
Strategies for Maintaining
Large Robot Communities

S. ENGLISH, J. GOUGH, A. JOHNSON, R. SPANTON,
J. SUN, R. CROWDER, AND K.-P. ZAUNER

School of Electronics and Computer Science
University of Southampton, U.K.

Strategies for Maintaining Large Robot Communities Hardware Software

Motivation

Many organisms solve tasks collaboratively: social insects, flocks of
birds, schools of fish. . .
/Potential applications for robot swarms include/
Short term:

Marking the perimeter of a chemical spill

Marking an accident on a high-way
Long term:

Environmental monitoring

Assembly of structures

Obstacles to Research:

Cost of acquiring a swarm of robots

Practical difficulty of dealing with large numbers of robots

Strategies for Maintaining Large Robot Communities Hardware Software

Outline

1 Hardware

2 Software
Task Allocation

Strategies for Maintaining Large Robot Communities Hardware Software

Implementation

Scalable design:

Off-the-shelf components

Low component count

Simple assembly←− dominating cost factor

Design solution:

Motors used to vibrate mobile phones in direct drive

Cheap (mass produced)

Prepared for surface mounting

No need for gears

Strategies for Maintaining Large Robot Communities Hardware Software

Implementation

Scalable design:

Off-the-shelf components

Low component count

Simple assembly←− dominating cost factor

Design solution:

Motors used to vibrate mobile phones in direct drive

Cheap (mass produced)

Prepared for surface mounting

No need for gears

Strategies for Maintaining Large Robot Communities Hardware Software

Communication

Infrared Communication

Broadcasting only

Speed 588 B/s

Range in motion ≈10 cm
Multiple frequency-shift keying

18 Frequencies / 4 bit chips
Passive filtering of IR noise from motion

Developed with an MSP430F2001 with comparator, but

implemented with an op-amp version to reduce cost.

Strategies for Maintaining Large Robot Communities Hardware Software

Current Version

Size: 30×28×12 mm
Processor:
MSP430F2254—16 MHz
Memory:

512 B RAM—256 B free
16 kB Flash—10 kB free

Battery: 320 mAh
≈ 1.5 h activity

IR Ground Sensor
On-board charging circuit

IR receivers can be used to directionally detect ambient light

Reflection of IR broadcast can be used to detect obstacles

Strategies for Maintaining Large Robot Communities Hardware Software

Cost per robot for 1000

Processor £1.73
Battery £0.75
Battery charger £0.46
2×Motor £0.50
Other components £3.12
PCB and assembly £8.19

Total £14.75

Time for fabrication: 6 weeks.

Strategies for Maintaining Large Robot Communities Hardware Software

Summary

Large robot swarms are "just around the corner"!

But do we really want them?

Tending one robot can take up a lot of time.
How about 500?

Strategies for Maintaining Large Robot Communities Hardware Software

Summary

Large robot swarms are "just around the corner"!

But do we really want them?

Tending one robot can take up a lot of time.
How about 500?

Strategies for Maintaining Large Robot Communities Hardware Software

Outline

1 Hardware

2 Software
Task Allocation

Strategies for Maintaining Large Robot Communities Hardware Software

General Requirements

Realistic
Scalable
Robust
Responsive
Controllable

Strategies for Maintaining Large Robot Communities Hardware Software

General Requirements

Realistic
Can run on simple hardware
Can cope with unreliable communication

Scalable
Near constant resource requirement on each robot
User interacts only with a small number of robots

Robust
Should not loose tasks from fluctuations
Self-regulate task allocation if population size changes

Responsive
Quick distribution of tasks in a blank swarm
Quick return to desired task distribution after disturbance

Controllable
State of swarm can be changed by interacting with a few robots

Strategies for Maintaining Large Robot Communities Hardware Software

What is realistic?

Constraints:

Memory (especially RAM)

Communication speed

No global knowledge!

Communication reliability

Processing speed

Limitations of tools
Code not relocatable

Possibilities:

Counters

Timers

Unique ID numbers

Limitations:

Security not considered

Strategies for Maintaining Large Robot Communities Hardware Software

Plasmids −→ . . . point to a possible solution.

Bacteria face a similar problem: they are under pressure to keep their
DNA short for fast replication

Plasmids

Carry genes for additional
functionality:

resistance to antibiotics
defensive toxins
metabolism of nutrients

Readily transferred from one
bacterium to another

Whole genomes can be
transferred

Robots could mimic this:

New robots have only the
firmware

A few robots receive
additional software for
task-specific functionality

Most robots acquire
task-specific software from
other robots in the swarm

Strategies for Maintaining Large Robot Communities Hardware Software

Plasmids −→ . . . point to a possible solution.

Bacteria face a similar problem: they are under pressure to keep their
DNA short for fast replication

Plasmids

Carry genes for additional
functionality:

resistance to antibiotics
defensive toxins
metabolism of nutrients

Readily transferred from one
bacterium to another

Whole genomes can be
transferred

Robots could mimic this:

New robots have only the
firmware

A few robots receive
additional software for
task-specific functionality

Most robots acquire
task-specific software from
other robots in the swarm

Strategies for Maintaining Large Robot Communities Hardware Software

Scalable Firmware Distribution

After buildup of image,
overwrites IVT and jumps to
reset vector

Odd and even releases need
to be linked for higher and
lower image, respectively

Supports self-flashing with new
firmware from IR download.

Robots regularly transmit
firmware packages with

firmware version
16B block of the firmware
image
block-address

Robots can request packages
in a broadcast message

Robots with a suitable
firmware version add requests
to a short (3) ring buffer and
broadcast accordingly

Transmission time 7–10 min

Strategies for Maintaining Large Robot Communities Hardware Software Task Allocation

Task Allocation

Problem

Allocate given proportions of a swarm to different tasks

Assumptions

Any robot can only carry one task.
⇒ Task switching requires presence of other robot with new task

Communication by short-range broadcast only

Fast random motion of robots (well mixed)

Only one robot per task is pre-programmed

These assumptions are more restrictive than what the hardware can support.

Strategies for Maintaining Large Robot Communities Hardware Software Task Allocation

A solution should avoid. . .

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

F
re

qu
en

cy
 o

f T
as

k

Encounters

Lost Task

blank
Task-A
Task-B
Task-C
Task-D

Tasks lost by fluctuation

Strategies for Maintaining Large Robot Communities Hardware Software Task Allocation

A solution should avoid. . .

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5000 10000 15000 20000 25000 30000

F
re

qu
en

cy
 o

f T
as

k

Encounters

Oscillation

blank
task001
task002

Oscillations (unnecessary overhead for changing tasks)

Strategies for Maintaining Large Robot Communities Hardware Software Task Allocation

A solution should avoid. . .

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

F
re

qu
en

cy
 o

f T
as

k

Encounters

Erratic Behaviour

blank
Task-A
Task-B
Task-C
Task-D

Erratic behaviour

Strategies for Maintaining Large Robot Communities Hardware Software Task Allocation

A solution should avoid. . .

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

F
re

qu
en

cy
 o

f T
as

k

Encounters

Overshooting

blank
Task-A
Task-B
Task-C
Task-D

Overshooting

Strategies for Maintaining Large Robot Communities Hardware Software Task Allocation

A solution should avoid. . .

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

F
re

qu
en

cy
 o

f T
as

k

Encounters

Slow Response

blank
Task-A
Task-B
Task-C

Slow response

Strategies for Maintaining Large Robot Communities Hardware Software Task Allocation

Proposed Method

Principle

Each task is associated with a set of labels

Robots randomly choose one of the labels associated with their
task as the active one and broadcast it; they frequently change
the label they are using

Interactions among the robots equillibrate frequency of active
labels in the swarm

The number of labels associated with a task will determine its
proportion in the swarm

Interaction of Robots

If a robot receives a broadcast with the same label it currently
broadcasts it goes into a receptive state

A receptive robot will take on the next task it encounters and turn
non-receptive.

Strategies for Maintaining Large Robot Communities Hardware Software Task Allocation

Simulation Results

Simulations start with a pool of blank robots

Each task is seeded by a single robot at t = 0

Progress is plotted against pair-wise encounters (x-axis)

Simulation runs take only a few seconds

For clarity a typical result from a single run is shown

Simulations carried out with swarm sizes from 20 to 3000 robots

Strategies for Maintaining Large Robot Communities Hardware Software Task Allocation

Simulation Results: small scale

 0

 5

 10

 15

 20

 25

 30

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

F
re

qu
en

cy
 o

f T
as

k

Encounters

sim2008-08-02-C1Ta01.cfg

blank
Task-A
Task-B

Population 30
Desired allocation A: 80%, B: 20%

Strategies for Maintaining Large Robot Communities Hardware Software Task Allocation

Simulation Results: Robustness I

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

C
ou

nt
 o

f r
ob

ot
s

Encounters

sim2008-08-02-C1Ta09.cfg

blank
Task-A
Task-B

Start population 3000
t = 50000 −→ 80% of the swarm is destroyed
t = 100000 −→ 2000 blank robots are added

Strategies for Maintaining Large Robot Communities Hardware Software Task Allocation

Simulation Results: Robustness II

 0

 20

 40

 60

 80

 100

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

P
ro

po
rt

io
n

of
 T

as
k

[%
]

Encounters

sim2008-08-02-C1Ta10.cfg

blank
Task-A
Task-B

Start population 3000
t = 50000 −→ 80% of the swarm is destroyed
t = 100000 −→ 2000 blank robots are added

Strategies for Maintaining Large Robot Communities Hardware Software Task Allocation

Simulation Results: Control

 0

 20

 40

 60

 80

 100

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

P
ro

po
rt

io
n

of
 T

as
k

[%
]

Encounters

sim2008-08-02-D1Ta03.cfg

blank
Task-A
Task-B
Task-C

Population: 3000; desired initial allocation A: 80%, B: 20%
At t = 100000 one robot with task C and a desired allocation of
50% is introduced

Strategies for Maintaining Large Robot Communities Hardware Software Task Allocation

Test Migration

Problem
A number of self-test programs should migrate among the population
and be present in a low copy number < 1%, but not disappear.

Outline of Approach

Robots have unique IDs

A robot will delete its own test software if it was handed over
twice successfully

A robot will delete its own test software if it encountered several
other robots with the same test

Strategies for Maintaining Large Robot Communities Hardware Software Task Allocation

Concluding Remarks

Swarms of hundreds or even thousands of robots are now within
reach of a typical research budget

Collaborative solutions are required to compensate for:
lack of hardware features
lack of quality control
lack of individual calibration

Simulation indicates that the constraints of cheap hardware do
not get in the way of scalable algorithms

Don’t trust simulations—try it on a real swarm!

See them in action. . .
Wednesday 17:30–19:00, Stripe Theatre Studio 2

Strategies for Maintaining Large Robot Communities Hardware Software Task Allocation

Concluding Remarks

Swarms of hundreds or even thousands of robots are now within
reach of a typical research budget

Collaborative solutions are required to compensate for:
lack of hardware features
lack of quality control
lack of individual calibration

Simulation indicates that the constraints of cheap hardware do
not get in the way of scalable algorithms

Don’t trust simulations—try it on a real swarm!

See them in action. . .
Wednesday 17:30–19:00, Stripe Theatre Studio 2

	Hardware
	Software
	Task Allocation

