and digital entities that are at hand. Also, the kinds of
visualisations and interactions that are seen in the PCM
(e.g. plans and maps) fit well with pervasive computing
systems (especially smart spaces and location-based
systems) but do not apply as naturally or universally to
the more abstract data and process flows found in
general Web Services.

In terms of systems intended to support pervasive
computing applications the Physical Configuration
Manager provides a concrete answer to the often
overlooked question of where semantically rich
descriptions actually come from in the first place. It also
demonstrates one way in which semantics can be
brought into play in such a system which is more
general in scope than an “add-on” for service discovery,
but which does not necessarily require universal support
for semantics. While there are many similarities of
implementation technology with [8], the emphasis there
is on inferring and abstracting context information from
“lower level” information in order to create applications
based on the derived higher-level context. The PCM
shows how the semantic level can usefully link directly
back to the “lower level” devices and components, and
also how the developer and user can (and probably
should) be involved and supported in this process.

6. Conclusions

In this paper we have demonstrated how simple user
descriptions of (primarily) physical aspects of a
pervasive computing system (in particular an
instrumented chemistry lab) can be combined with
information from software system introspection to make
the system more understandable to potential users, as
well as supporting easier configuration and monitoring,
and allowing the expression of certain kinds of system
behaviour that are otherwise hard to achieve.

The Physical Configuration Manager is a usable
proof of concept realization of this proposition, which
employs semantic web technologies to combine and
reason across user-provided descriptions and run-time
system information. The same philosophy and approach
could be applied to other systems and middleware.

ECT and the Physical Configuration Manager are
available under the BSD open source licence from
SourceForge (CVS branch ‘semanticmedia’).

Acknowledgement

This work was supported by the Engineering and
Physical Sciences Research Council (EP/C010078/1)
and the European Union's 6th Framework Programme
(IST-2004-004150).

References

[1] Weiser, M.: The Computer for the Twenty-First
Century. Scientific American 94-104, 1991.
[2] Lassila, O., and M. Adler: Semantic Gadgets:
Ubiquitous Computing Meets the Semantic Web. In D.
Fensel et al.: Spinning the Semantic Web: 363-376,
2003.
[3] Szewczyk, R., Osterweil, E., Polastrem, J.,
Hamilton, M., Mainwaring, A.M., and Estrin, D.:
Habitat monitoring with sensor networks. Commun.
ACM 47(6) 34-40, 2004.
[4] Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler,
D., and Pister, K.: System architecture directions for
networked sensors. In Proceedings of the ninth
international conference on Architectural support for
programming languages and operating systems, pp. 93-
104. ACM Press, 2000.
[5] Robinson, J. M., Frey, J. G., Stanford-Clark, A. J.,
Reynolds, A. D., and Bedi, B. V.: Sensor Networks and
Grid Middleware for Laboratory Monitoring. In
Proceedings of the First International Conference on E-
Science and Grid Computing, pp. 562-569. IEEE
Computer Society, 2005.
[6] Greenhalgh, C.: A Toolkit to Support Rapid
Construction of Ubicomp Environments. In: UbiSys
2004: System Support for Ubiquitous Computing
Workshop at the Sixth Annual Conference on
Ubiquitous Computing , 2004.
[7] Koleva, B., Egglestone, S.R., Glover, K.,
Hampshire, A., Greenhalgh, C., Dade-Robertson, M.:
Creating hybrid artefacts using an abstracted user-
oriented representation. Submitted to Interacting with
Computers, special issue on Physicality and Interaction.
[8] Wang, X., Dong, J.S., Chin, C.Y., Hettiarachchi,
S.R., Zhang, D.: Semantic Space: An Infrastructure for
Smart Spaces. IEEE Pervasive Computing 3(3) 32-39,
2004.
[9] Frey, J.G., De Roure, D., Carr, L.: Publication At
Source: Scientific Communication from a Publication
Web to a Data Grid. In: EuroWeb, Oxford. 2002.
[10] Ryusuke Masuoka, Yannis Labrou, Bijan Parsia,
Evren Sirin, Ontology-Enabled Pervasive Computing
Applications, IEEE Intelligent Systems, vol. 18, no. 5,
pp. 68-72, Sept/Oct, 2003.
[11] Jaeger, M., Rojec-Goldmann, G., Liebetruth, C.,
Mühl, G., Geihs, K.: Ranked Matching for Service
Descriptions Using OWL-S. in: Kommunikation in
Verteilten Systemen (KiVS), pp. 91-102, 2005.
[12] Bandara, A., Payne, T., De Roure, D., Lewis, T.: A
Semantic Framework for Priority-Based Service
Matching in Pervasive Environments. In: On the Move
to Meaningful Internet Systems: OTM 2007
Workshops, pp. 783-793, 2007.

