
Scientific workflows 
From molecular biology and chemistry to astronomy, earth sciences and particle physics, modern 
experimental science increasingly relies on the acquisition, manipulation, and processing of large 
amounts of data, and the systematic orchestration of computationally intensive simulations and 
analyses. Much of the analysis is expensive, in terms of the data processing and storage resources 
required, sometimes running for weeks and needing careful monitoring. It is also laboriously 
repetitive as scientists explore different settings for their algorithms, data sets are continually updated 
from instruments, and new information prompts the whole “in silico” experiment to be rerun and 
cross-checked.  

Over the past six years, workflow technology has been increasingly adopted by scientists in response 
to the need to specify and repeatedly execute these pipelines. A scientific workflow is the description 
of a process, often completely automated, that specifies the co-ordinated execution of multiple tasks. 
The tasks are software programs, run locally or remotely and increasingly published as Web services. 
Thus workflows are a particular form of scripted distributed computing over service oriented 
architectures.  

As an example, Fig. 1 shows a workflow designed to be run by the Taverna Workflow Management 
System from a workflow library held at myExperment.org. This workflow is used by 
bioinformaticians. It obtains genes from a public database (Ensembl), annotates them with Entrez and 
UniProt identifiers, and uses another public database (KEGG) to find the biological pathways for each 
gene. In this case, the tasks, also known as steps, nodes, activities, processors or components (depicted 
as rectangles), represent either the invocation of a remote Web service (the databases), or the 
execution of a local program. Data flows along data links from the outputs of a task to the inputs of 
another, according to a pre-defined graph topology. The workflow defines how the output produced by 
one task is to be consumed by a subsequent task, a feature referred to as orchestration of a flow of 
data.  

A workflow is an accurate description of the scientific plan. The benefits of workflows to scientists 
are the rapid repeatability of complex operations through automation, an explicit and precisely 
accurate record of a scientific procedure that leads to more transparent and reproducible science, a 
way of reusing others’ applications, resources and workflows, and a means to avoid the details of 
executing a third party application.  

Workflows are executed by a Scientific Workflow Management System (SWfMS). There is no 
SWfMS adopted by all, and likewise there is no one workflow language for describing workflows. 
Over 50 different systems are routinely used, either open source software such as Taverna, Triana, 
Kepler and Knime or as commercial products such as Pipeline Pilot and InforSense KDE. 
 

Workflow models 

The workflow model describes the exact behaviour of the workflow when it is executed. The features 
of different models are dictated by the types of application domains that they are designed to support, 
as well as by the target user community.  The models vary in several aspects: 

• Computation: Dataflow pipelines dictate that each processor be executed as soon as its data inputs 
are available, and processors that have no data dependencies amongst each other can be executed 
concurrently. They are used for integrating data from different sources, data capture, preparation 
and analysis pipelines, and populating scientific models or data warehouses. Control flows directly 
dictate the flow of process execution, using loops, decision points etc. These are used for 
controlling multiple sweeps of different parameter settings for simulations. Kepler supports 
several different models of computation. Others layer control flow on top of data flow or are 
mono-model.  

 



 
Fig 1: A Taverna workflow that chains together several searches over different publicly 
available databases in the Life Sciences. From P. Fisher et al., 2007. 
 
• Resource type: The tasks can be high level application programs familiar to the scientist, as in the 

Taverna system or low-level scheduling and monitoring of jobs on a Grid or compute cluster such 
as the Pegasus system. Given a workflow description and a set of resource requirements (such as 
memory, processing power, operating system, and system libraries), Pegasus generates an 
appropriate efficient, executable workflow. The logic design of the workflow is decoupled from its 
execution environment, so as the pool of available resources changes, re-assignment of the 
resources is hidden from the user. 

• Compatibility: Tasks may have been designed a priori to be compatible or designed independently 
and be incompatible without transformation sub-steps (called shims). 



• Interactivity: Workflow execution could be wholly automatic or interactively steered by the 
scientist. 

• Adaptivity: The workflow design or instantiation can be dynamically adapted “in flight” by the 
scientist or by automatically reacting to changed environmental circumstances. 

• Abstraction: Most workflow models allow for some form of modular composition of workflows, 
for example, through hierarchical nesting.  

Two scenarios illustrate the range of operational contexts for scientific workflows. The Pegasus 
system was used to manage computationally greedy earthquake simulations. A few developers in this 
planned collaborative project produced the necessary workflow designs then used by many scientists. 
The tasks are from a constrained set of codes incorporated with rigorous preparation procedures, 
mapped to run over a Grid. The workflows, once run, were not repeated. Another project used the 
Taverna system to investigate parasite resistance in cattle by linking metabolic pathway and gene 
expression public datasets. The workflow designs were developed directly by a single scientist in an 
exploratory, iterative way. The components were unprepared third party publicly accessible databases 
executed at their host site. Workflows were constantly rerun as the underlying datasets were updated.  

All SWfMS aim to make their model intuitive for user scientists to understand, and to provide them 
with a language and facilities for workflow design without requiring a specific competence in 
computer programming. Striking a balance between simplicity and expressivity remains a challenge. 
Part of the unpopularity in Science of the BPEL (Business Process Execution Language), despite its 
status as an industry standard for orchestrating web services, is its complexity and the lack of 
available good free software for designing its workflows.  

SWfMS Components supporting the Workflow Life Cycle 

SWfMS are software environments that provide users with a number of functionalities to manage the 
complete life cycle of a workflow (Fig 2). Legacy code or new applications may need to be adapted in 
preparation for use as components in a workflow. 

• Workflow design is typically supported through a graphical user interface which allows users to 
compose workflows, either from scratch by wiring together individual components, by using 
workflow templates, or by reusing and composing existing workflows;  

• Workflow planning includes the validation of workflow correctness, i.e., by static type checking, 
allocation of resources to tasks (for instance, processing nodes on a Grid cluster), task scheduling, 
various types of optimisations, and staging of input data prior to its processing on the nodes, as 
well as delivery of output to the user; 

• A workflow is executed using an enactment engine, which is a runtime environment similar to 
those that are normally associated with traditional programming languages. The engine controls 
the order of invocation of each of the tasks, monitors their execution, reacts in case of failures, 
manages the data and control flow and logs operational metrics such as processor execution time 
and data transfer time; 

• Post mortem analysis of the workflow execution designed to help users understand and interpret 
the results produced by the workflow, as well as the details of its execution. Minimally, the 
SWfMS offers a debugging facility and gathers performance metrics.  At a higher level, a 
provenance subsystem keeps an accurate, historical record of the execution of the workflow. 
Provenance metadata traces the lineage between input data, intermediate data and final results, and 
keeps an auditable record of the processes used, their configuration and their order.  

• Storage, collaboration and sharing of components, workflows, patterns and templates through 
libraries, warehouses or registries. An example of a cross-system, public workflow repository is 
myExperiment.org, which was inspired by social networking sites. Discovering components and 
prior workflow designs needs semantically-rich metadata. 

A SWfMS is typically run over middleware that provides infrastructure for accessing the applications 
or resources consumed by the workflow, and facilities like security and access control. 



 

 
Fig 2: The high level components of a Scientific Workflow Management System. 

 

Challenges 

A number of aspects of a workflow’s life cycle pose challenging problems.  

Simplifying design: designing (reusable) workflows is difficult and takes skill and time. Languages 
need the salient features of the intended scientific analysis, whilst removing as much of the 
complexity as possible. One approach introduces multiple process description languages  specialised 
according to different application domains, expressed at a level of abstraction that users are 
comfortable with, and supported by dedicated visual editing environments. These specifications are 
then translated into actual executable workflows.  

Dynamic adaptation: dynamic changes to the workflow are necessary to deal with intermittently 
available resources, failures (especially for workflows that rely on external services for their 
execution), and user-based decisions that are based on observed intermediate results. Users should be 
able to re-execute portions of the workflow while modifying the data sources, the execution systems, 
and the workflow structure itself and exploit opportunities to reuse the results of past task executions 
rather than running the computation again. 

Sharing and publishing: As workflows are rich, scientific protocols that represent expert know-how, 
they need to be pooled, published and curated just like scientific data, and accompany the articles that 
arise from their use for truly reproducible science. Specific problems are managing workflow 
versions, and making it possible for users to repeat the execution of a workflow, and compare results 
across large time spans (i.e. years). Social issues include managing intellectual property and credit, 
and peer review of workflows for accuracy and credibility. 

Outlook. The co-existence of multiple workflow management systems is expected to be the norm. 
Rather than devising a single language or model, the community is working towards operational and 
provenance interoperability. This raises numerous challenges. 
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