
1 

 
 

Combining System Introspection with User-Provided Description to Support 
Configuration and Understanding of Pervasive systems 

 
Chris Greenhalgh1, Kevin Glover1, Jan Humble2, Jamie Robinson3, Steve Wilson3,  

Jeremy Frey3, Kevin Page4, David De Roure4 
1School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK 

{cmg,ktg}@cs.nott.ac.uk 
2Progress Software, 200 Rustat House, Clifton Road CB1 7EG Cambridge, UK 

jan.c.humble@gmail.com  
3School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK 

{j.m.robinson, sw1703, j.g.frey}@soton.ac.uk 
4School of ECS, University of Southampton, Southampton SO17 1BJ, UK 

{krp,dder}@ecs.soton.ac.uk 
 
 

Abstract 
 

Pervasive computing systems such as smart spaces 
typically combine multiple embedded and/or mobile 
sensing, computing and interaction devices. A variety of 
distributed computing approaches are used to integrate 
these devices to support coordinated applications. This 
paper describes how simple user descriptions of 
(primarily) physical aspects of such a system can be 
combined with information from system introspection to 
make the system and its log recordings more 
understandable to potential users, as well as supporting 
easier configuration and monitoring, and allowing the 
expression of certain kinds of system behaviour that are 
otherwise hard to achieve.  
 
Keywords: Pervasive Computing, Semantic Web. 
 

1. Introduction 
 

The field of pervasive computing is founded on the 
proliferation of computing devices, including mobile 
and personal devices (mobile phones, PDAs, laptops, 
etc.), “traditional” desktop and server computers, 
digitally augmented objects (from key rings to cars) and 
diverse devices such as sensors and displays embedded 
within buildings and other settings. Mark Weiser [1] 
articulated one influential vision of how such devices 
might work together in a ubiquitous computing 
environment.  

This paper describes how simple user descriptions of 
(primarily) physical aspects of such a system can be 
combined with information from system introspection to 
make the system and its data logs more understandable 
to potential users, as well as supporting easier 
configuration and monitoring. We achieve this using 

Semantic Web techniques, an established approach [2] 
but applied here in a new way. 

Many computational and informational applications 
of computers are essentially independent of the specific 
hardware they employ or its situation. For example, 
information published through the World Wide Web or 
large numerical simulations on supercomputers can 
often be thought of just as ‘bytes’ or ‘flops’, essentially 
independent of their physical manifestation (give or take 
performance, latency, instruction set or access control). 
However many pervasive computing applications are 
fundamentally dependent on the particular hardware 
used and its situation. For example, a sensor network [3] 
consists of a coordinated array of sensor devices which 
are each intended to sense something in particular, such 
as the temperature or illumination, of the specific 
physical setting in which they are placed. To run the 
same sensing ‘task’ on devices somewhere else would 
be nonsensical.  

However, when viewed from ‘inside’ a 
computational device, i.e. from within the digital or 
informational domain (such as software running on one 
of these sensors), the ‘view’ of the physical setting is 
profoundly limited. In this example, the ‘temperature at 
the eastern shore’ is likely to be a single fixed point 
number, being captured from an unremarkable I/O 
interface on one particular sensor node.  

A variety of networking and distributed computing 
approaches are used to support pervasive computing 
systems and applications, and these can effectively 
overcome many of the challenges that arise in such 
systems. For example, the software running on the 
sensor network nodes may establish and maintain a 
spanning wireless network and coordinate data 
collection, querying and archiving across the whole 
sensor network, automatically reconfiguring the system 
if a sensor node fails [4]. 
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However, we argue that there are many things that 
the supporting software will never be able to do without 
information from ‘outside’ the pervasive computing 
system, most commonly from the system’s (human) 
designers or users. In this example, only the person 
wiring up the sensor node knows which A/D input is 
connected to the temperature sensor. Even if a system 
used ‘smart’ (self-describing) sensors it would still not 
know which of two temperature sensors was being used 
for which particular purpose. Only the person physically 
placing the sensor node knows exactly where it is. Even 
if the system included a location system such as GPS it 
would have limited precision, and would not capture 
potentially important location-related information such 
as whether it was in the lea of a nearby rock. 

In section 2 we describe an instrumented chemistry 
lab, and the way that this is represented through the 
supporting software infrastructure. In section 3 we 
present the Physical Configuration Manager, the proof 
of concept application that we have developed using 
semantic web technologies to combine system 
introspection with user-provided description. Section 4 
shows how this application – and the approach more 
generally – can support configuration, visualisation and 
specification of behaviours. In section 5 we consider 
outstanding issues and reflections. Finally section 6 
concludes this paper. 
 

2. Background 
 

The particular and practical example that we 
consider in this paper is a chemistry lab in which 
significant elements of an experiment can be automated 
and left running unattended. However this means that 
the chemist may not be present in order to observe 
problems occurring during the experiment (such as a 
failure of the air conditioning). In other situations (e.g. 
anomalous results) it may be important to review the 
circumstances surrounding the preparation for and 
running of the experiment, with a view to ruling out 
possible errors such as contamination of samples. 

 In [5] we describe how we have previously used 
embedded sensors (temperature, humidity, light, PIR 
and door switches) and data feeds from other equipment 
and devices in one chemistry lab to support remote 
monitoring and historical review of lab conditions 
during experiments. We are continuing to use the same 
technologies within another nearby lab, which is the 
specific example used in this paper. 

Consider a single sensor, for example one PIR sensor 
in a lab. The sensor’s output is physically wired to one 
particular input on a data capture board, which in turn is 
connected to a particular computer. Software running on 
this computer, given the appropriate drivers, can 
interface to the data capture board and check the current 
state of each input, typically receiving a number which 
corresponds to the input voltage. One of the main 

concerns of this paper is: what does this number mean 
and how does a user know this?   

The prototype presented in this paper is built on top 
of the EQUATOR Component Toolkit (ECT) [6], which 
is a middleware for prototyping (primarily) smart spaces 
and augmented artifacts. The primary building block in 
ECT is a software component, of which there are 
several kinds including hardware interface components, 
behaviour specification components (such as scripts) 
and user interface components (such as Processing 
applets). ECT provides a framework in which such 
components can be created, managed and inter-
connected across a distributed set of computers. It also 
provides a set of user applications or tools for doing 
this. 

In the case of the instrumented chemistry lab, data 
from the in situ sensors is initially exposed as messages 
distributed over a MQTT (Message Queue Telemetry 
Transport) protocol connection to an IBM Message 
Queue (MQ)-based middleware as described in [5], 
rather than via ECT. However a general purpose MQTT 
Bridge component in ECT allows this live data to be 
exposed within ECT in a similar way (in this case the 
software configuration requires network details of the 
MQ server to be used, and the message topics to 
subscribe to). 

Whether connected directly or via some other 
middleware, the data from the PIR sensor (for example) 
can be viewed and used within the ECT-based system, 
e.g. to trigger other software components (such as 
graphical interfaces), and can be recorded using ECT’s 
general logging facilities.  

However looking exclusively at the views available 
from within the software – from within the digital 
domain – it is not at all clear what that value represents, 
i.e. that ‘1’ actually means ‘movement has been detected 
in a certain portion of chemistry lab 5017’. This issue 
may manifest as the system is deployed. It is even more 
likely to become problematic as time passes and other 
people get involved, both with the running system, and 
with data logged or recorded from the system: what 
does the data mean? 

To expose the input from a PIR sensor in ECT a 
compatible hardware interface component must be 
created on the machine that is connected to the data 
capture board, and this component must be configured 
to communicate with the board (e.g. specifying a COM 
port or other hardware identifier). The view of the 
hardware interface component from within ECT will 
then reflect the current state of each analogue input, 
including the PIR sensor, as a set of component 
property values. 

 

3. The Physical Configuration Manager 
  

The Physical Configuration Manager (PCM) (see 
figure 1) is an alternative user interface for ECT which 



3 

combines information derived from introspection of the 
running (software) system with user-provided 
descriptions of the hardware in use and the physical 
context. Work on the PCM was initially motivated by 
the conjecture that pervasive systems such as this might 
be easier to understand by having first-class 
representations of the physical and hardware elements 
of the system as well as the digital and software 
elements. Although this prototype is built specifically as 
a client for ECT, the same principles could be applied to 
other middleware for pervasive computing. 

This section describes the architecture and general 
operation of the PCM; the following section gives 
examples of its use and capabilities. The PCM is 
implemented in Java using the Eclipse Rich Client 
Platform (RCP), i.e. it is a “heavyweight” desktop 
application. Its architecture is as shown in figure 2 and 
described below. It is implemented using the JENA  
open source RDF framework for Java.  

The internal world model is defined using a 
relatively simple OWL ontology and maintained in a 
JENA RDF model (figure 2, centre). The graphical user 
interface consists of a number of Eclipse/RCP views 
which display different subsets and representations of 
this common model, e.g. a “physical” view (figure 1, 
top right), a software component view, a properties view 
(figure 1, bottom centre). Changes in the JENA model 

trigger events which cause the views to be updated (a 
typical model-view-controller approach).  

The system connects to a running ECT system (or 
can start a new one), and continuously introspects the 
running system to find: all computers that are part of the 
system (such as that presented by the computer icon in 
figure 1), all software components that are currently 
running, all software components that can be created 
and all links currently established between software 
components. This introspection is a standard capability 
of ECT. This information is mapped to the ontology and 
published and maintained in the common model, which 
therefore is kept up to date with the state of the software 
system.  

Through a simple drag and drop interface the user 
can identify physical ‘things’ that are currently to be 
considered as part of the system (figure 1, left, top & 
bottom, and the ‘user-described’ items in the main 
view). These can include: sensors such as the PIR 
sensor, devices such as the data capture board, locations 
such as the lab or other significant entities. Internally, 
these are cloned from the ‘possible things’ RDF model 
to the common model.  

Linked to the common model is a forward-chaining 
rule engine (the standard RETE engine provided in 
JENA). As the model changes – due to user action or 
changes in the software system – these rules can fire to 
add or remove inferences to or from the current model. 

Figure 1. Screen image of the Physical Configuration Manager showing a view of a 
chemistry laboratory. 
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The rules include both standard entailments (more or 
less those of RDF Schema) and rules specific to the 
PCM. As statements are added to and removed from the 
common model the user interface views will update or 
animate accordingly. In addition, the presence of certain 
kinds of statements will cause the software executive 
(figure 2, bottom right) to make changes to the running 
ECT system and components, for example creating new 
software components, configuring them or connecting 
them together.  
 

4. Examples of use 
 

We will demonstrate how the Physical Configuration 
Manager (PCM) can provide help with: configuration 
and initial deployment of a system; visualising and 
understanding a system; and realizing higher-level 
behaviours. The configuration example shows how user-
described things could cause software components to be 
created and configured. The visualisation example 
shows how the presence of software component(s) can 
imply the existence of physical things, and also be used 
to infer and show the state of physical things.  
 
4.1. Configuration 
 

In order to interface to the chemistry lab sensors 
from ECT the user must create the right software 
component to act as an MQTT bridge, and then 
configure it with the correct IP address, port number 
and topics of interest. Previously in ECT this would 
have been done using the graphical software component 
view. The PCM, through system introspection, has the 
same knowledge of ECT software components, and can 
render a similar software component view and editor. 

However, the PCM also allows non-ECT elements of 
the system to be described and worked with. In this 

case, one of the authors has used the ontology to 
describe a “SmartLab MQTT Broker” physical thing. 
This RDF is initially loaded into the “possible things” 
model, and is visible in the “possible things” view 
(figure 1, top left). This description includes various 
information about this physical thing, in particular the 
kind of ECT software component that can interface to it, 
and the configuration information required in this 
particular case (IP address, port, topic). Now to connect 
to this particular broker the end-user: drags it from the 
“possible things” view to the main view (or to the 
“active things” view); and visually connects it to the 
ECT host computer in the main view (drawing a line 
between them, visible in the top-left corner of the main 
view in figure 1). 

The standard PCM ontology and rule set support the 
idea that ECT software components can be ‘proxies’ for 
physical (external) things. Given the above description, 
the creation of the visual connection between the 
“SmartLab MQTT Broker” physical thing and the ECT 
host computer creates an ect:Association in the common 
model which causes rules to fire which: create a new 
MQTT Bridge software component (via the creation of 
a ‘ect:createComponentRequest’ statement, seen by the 
software executive), set the configServerUrl, 
configTopics and configured properties on the new 
component, and establish in the world model a ‘proxy’ 
relationship between the user-described “SmartLab 
MQTT Broker” physical thing and the corresponding 
MQTT Bridge software component.  
 
4.2. Visualisation 
 

To continue with this example, the MQTT Bridge 
software component connects to the external MQ broker 
which is distributing the sensor messages from the lab. 
As new messages are received it dynamically creates 
new MqttTopic software components within the ECT 
system to represent each message type (in this case this 
corresponds to each sensor in the lab). These are 
observed by the PCM as it monitors the ECT system, 
and are directly reflected in the software component 
view. Each MqttTopic (like the underlying message) has 
a ‘topic’ property (e.g. 
“/combeChem/30:5017/Calibrated/4/TP-1” – one of the 
temperature sensors in the lab), a ‘value’ property (e.g. 
“26.36”) and a date/time when this value was measured.  

The configuration example showed how user-
described things could cause software components to be 
created and configured; in this case the presence of 
software component(s) implies the existence of physical 
things, in particular a temperature sensor. A custom rule 
causes a “genericMqttTemperatureSensor” from the 
possible things view to be created for each topic that 
matches the pattern “.*/TP-.*” (which is the common 
practice adopted in the lab to assigning topics to 
temperature sensor values). Note that this uses a custom 

ECT 

active 
things 

possible things 

Combined internal  
“world” model 

Automatic 
description of 

software system 

inferences 

RETE Rule 
engine Views 

Software 
executive 

User 

JENA/
RDF 

introspection control 

User-provided 
description rules ontology 

Figure 2. Internal architecture of the 
Physical Configuration Manager. 
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rule engine function “CreateResource”, which in the 
case copies the RDF subgraph describing an MQTT 
temperature sensor. The iconic representation of this 
inferred temperature sensor is visible towards the right 
of figure 1.  

Another set of rules identifies relationships between 
described things and software components irrespective 
of whether user-described things cause the creation of 
the software components, or vice versa, or each is 
independently created. This correspondence is generally 
modelled by the software entity (component or 
property) having a “ect:hasProxy” relationship to the 
described (physical) thing. In this example the 
“SmartLab MQTT Broker” thing in the physical view is 
the proxy for the MQTT Bridge component, the 
temperature sensor is the proxy for the appropriate 
MqttTopic component, and in addition the gauge of the 
temperature sensor representation is the proxy for the 
MqttTopic’s ‘value’ property.  

In this situation the rules infer that the property’s 
value (in this case, the temperature) should also be 
associated with the described thing (in this case, the 
temperature sensor’s gauge). This associated value can 
be used to animate the visual display in various ways, 
for example in figure 1 the temperature sensor icon’s 
central column moves up and down as the value changes 
(like a mercury thermometer) while the PIR sensor’s 
‘activity’ indicator (a red square on the icon in figure 1) 
is visible only when the sensor is reporting activity. For 
positional sensors, the position of icons in the physical 
view can be modified as the sensed positions change. 

Figure 1 also shows a plan of the lab space. This is 
purely a user-described thing – there is no explicit 
manifestation within ECT of that location. But within 
the context of the PCM physical view it provides a 
common reference frame for the placement of the 
physical devices. The various devices can also be 
dragged ‘into’ the lab location in that view and this 
locatedness is explicitly represented and exploitable 
within the common model. 

Note that this visualisation or representation of the 
combined physical-software system can be useful in a 
number of different situations and contexts. During the 
initial deployment and configuration of the system it 
provides a common representation and at-a-glance 
indication of the system state. While the system is in 
ongoing use this view can provide a direct and hopefully 
intuitive view of the state of the system. It also 
encompasses a lot of the information that is needed 
when updating, maintaining or trouble-shooting the 
system (especially if the original hardware interfacing is 
also done with ECT and the PCM). Finally, it can be 
used to re-establish the context and meaning of 
historical data, such as that captured using ECT’s 
standard logging facilities (which can be used to record 
all of the activity with the ECT system and re-play or 
review it).    
 

4.3. Behaviour 
 

ECT (without the PCM) can be used to create a 
range of interactive system behaviours. For example, the 
various PIR sensor values from one room could be 
connected to a scripting component which combines 
their values to give a whole-room estimate of activity.  
The output from this could be connected to a relay 
output to switch a light or other indicator in another 
office to indicate (in)activity in the lab.  

However, the PCM enhances this in two ways. First, 
given appropriate rules and descriptions the user can 
work in terms of the items in the physical view, rather 
than the generally intangible software components and 
properties of the ECT system itself. In another context 
we have been exploring the use of the PCM by museum 
curators to prototype interactive Augmented Reality 
installations, and in this application the main method of 
configuring the installation is by selectively linking the 
various described entities to imply specific relationships 
and interactions [7].  

Second, some forms of behaviour are relatively easy 
to express in terms of RDF rules (in the PCM) but very 
hard to express through the data-flow transformations 
between component property values which are normally 
used in ECT. For example, a ECT Phidget RFID reader 
component publishes in ECT the IDs of the RFID tags 
that are currently in range of the reader. In the PCM the 
user-description can specify that a particular RFID tag is 
actually attached to a particular chemical sample. A 
straightforward rule can then infer that if (a) a certain 
RFID reader is reading a certain ID and (b) it is known 
(user-described) that that ID is associated with a certain 
sample and (c) it is known (user described) that the 
RFID reader is in a certain lab, then that sample must be 
in that lab at that time (and the visualisation will be 
updated accordingly). This is essentially the strategy 
used in many semantically oriented pervasive 
computing systems (e.g. [8]). 
 

5. Discussion and future work 
 

Having described the Physical Configuration 
Manager and given examples of its utility we now 
consider a number of other significant issues and 
aspects, including areas for further development. 
 
5.1. Initial experiences 
 

As reported in [7], initial experiences with museum 
curators and the Physical Configuration Manager have 
been generally very positive. They found the tool easy 
to use and easy to understand, and were able to quite 
rapidly create and evolve a range of interactive systems 
(in that case combining sensor and video inputs and 
audio and 3D graphical outputs). This lends support to 
the hypothesis that the “physical” perspective supported 
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by the PCM is accessible and comprehensible to users 
with no knowledge or particular understanding of the 
underlying software component infrastructure or 
concepts.  

The main limitation that they encountered was in the 
range of behaviours and interactions that they could 
specify, which is essentially the range of behaviours 
specified in the rule set they were working with: without 
being reasonably expert in RDF and inference they were 
not in a position to “open the box” and extend the 
capabilities of the system themselves (this is also 
considered in section 5.3).  
 
5.2. Performance and scale 
 

Applying the PCM to the chemistry lab as presented 
here has been reasonably straightforward. However we 
have encountered some problems of scalability: when 
first connecting to the MQTT broker, if all of the 
available topics are received (several dozen) the PCM 
runs out of memory in the process of creating the 
various physical representations of the inferred sensors. 
More generally, the current version has a single physical 
view area (which can be zoomed in and out), and 
consequently has limited support for working with large 
systems or visualisations (e.g. no multiple pages, no 
nested pages). The ECT system itself, which underlies 
the PCM, is also limited in the scale at which it can 
sensibly be used, specifically across a handful of 
machines within a single organization (with a reliable 
network).  

Part of the vision which lies behind the work on the 
instrumented chemistry lab in particular is the idea of 
publication at source [9], which implies that data from 
the lab – including relevant environmental data such as 
that considered here – should be reachable as part of the 
provenance trial of any academic publication which 
ultimately reports on the work. The work presented here 
contributes to this vision in that the PCM visualisation 
and the user-provided and inferred description which 
underlie it should make such data understandable to a 
reviewer or researcher wishing to explore a trail of data 
provenance. However neither ECT nor the PCM 
currently have any direct link to the kind of large-scale 
archival framework that this implies.  

A light-weight starting point might simply be to 
deposit a saved (RDF-XML) copy of the common 
“world” model along with the corresponding ECT log in 
whatever archival framework is being used. In addition, 
where the system is actively evolving, the PCM 
metadata can also be woven into the time-based ECT 
log as it is generated. The Digital Replay System (DRS) 
includes basic support for replaying ECT logs, which 
can then be re-viewed using the PCM. 

 
 
 

5.3. Extending and customising 
 

The current version of the Physical Configuration 
Manager incorporates the ontology (OWL in RDF-XML 
format), possible thing descriptions (RDF-XML files) 
and both the standard and component and application-
specific rules (in the textual format of the JENA rule 
engine).  

Adding support for a new purely physical thing (e.g. 
a new room of interest) currently requires hand-
authoring of appropriate RDF thing description(s). 
Support for another software component and/or 
hardware device also requires hand-authoring of 
appropriate RDF descriptions of the device, with 
annotations that describe its relationship to the 
corresponding software component(s) (e.g. 
configuration property settings). To create new 
descriptions automatically from running software 
components (as in 4.2) also requires the specification of 
the additional rules to do this. Specifying new rule-
behaviours obviously requires the specification of such 
rules, but may also require supporting additions to the 
ontology (if the behaviour depends on concepts or 
properties that are not already modeled). Adding a new 
kind of animation of visualisation requires extensions to 
the Java implementation of the appropriate view 
elements within the Eclipse/RCP implementation of the 
PCM.  

All of these tasks require skills and experience well 
beyond that required to simply use the Physical 
Configuration Manager (e.g. ability to write specific 
RDF-XML). To some extent this issue is ameliorated 
because much of this work need only be done once, e.g. 
when a new software component is written. This can 
then be included with the standard distribution (or 
distributed through ECT with the software components 
themselves, as is currently the case for the user 
documentation of the software components).  

There are other examples, however, where an end-
user might reasonably want to make additions to the 
system, for example specifying new specific instances of 
existing classes (another room, another MMQT broker, 
another RFID-tagged sample holder). This implies that 
the PCM user interface should also allow some limited 
and specific additions – mainly to the set of possible 
things – to be done simply and graphically by non-
expert users.  
 
5.4. Related work 
 

Our work extends a body of work in Semantic Web 
and pervasive computing [1,8,10] by providing a case 
study of  introspection, configuration and 
understanding. A clear parallel can be seen between this 
and the semantic annotation of Web Services. However 
the kinds of configuration and behaviour choices being 
made in a system such as the one described are not 
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necessarily a good fit for a semantic service model. For 
example, the challenge is not generally to find a 
“semantically compatible” service (e.g. [11, 12]), but to 
work in a coordinated way with the particular physical 
and digital entities that are at hand. Also, the kinds of 
visualisations and interactions that are seen in the PCM 
(e.g. plans and maps) fit well with pervasive computing 
systems (especially smart spaces and location-based 
systems) but do not apply as naturally or universally to 
the more abstract data and process flows found in 
general Web Services.  

In terms of systems intended to support pervasive 
computing applications the Physical Configuration 
Manager provides a concrete answer to the often 
overlooked question of where semantically rich 
descriptions actually come from in the first place. It also 
demonstrates one way in which semantics can be 
brought into play in such a system which is more 
general in scope than an “add-on” for service discovery, 
but which does not necessarily require universal support 
for semantics. While there are many similarities of 
implementation technology with [8], the emphasis there 
is on inferring and abstracting context information from 
“lower level” information in order to create applications 
based on the derived higher-level context. The PCM 
shows how the semantic level can usefully link directly 
back to the “lower level” devices and components, and 
also how the developer and user can (and probably 
should) be involved and supported in this process. 
 

6. Conclusions 
 

In this paper we have demonstrated how simple user 
descriptions of (primarily) physical aspects of a 
pervasive computing system (in particular an 
instrumented chemistry lab) can be combined with 
information from software system introspection to make 
the system more understandable to potential users, as 
well as supporting easier configuration and monitoring, 
and allowing the expression of certain kinds of system 
behaviour that are otherwise hard to achieve.  

The Physical Configuration Manager is a usable 
proof of concept realization of this proposition, which 
employs semantic web technologies to combine and 
reason across user-provided descriptions and run-time 
system information. The same philosophy and approach 
could be applied to other systems and middleware.  

ECT and the Physical Configuration Manager are 
available under the BSD open source licence from 
SourceForge (CVS branch ‘semanticmedia’). 
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