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Abstract— This paper proposes a new robust design of power
system stabilizers (PSSs) in a multimachine power system using
a heuristic optimization method. The structure of each PSS
used is similar to that of a conventional lead/lag stabilizer. The
proposed design regards a multimachine power system with
PSSs as a multi-input multi-output (MIMO) control system.
Additionally, a multiplicative uncertainty model is taken into
account in the power system representation. Accordingly, the
robust stability margin can be guaranteed by a multiplicative
stability margin (MSM). The presented method utilizes the MSM
as the design specification for robust stability. To acquire the
control parameters of PSSs, a control design in MIMO system
is formulated as an optimization problem. In the selection of
objective function, not only disturbance attenuation performance
but also robust stability indices are considered. Subsequently,
the hybrid tabu search and evolutionary programming (Hybrid
TS/EP) is employed to search for the optimal parameters. The
significant effects of designed PSSs are investigated under several
system operating conditions.

Index Terms— Robust control, tabu search, evolutionary pro-
gramming, optimization problems, multivariable control system,
power system stabilizer.

I. INTRODUCTION

The insufficient damping of an electromechanical oscillation
mode (EMO) always causes an unavoidable low frequency
oscillation (0.2-2.5 Hz) in a power system. To solve this
problem, a power system stabilizer (PSS) is regarded as a
significantly effective device to increase the damping of EMO
mode via an excitation system [1]. In addition, the structure of
a conventional PSS (CPSS) is a lead/lag controller with speed
or electrical power deviations input. Therefore, it is easy to
implement in practice.

However, the main problem of CPSS is the parameter tuning
of lead/lag controllers. Many heuristic approaches have been
successfully applied to achieve the control parameters, such as
tabu search [2], genetic algorithm [3] and simulated annealing
[4]. In these studies, however, the uncertainty model was not
embedded in the mathematical model of the power system.
Furthermore, the robust stability against system uncertainties
of PSS was not considered in the optimization process. There-
fore, the robust stability margin of PSSs mentioned above may
not be guaranteed in the face of uncertainties.
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In this paper, a new robust design of PSSs in a multi
machine power system is proposed. The presented method
translates the design problem to a multi-input multi-output
(MIMO) control system. In addition, effects of system non-
linearity such as modelling and characteristics of synchronous
machines, system loading conditions, variations in power
system configuration due to unpredictable disturbances, etc.
are treated as system uncertainties. Accordingly, system un-
certainties represented by a multiplicative uncertainty model
are incorporated in the mathematical model of the study
system. As a result, a robust design of MIMO system can
be formulated as an optimization problem. The control pa-
rameters of PSSs are optimized by the hybrid tabu search and
evolutionary programming (Hybrid TS/EP). In the objective
function, not only the disturbance attenuation performance but
also robust stability indices are included. Based on the applied
uncertainty model, the multiplicative stability margin (MSM)
can be regarded as the design specification. The evaluation of
control effects are carried out in the case of two-area four-
machine power system.

The organization of this paper is as follows. Section II
explains the proposed design method. Next, the Hybrid TS/EP
algorithm is given in section III. Subsequently, the evaluation
study is shown in section IV. Finally, the outcomes from this
paper are summarized.

II. CONTROL PROBLEM FORMULATION

A. Linearized Model of Power System

The study power system consists of 4 generators in 2 areas
as illustrated in Fig. 1, [5]. It is represented by a linearized
model around a designed operation point. Each generator is
equipped with a simplified exciter and is represented by a 5-
state transient model.
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Fig. 1. A single-line diagram for the two-area four-machine power system.
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The state equations of a linearized power system (AS , BS ,
CS , DS) in Fig. 1 can be expressed as:

∆
•
x = AS∆x+BS∆uPSS ,

∆y = CS∆x+DS∆uPSS , (1)

∆uPSS = KPSS(s)∆ω,

where, ∆x =
[

∆δ ∆ω ∆e′d ∆e′q ∆Efd

]T
, (5n×1);

∆y = ∆ω, (m× 1); ∆δ denotes the deviation of rotor angle,
(n × 1); ∆ω is the deviation of rotor speed, (n × 1); ∆e′d
and ∆e′q are the deviations of transient internal voltages of a
generator in d-axis and q-axis, respectively, (n× 1); ∆Efd is
the deviation of field voltage, (n×1); KPSS(s) is the diagonal
controller with designed PSSs as diagonal elements, (m×m);
∆uPSS is the control output signal of KPSS(s), (m× 1); n
and m are the numbers of machines and PSSs, respectively.
Note that the system (1) is an MIMO control system and is
referred to as the nominal plant G.

B. PSS Structure

The transfer function of PSS is in a form of a lead/lag
controller as:

∆uPSS,i = Ki · sTw

1 + sTw
· 1 + sT1i

1 + sT2i
· 1 + sT3i

1 + sT4i
· ∆ωi,

i = 1, . . . ,m, (2)

where, ∆uPSS,i and ∆ωi are the control output signal and the
rotor speed deviation at the i-th machine, respectively; Ki is
a controller gain; Tw is a wash-out time constant (s); and T1i,
T2i, T3i, and T4i are time constants (s).

In this paper, Tw is set to 10 s. The control parameters
Ki, T1i, T2i, T3i, and T4i are searched based on the objective
function explained in the following subsection.

C. Determination of Objective Function

In derivation of the objective function, both attenuation
performance of system disturbance and robust stability of
control system against system uncertainties are taken into
consideration. Since the main purpose of the PSS control is
to improve the system damping following any disturbances,
therefore, the damping ratio (ζ) of EMO mode is used as a
design specification. Assuming that eigenvalues corresponding
to the mode of oscillation can be determined as −σ ± jωd,
the damping ratio is given by:

ζactual =
−σ√
σ2 + ω2

d

. (3)

The desired damping ratio of the eigenvalues corresponding
to the mode of oscillation is specified as ζdesired. Accordingly,
the difference between the desired and the actual damping
ratios can be defined as:

ψ = |ζdesired − ζactual| . (4)

Note that the disturbance attenuation performance increases
when ψ is minimized.

Here, the D-Stability region is exploited to guarantee the
desired damping ratio and the real part of controlled EMO

Fig. 2. D-Stability Region.
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Fig. 3. Feedback system with multiplicative uncertainty.

mode. As shown in Fig. 2, ζ0 and σ0 are set at 30 % and -0.5,
respectively.

For the robust stability of a system, the plant uncertainty is
modelled as a multiplicative form [6] demonstrated in Fig. 3.
∆m is a stable multiplicative uncertainty. Based on the small-
gain theorem, the closed loop system will be robustly stable
if

|∆m| < 1
|G ·KPSS(1 −G ·KPSS)−1| , (5)

where, the symbol |•| shows the magnitude of transfer function
(•). Note that G·KPSS(1−G·KPSS)−1 is the complementary
sensitivity function, T . Based on this uncertainty representa-
tion, the robust stability margin can be guaranteed in term
of MSM. In other words, MSM also implies the maximum
uncertainty bound and can be calculated by

MSM =
1

‖T‖∞
, (6)

where, ‖T‖∞ is the ∞-norm of T . From (5) and (6), it is clear
that by minimizing ‖T‖∞, the MSM increases and the robust
stability will be ensured [6]. Thus, the normalized robustness
index of the objective function is defined as:

γ = ‖T‖∞ / ‖T‖∞(initial) , (7)

where, ‖T‖∞(initial) is the ∞-norm of T at the initial of a
search process.

Combining (4) and (7), the control problem can be formu-
lated as the following optimization problem:

Minimize C (Ki, Tji) = ψ + γ,

subject to Kmin ≤ Ki ≤ Kmax, i = 1, . . . ,m, (8)

Ti,min ≤ Tji ≤ Ti,max, j = 1, . . . , 4,
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where, C(Ki, Tji) is the objective function. The minimum
and maximum values of the gain Ki are set as 1 and 500,
respectively. The minimum and maximum values of the time
constants Tji are set as 0.01 and 1, respectively. In this paper,
the hybrid tabu search and evolutionary programming method
(Hybrid TS/EP) introduced by [7] is applied to solve the
optimization problem.

III. HYBRID TABU SEARCH AND EVOLUTIONARY

PROGRAMMING METHOD (HYBRID TS/EP)

A. Initialization

The actual parameters of the N parameters, Pi, i = 1, . . . ,
N , are randomly generated between the minimum actual pa-
rameters (Pi,min) and the maximum actual parameters (Pi,max)
of the k-th individual solution, Xk = [P k

1 , . . . , P
k
i , . . . , P

k
N ],

k = 1, . . . , NP , where NP is the population size. After
initializing the individual solutions in the population, the
objective function in (8) is used to verify the quality of initial
individuals. The best initial individual is recorded into the tabu
list (to be discussed in Subsection III-C).

Furthermore, for each generation, Hybrid TS/EP performs 5
operations: perturbation strategies, tabu list restriction, fitness
function evaluation, rank selection with elitism, and adaptive
parameter setting strategies (to be discussed in Subsection III-
B, III-C, III-D, and III-E, respectively).

B. Perturbation Strategies

In this paper, hybrid TS/EP use mutation as a diversification
searching strategy and arithmetic crossover [8] operator as an
intensification searching strategy to obtain the optimal or near
optimal solution [7].

1) Mutation: The offspring individuals (the new trial
solutions) obtained from mutation process, Xnew

k =
[P k,new

1 , . . . , P k,new
i , . . . , P k,new

N ], k = 1, . . . , Nm, are de-
fined as:

P k,new
i = P k

i +H(0, µi), i = 1, . . . , N, (9)

where,
P k

i : the i-th actual parameter of k-th parent indi-
vidual;

H(0, µi): a uniform random variable with variance, µi;
µi: |Ck/Cmax|(Pi,max − Pi,min)β, i = 1, . . . , N ;
Ck: the objective value of the k-th parent individ-

ual;
Cmax: the maximum objective value in the parent

population;
β: an adaptive mutation scale;
Nm: the number of mutated individuals.

Note if P k,new
i is higher or lower than its operating limits, set

it to the limit.
2) Arithmetic Crossover: Based on the inherited genotypes

of two randomly selected parent individuals Xk1 and Xk2, the
offspring individuals obtained from the arithmetic crossover,
Xnew

k = [P k,new
1 , . . ., P k,new

i , . . . , P k,new
N ], k = Nm +

1, . . . , NP , are formulated by:

Xnew
k = Xk1 + u · (Xk2 −Xk1), (10)

where, u is defined as a uniform random number ranges from
zero to one.

C. Tabu List Restriction

The tabu list (TL) is used to keep best offspring individuals
(solution vectors) in past iterations. During the search process,
a new solution vector enters TL and the oldest one is released,
as shown in Fig. 4. In particular, this technique prevents a
cycling of visited offspring individuals in the perturbation
process by forbidding perturbed individuals, which are similar
to those in TL, from being used as solution candidates [9].
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Fig. 4. Mechanism of Tabu List.

In general, if the size of TL is too small, the cycling of
solution occurs in the search process. On the other hand, if
the size is too large, the search process is in less diversity.
Hence, the appropriate size in our applications is between 7
and 30.

For each generation counter g, the tabu list size (TLS)
must be satisfied under the condition, 0 ≤ TLS ≤ τ(g). τ(g)
is the maximum allowable of tabu list size (to be discussed
in subsection III-E). The tabu restriction for k-th individual,
k = 1, . . . , NP can be expressed as:√√√√ N∑

i=1

(
P k,new

i − P tabu,t
i

Pi,max − Pi,min

)2

< (d0 · ηg ∆= dtabu),

t = 1, . . . , TLS, (11)

where, dtabu is the tabu distance; d0 is the initial value of tabu
distance (= 5 × 10−4); η is the drop factor (= 0.95); P tabu,t

i

is the i-th actual parameter of the t-th tabued solution in TL.
At the beginning, a higher dtabu is used to provide di-

versification in order to reduce the search effort towards the
optimal region. Moreover, the intensification will occur when
the generation counter g reaches the maximum generation
limit, gmax.

D. Fitness Function Evaluation and Rank Selection with
Elitism

The fitness function is evaluated based on a distance term
and an objective function term. It can be formulated by:

Fk = 4 ·NP − (RCk + α ·RDk),
k = 1, . . . , 2 ×NP, (12)

where,
Fk: the fitness score of the k-th individual,k = 1, . . . , 2×

NP ;
α: an adaptive decay scale, which can be obtained from

(15);
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RCk: the integer rank score of Ck of the k-th individual
can be assigned by the lowest score (= 1) for the
lowest Ck and the highest score (= 2×NP ) for the
highest Ck;

RDk: the integer rank score of Dk of the k-th individual
can be assigned by the lowest score (= 1) for the
highest Dk and the highest score (= 2 × NP ) for
the lowest Dk;

Ck: the objective value of the k-th individual;

Dk, the summation of distance between the k-th individual
and each visited solution vector in TL, can be expressed as:

Dk =
TLS∑
t=1

√√√√ N∑
i=1

(
P k

i − P tabu,t
i

Pi,max − Pi,min

)2

, (13)

where, P k
i is the i-th actual parameter of the k-th individual.

With the rank selection operator, the NP highest fitness
score individuals will be chosen as parent individuals for next
generation. Those individuals are obtained from a combined
population (2×NP ) of the old parent population and the off-
spring population. This strategy is used to avoid the premature
convergence of solution.

Moreover, if a new parent population for the next generation
does not contain the current best individual, the elitism will
replace the last individual in a new parent population by the
current best individual. This technique guarantees the current
best individual surviving until the last generation.

E. Adaptive parameter setting strategies

1) Determination of Nm and Nc: The parameters setting
for Nm and Nc must satisfy the condition:

Nm +Nc = NP, (14)

where, 0 ≤ Nm ≤ NP and 0 ≤ Nc ≤ NP .
Initially, both parameters are set to 50 % of NP . For the

next generation, if the best offspring individual is better than
the best parent individual by mutation (or crossover) process,
the parameter Nm (or Nc) for the next generation will be
increased by the intensification number (I). I is set to 20 %
of NP . Nc is the number of arithmetic crossover individuals.

Otherwise, if the best offspring individual does not improve
solution quality better than the best parent individual, then both
parameter settings of Nm and Nc for the next generation will
be recovered to the old generation parameter settings.

2) Determination of α, β and τ : The parameters setting of
α, β, and τ , represented by S, can be formulated by (15). S∆ is
the step size related to each parameter. Cmin(g) is an objective
value of the best offspring individual at the generation counter
g.

At the beginning, S is set to the maximum value of
parameter setting. For the next generation, S is controlled by
the generation counter g. In this paper, βmin, βmax, and β∆

are set to 0.005, 0.5, and 0.025, respectively. αmin, αmax, and
α∆ are set to 0.005, 0.5, and 0.025, respectively. τmin, τmax,
and τ∆ are set to 7, 30, and 1, respectively.

F. Hybrid TS/EP Procedure

The Hybrid TS/EP procedure can be described as follows:

Step 1: Read the system data, and specify the parameter
settings of Hybrid TS/EP.
Step 2: Initialize the initial individuals, Xk, k =
1, . . . , NP and the design specification. Evaluate the
objective function (Ck) in (8), and update tabu list (TL).
Step 3: Initialize the generation counter g to zero.
Step 4: Execute Hybrid TS/EP operators as follow:

Step 4.1: Perform the perturbation strategies.

Step 4.1.1: Initialize the individual counter k to
one.
Step 4.1.2: Perform the mutation based on TL
restriction until the k-th offspring individual does
not satisfy TL restriction in (11).
Step 4.1.3: If k < Nm, increase the individual
counter k by one and go to Step 4.1.2.
Step 4.1.4: Initialize individual counter k to Nm+
1.
Step 4.1.5: Perform the arithmetic crossover based
on TL restriction until the k-th offspring individ-
ual does not satisfy TL restriction in (11).
Step 4.1.6: If k < NP , increase the individual
counter k by one and go to Step 4.1.5.

Step 4.2: Combine the offspring population and
parent population into a single population to evaluate
the objective value and fitness of each individual.
Step 4.3: Perform the rank selection with elitism
mechanism to update the new parent individuals from
a combined population with the old parent population
and offspring population for the next generation.
Step 4.4: Perform the adaptive parameter setting
strategies and update TL.
Step 4.5: If the generation counter g is less than the
maximum generation limit gmax, increase generation
counter g by one and go to Step 4.

Step 5: Hybrid TS/EP is terminated and the current best
individual is a solution for the robust design.

IV. EXPERIMENTAL RESULTS

The two-area four-machine power system, as delineated
in Fig. 1, is used as the study system. Details of system
data are given in [5]. PSSs are installed at all machines.
The proposed robust design based Hybrid TS/EP is developed
via the MATLAB programming language. The parameters of
designed PSSs are determined with the proposed objective
function (8) by the design procedure. NP and gmax are
set to 100 and 200, respectively. The PSSs (16a)-(16d) are
obtained for the robustly designed PSSs when the damping
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S(g + 1) =
{

Max{Smin, S(g) − S∆} ; if Cmin(g) = Cmin(g − 1)
S(g) ; if Cmin(g) < Cmin(g − 1) (15)
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Fig. 5. System responses results under the four different operating conditions.

factor ζdesired = 0.3 is appointed.

PSS1 = 11.267 · 10s
1 + 10s

· 1 + 0.384s
1 + 0.155s

· 1 + 0.112s
1 + 0.091s

, (16a)

PSS2 = 25.340 · 10s
1 + 10s

· 1 + 0.103s
1 + 0.011s

· 1 + 0.156s
1 + 0.038s

, (16b)

PSS3 = 16.128 · 10s
1 + 10s

· 1 + 0.279s
1 + 0.221s

· 1 + 0.389s
1 + 0.387s

, (16c)

PSS4 = 26.381 · 10s
1 + 10s

· 1 + 0.112s
1 + 0.010s

· 1 + 0.500s
1 + 0.495s

. (16d)

The designed PSSs are examined under four different op-
erating conditions as given in Table I. The control effects of
designed PSSs are compared with those of PSSs proposed by
Klein et al, 1992 in [10]. Note that both designed PSSs and
PSSs [10] are designed based on the same operating condition

TABLE I

OPERATING CONDITIONS.

Case study Tie line power, System operating conditions
P12 (pu)

1. NOC 1.5 -
2. HL & WL 3 one circuit 3-101 is out of service,
3. HL & CP 5.5 20% constant power load at bus 14
4. HL, WL & CP 4.5 one circuit 3-101 is out of service,

20% constant power load at bus 14
Note: NOC = nominal operating condition; HL = heavy load;

WL = weak line; CP = constant power load.

1 in Table I.

Table II shows the eigenvalues and damping ratios of the
dominant EMO modes for all case studies. Apparently, the
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damp ratios of EMO modes in case of the designed PSSs are
superior to those of PSSs [10]. Table III indicates the values
of MSM for each case study. Under various conditions, the
MSM, which is the maximum uncertainty bound, of the power
system with designed PSSs can maintain at the high value.

TABLE II

DOMINANT MODES AND DAMPING RATIOS.

Case No PSS PSSs, [10] Designed PSSs
1. NOC -0.08±j4.05 -0.78±j4.07 -1.27±j3.55

0.021 0.190 0.34
2. HL & WL -0.02±j2.84 -0.46±j2.83 -0.91±j2.43

0.007 0.159 0.35
3. HL & CP -0.05±j3.39 -0.45±j3.41 -0.93±j3.05

0.014 0.130 0.29
4. HL, WL & CP -0.01±j2.77 -0.39±j2.77 -0.82±j2.47

0.003 0.138 0.31

TABLE III

MULTIPLICATIVE STABILITY MARGINS (MSMS).

Case PSSs, [10] Designed PSSs

1. NOC 0.9831 0.8744

2. HL & WL 0.8145 0.8533

3. HL & CP 0.8489 0.8576

4. HL, WL & CP 0.7447 0.8126

The non-linear simulations [11] are carried out to show the
robustness of designed PSSs under four situations as given in
Table I. It is assumed that the three-phase fault to ground is
applied at bus 101 on one circuit of line 101-13 as shown in
Fig. 1. The fault is cleared after 20 ms and 70 ms at bus 101
and bus 13, respectively. After the fault is cleared, a faulted
circuit of line 101-13 is removed from the network.

As exhibited in Figs. 5(a) and 5(b), the designed PSSs
provide more damping effects than PSSs [10]. PSSs [10]
completely lose their control effects for operating conditions
3 and 4, as shown in Figs. 5(c) and 5(d). On the other hand,
the designed PSSs still retain system stability successfully.
This explicitly shows the superior robustness of designed PSSs
beyond PSSs [10].

V. CONCLUSION

A new robust control design of power system stabilizers
in a multimachine power system is proposed in this paper.
The Hybrid TS/EP is employed to search for the optimal pa-
rameters of PSSs. According to the multiplicative uncertainty
model, the MSM can be used to guarantee the robust stability
of designed PSSs. Simulation study reveals that the designed
PSSs provide the significant damping performance and robust
stability against various system uncertainties.

REFERENCES

[1] Y. Yu, Electric Power System Dynamics. Academic Press, 1983.
[2] Y. Abdel-Magid, M. Abido, and A. Mantawy, “Robust tuning of power

system stabilizers in multimachine power systems,” IEEE Trans. Power
Syst., vol. 15, no. 2, pp. 735–740, 2000.

[3] Y. Abdel-Magid, M. Abido, S. Al-Baiyat, and A. Mantawy, “Simultane-
ous stabilization of multimachine power systems via genetic algorithms,”
IEEE Trans. Power Syst., vol. 14, no. 4, pp. 1428–1437, 1999.

[4] M. Abido, “Robust design of multi-machine power system stabilizers
using simulated annealing,” IEEE Trans. Energy Conversion, vol. 15,
no. 3, pp. 297–304, 2000.

[5] G. Rogers, Power System Oscillations (CD-ROM). Kluwer Academic
Publishers, 2000.

[6] B. Shahian and M. Hassul, Control System Design using MATLAB.
Prentice Hall, 1993.

[7] W.-M. Lin, F.-S. Cheng, and M.-T. Tsay, “An improved tabu search
for economic dispatch with multiple minima,” IEEE Trans. Power Syst.,
vol. 17, no. 1, pp. 108–112, Feb. 2002.

[8] M. Gen and R. Cheng, Genetic Algortihms and Engineering Design.
New York: John Wiley & Sons, 1997.

[9] F. Glover and M. Laguna, Tabu Search. London: Kluwer Academic
Publishers, 2001.

[10] M. Klein, G. Rogers, S. Moorty, and P. Kundur, “Analytical investigation
of factors influencing power system stabilizers performance,” IEEE
Trans. Energy Conversion, vol. 7, no. 3, pp. 382–388, 1992.

[11] Power System Toolbox: version 2, Cherry Tree Scientific Software,
Canada, 2001.


