Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Volume 57 # Issue 11 * November 2008  ISSN 0167-6911

ELSEVIER

systems &
control letters

www.elsevier.comflocate/sysconle

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright


http://www.elsevier.com/copyright

Systems & Control Letters 57 (2008) 940-945

journal homepage: www.elsevier.com/locate/sysconle

Contents lists available at ScienceDirect

Systems & Control Letters

Optimal control of wave linear repetitive processes

Michael Dymkov?, Eric Rogers™*, Krzysztof Galkowski ¢, Siarhei Dymkou 9

2 Department of Mathematics, Belarus State Economic University, Partizanskiy Ave 26, 220070 Minsk, Belarus
b School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK

¢ Institute of Control and Computation Engineering, University of Zielona Gora, Poland

4 Department of Applied Mathematics II, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstra-e 3, 91058 Erlangen, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 9 August 2007
Received in revised form
24 May 2008

Accepted 24 May 2008
Available online 2 July 2008

Keywords:
Repetitive dynamics
Optimal control

This paper gives new results on optimal control of the so-called wave discrete linear repetitive processes
which find novel application in the modelling of physical examples. These processes have dynamics
which are not restricted to the upper right quadrant of the 2D plane and hence the current control results
for repetitive processes or 2D systems are not applicable.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The unique characteristic of a repetitive process is a series of
sweeps, termed passes, through a set of dynamics defined over a
fixed finite duration known as the pass length. On each pass an
output, termed the pass profile, is produced which acts as a forc-
ing function on, and hence contributes to, the dynamics of the next
pass profile. This, in turn, leads to the unique control problem for
these processes in that the output sequence of pass profiles gen-
erated can contain oscillations that increase in amplitude in the
pass-to-pass direction.

Physical examples of repetitive processes include long-wall coal
cutting and metal rolling operations. Also in recent years applica-
tions have arisen where adopting a repetitive process setting for
analysis has distinct advantages over alternatives. For the details
on all these examples see [1] and the relevant references in this
research monograph.

In this paper, we introduce the so-called wave repetitive pro-
cesses, using as motivation the discretization of physical systems
whose dynamics are governed by partial differential equations. The
dynamics of these processes are defined over the upper-half, as op-
posed to a restricted upper right quarter, of the 2D plane in the
previous work. This means that the existing control theory for
repetitive processes is not applicable and in this paper we for-
mulate and solve an optimal control problem for the wave model
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case using the operator setting in the relevant infinite-dimensional
spaces. In effect, the results are obtained by first constructing a
standard, or 1D, equivalent model description of the dynamics in
such spaces.

2. Background

The unique feature of repetitive processes is that the dynamics
evolve over the finite pass length, resetting then occurs and as the
next pass evolves there is an explicit contribution from the output,
or pass profile, produced on the previous pass. This interaction is
the source of the unique control problem, i.e. oscillations in the
output (pass profile) sequence which can increase in amplitude in
the pass-to-pass direction.

The currently available theory for these processes only covers
one sub-class and, in particular, those which evolve over the
restricted quadrant of the 2D plane. Let m denote the along the
pass variable, N the finite pass length, and t the pass number. Then
the domain of these variables for the processes considered so far is
{(c,m):t>0,0<m<N}.

In fact, there are examples where a model over this domain
cannot be used to capture the dynamics of a repetitive process.
Consider, for example, a system described by the spatio-temporal
partial differential equation

ox(o, 1) 9%x(o, T)
= Al
do 72

where o is the temporal variable, 7 is the spatial variable, u(o, ) is
the control input, and x(o, t) the system output. For computational

+ Axx(o, t) + Bu(o, 7) (1)
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purposes one approach is to discretize the partial differential
equation where here the resulting discrete variables are denoted
by t and m respectively. Suppose, for example, that the following
approximations are used

o

<ax) = L e+ 1.m) - xt.m) (2
t,m_E(X ,m) — x(t, m)) )

and

<82X> _ L (t,m+1) —2x(t, m)+x(t, m—1) (3)
572 t!m_ATZ(x,m x(t,m x(t,m )

where At and At are the corresponding discretization periods.
The approximate process dynamics can now be treated as a
special case of

N
x(t+1,m) =Y Ax(t,m+ i)+ Bu(t, m) (4)
i=—N

t =0, 1...where N is a positive integer, x(t, m) € R", u(t,m) €
R" with the given boundary conditions

x(0,m) = ¢(m), m € [—N,N] (5)

for any (t, m), where if the spatial domain is unbounded then
m € [—oo, oo]. Now if we interpret t and m as the pass-to-pass
and along the pass variables respectively we have a so-called wave
repetitive process.

The model structure is substantially different in structure
from the discrete linear repetitive processes considered in, for
example, [ 1] whose domain of operation is the restricted positive
quadrant of the 2D plane defined by {(t, m) : t > 0,0 < m < N}.
(Note also that similar approaches to modelling flexible distributed
parameter systems for control analysis can be found in [2] and
the relevant references cited in this thesis.) This means we cannot
apply existing linear repetitive process theory nor that for other
quarter plane 2D systems, e.g. [3].

With the overall aim of moving to a theory for control design
for wave repetitive processes, this paper develops a 1D equivalent
model for the process dynamics and then solves an optimal control
problem which is also shown to be expressible in feedback form.
The analysis here is in the spirit of [4] for optimal control of finite-
dimensional 1D linear systems.

3. Optimization analysis

For analysis purposes, we can treat the case of N = oo and
then obtain the results for any finite N by projection. Moreover,
in practical applications only a finite number of passes, say T, will
actually be completed. Hence we begin by considering the optimal
control/optimization problem: find the admissible control vector
u°(t, m) which minimizes the cost function

T 00
Jw =YY" (Qx(t,m), x(t, m)) + (Ru(t, m), u(t,m))  (6)
t=0 m=—o00
over the solutions of (4) and (5), with N = oo and (-, -) denotes
the inner product (on the corresponding function spaces). Also it
is assumed that the matrix Q is symmetric positive semi-definite,
written Q > 0, the matrix R is symmetric positive-definite, written
R > 0, and the matrices A; satisfy

+00 )
Y+ Al < oo (7)
i=—
for some real number ¢ > 0, where | - || is+the induced norm.
(o.¢]

This last assumption ensures that the series ) Z'A; converges

i=—00

in a domain which includes the unit disc of complex plane C. (In
physical terms this cost function is the sum of quadratic terms in
the pass profile and control vectors respectively summed over all
passes completed.)

By way of notation we let [>(R") and I*(R") denote the spaces
of the square summable sequences in R" and R" respectively. Also,
introduce (where N = o0)

y:{}’t, t207]7~"»T}7
u={u, t=0,1,...,T},

y e B®Y)™,

ue (IZ(Rr))T—H

where (over Z)

ye={...,x(t, —1),x(t, 0),x(t, 1), ...} € P(R"

u = {...,u(t,—1),u(t,0),u,1),..} € BR") Vt
¢ ={....0(=1),¢(0),¢(),...} € P(R".

Then it is straightforward to show that the optimization problem
defined by (4), (5) and (6) can be re-written in operator form as

y=Lu+w, w=/{p, Ap,..., (A ¢} (8)
with cost function
Jw) = (R +L*QL)u, u) + 2{L*Qw, u) + (Qw, w). (9)

Hence a unique optimal solution u® e P(R") if it exists can be
presented also in the operator form as

= —(R+L"aQl)7'I*Q¢ (10)

where L : (P(R"))™! — (P@®"))™!and 4 : P(R") — P(R") are
the operators defined by

(Ly)e = BYi1 + ABYr2 + -+ AT By, (Ly)o = 0,

t >0, (11)
and
+00
(Aa)(m) = Z Ae(m+i), mezZ (12)

respectively, and the operators B, R, and @ are defined in an
obvious way.
The adjoint operator L* is defined (as usual) by

(L*B) = BBt + B A Bran + -+ B AT Ty (13)
and the adjoint operator A* : P(R") — P(R") is

+00
AW = Y AP m—i)

1=—00

where the A7 is the complex conjugate transpose of A;. Note also
that since @ > 0, R > 0 then the operator R + L*@L is invertible.

The operator based solution (10) is not in a form suitable for
actual implementation but it can be converted to such, starting
from the following result.

Theorem 1. The boundary-value problem

o0
X(t+1,m)= " Ax(t,m+i) —BR'B*z(t, m)

i=—00

z(t,m) = Y Az(t+1,m— i)+ Qx(t + 1, m)

(t,m)e{0,...,T} X Z,
z(T,m) =0,

x(0, m) = p(m),
mez (14)

has a solution in I>(R").
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Proof. Let y,, w; be the elements of I>(R") for which

o) (m) = x(t, m),

(we)(m) =z(t,m),meZ, te{0,...,T}.

Then (14) can be rewritten in operator form as

Yer1 = Ay — BR™ B wy,
we = A W1 + @Yy,

Yo=9¢

Also with (4) rewritten in operator form set yo = ¢ and u; = u?,
where u® = {ud,ul, ..., ud} is defined by (10). Then we can
determine y°, t € {0, ..., T} from

Vir1 = AV + Bu, = Ay, — B(R + L*QL) " 'L*Qwy,
tef0,1,...,T} (16)

as
t—1 )
W=alpg—BR+LQ)TL'QY  Aw_i.
i=0
Also the solution of the optimization problem considered here, i.e.
0 = —(R+L*QL)"'L*Qw, can be rewritten as u® = —R~18*wy
and hence y; here can be written as
=1
W=alpg =) ABR'Bw 1 te(0,...,T)
i=0
Substituting this last result into the second equation in (15) and
using the boundary condition wy = 0, gives

T—t

w) =Y A", te{0,....T} (17)
i=0

Hence
T—t

w) =Y A", tel{0,....T}

and therefore the functions (y°, w?), t € {0, ..., T} satisfy the
second equation in (15) and y§ = ¢, w? = 0.
To complete the proof, we now require to show that

tef{0,...,T}
where on multiplying both sides of (10) by (R 4+ L*@L) we have
(R + L@’ = —(R +L*QL)(R + QL) '"Qw

wW=-r"'8*w’,

and hence
= —R71'*@)°. (18)

Writing (17) in terms of the operator defined by (13) now gives

T—t—-1

(Bw) = Y BATQY,,, =L@ te{0,... T}
i=0
(19)

Hence u®° = —R'(*@Qy°) —R'8*w’ and the proof is

complete. H

The following result now gives a solution to the optimal control
problem considered here.

Theorem 2. The optimal control problem (4)-(6) has unique solution
u’(t,m) = —R"'B*z(t,m), te{0,....,T},meZ

where z(t, s) is the solution of (14).

Proof. The uniqueness of the optimal control has already been
established (see (10)). Let (x(t, m), z(t,m)), t € {0,..., T}, m €
Z., be a solution of the system (14), consider the function

i(t,m) = —R"'B*z(t,m), te{0,...,T}, meZ,

and rewrite (14) (in operator form) as

Ver1 = AV — BR™ B wy, W = A Wep1 + QYrpa,

Yo =0, wr = 0. (20)
Then it follows immediately that

t—1
ye=Ap—Y ABRBw_ 1 tel0,....Th
i=0

T—t

we =) A QY (21)
i=0

and

Ve = R B wy, (22)

where we use 0, to denote (v;)(m) = u(t, m).
Using (19), v = (o, . .., Ur) can be written in the form

b= —-R7'I*Qy.
Then
RO = —L*Qy.
Conversely, from the first equation of (15) we have that
y=w—LR'8w ory=w+Ld

and therefore

RO = —L"Qy+L"'Qw —L"Q,=1"Q(w — y) — L*"Qw
= —L*QLb — L"Qw

RO = —L"Qy 4+ L"'Qw — L'Quw*Q@(w — y) — L*Qw
= —L"QLY — L"Qw

and

b= —(R+L'aQl) " Quw.

Hence ¥ coincides with u° defined by formula (10) and therefore
fit,m) = u’(t, m) = —R-1B*z(t, m) as required. W

4. Optimal feedback control

Here we seek a feedback solution of the optimal control
problem. Consider the linear operators P; : *(R") — P(R"),t =
1,...,T — 1, P = 0 and also let u° be the optimal control
for (4)-(6) and x° the corresponding trajectory generated by (4).
Then optimal feedback control problem is to find linear operators
P:, t > 0, such that
W= -R18Px,

t=1,...,T—1 (23)

We now have the following result.

Theorem 3. If the optimal feedback control problem has a solution
then the operators P, satisfy

Py + (L + AP)BRT' B Py = (L + A P)A,

Pr=0, t>0. (24)

Moreover, the corresponding minimum value of the cost function,
denoted by J°, is given by J° = (Py@, Ap).
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Proof. Suppose that (23) holds. Then x° is such that

Yes1 = (A= BR'B Py, tef0,....T}Lyo=¢. (25)

Now substitute u® = —R~18*P,y? into (4) written in operator
form to obtain

yH.] = :Aa_y[ + !But = (cAv - «Q’Beﬂ_lﬁ*P[)y[.

The solution of (25) can be written (where s is an arbitrary index)
as

¥ =F1(Fa (Fy))) VE>5>0

where F; = A — B8R '8*P,. Hence we have y;,; = Fy; with
initial condition y; = y?. Noting (18) it is easy to show that

L(@°); = 8" (@ )es1 + -+ B ATV (@)

= B QY"1 + A (@ )eg2 + - + A TTTD(@0)r].
Therefore
—R718PY =u = (—R7'L*Q)Y°),

=—RBNQY )1+ - + ATV (@y)r].
Using y;+1 = Fiy; and starting with an arbitrary index s now yields
VY = Fr1(Fra (- Fry?))

Wo=Fy, Y, =FaFy)), ...

and therefore

Py? = (QF + A*QF 1 F + -+ A" TV QF 5 By

Hence the operators P, must satisfy

Py =QF 1+ A*QFRF_ 1+ -+ ATQF .. . F4

with Py = 0, or, in recurrent form,

Pt + (@ 4+ A*P) BR'B* Py = (Q + A*P) 4,
t=1,...,T, Pr=0.

Let Pt0 be a solution of (24). Then (after some routine manipula-
tions)

(PO Y01, AYY_ ) — (P2, AYD) = (Rv2_ 1,02 ) + (@2, y0)

and then

T
JO% = D@ y) + (Rl vy)

t=1

T
=Y [(PY 1y 1 AYD ) — (PYY. AYY )] = (Poy). AYY)
1

t=
= (PJp, Ap)

and the proof is complete. B

5. Optimal control for T — oo

The pass length T can take any finite value and hence in this
section we consider the problem of the previous section for the
case when T — oo0. Let l% (R™) be the space of all the sequences
{fvt,m)}, (t,m) € Z, x Z of elements from R" such that
Z(t,m)eZ+><Z lu(t, m)||*> < oo. Assume also that the spectral ra-
dius of the operator defined by (12) satisfies r(4) < 1. Then we
have the following result.

Theorem 4. Assume T — oo and suppose also that

o0
> llAill + 1BRT'BH| < 1 (26)

i=—00

0 2
el <1~ (Z ”Ai”> /(1 — |BR™'B*||%). (27)

i=—00
Then the optimal control for (4) and (5) is given by
wW=-8P, t>0 (28)
where x?, t € Z., is the unique solution of

XH.] = (A — o(BcB*P)Xt, Xo=¢ (29)

and P : P(R") — [P(R") is the bounded linear operator which
satisfies
P=(R+ A"P)(A— BB*P). (30)

Also, the minimum cost value is J° = (Pp, A@).

Proof. As before, it can be shown that the unique optimal control
for this case exists and can be expressed in the operator form (10).
Now let N > 1 be a fixed integer and use P;,t = 0,1,...,N to
denote the solutions of (24). In which case the operators P; := Py_,
t=0,1,...,N satisfy

P+ (@ + A*P_)BR'B*P, = (@ + A*Pr_1)A, Py =0.(31)

Suppose also that

el + A Pl <1, [8R'8*| <1

then a unique bounded solution P, exists for (31) and also

(1@ + AP D I|A]
(1= 1@ + A*P || BR™'B*|))
B L B

T (- |8R'8)
Hence, in order to guarantee that (31) has a solution for t — 1 it
is sufficient that |[(Q + A*P)BR'B*|| < 1 which (using the
previous inequality) holds if | @] + || A||*>(1— | BR~18*|)~! < 1.
Moreover, |A]> < > ° _|Al* and [|@|| < [Q]. Combining
these facts with the conditions given in the theorem guarantees
the solvability of (31) foranyt =0, 1, ....

Use of Theorem 3, the minimum value of the cost function for

each fixed integer N is (PyXg, 4Xo). Now let N, > N;. Hence for
any admissible control u and initial data x € I>(R")

P <

(32)

Ny Ny
Z[(@Xt,xr) + (Rug, ur)] Z[(@Xuxt) + (Rug, ut)]
t=1 t=1

>
z minJ(w) = 0. (33)

Hence, (f’Nzx, AX) > (15le, Ax) for any x € P(R") and N, > Nj.

Let o (x) denote the minimum value of the cost function
in (4)-(6) with initial data x € P(R") and N = oc. By analogy
with (10), we can show that the optimal control in this case is given
by

w=—(R+ L*c‘ZL)71 L*Qw, wherew = (x, AX, AX, ...).

Also it follows that Jo (x) = (Pw, w), where P is the linear operator
given by

P=a-@L(R+L'eL) ' I"aL,
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Using (33) we have that for any x € *(R")
0 <Joo(®*) = (Pw, w) < [IP|[{w, w) < C(x,x)
where the constant C = 1/(1 — ||»]|) > 0. Also, for any integer N

e}

= Z [(@x), X)) + (Ruf, u))]

t=1

Joo (%)

minJ(u, x)

%

N
Z @x x J%u u )]>m1n](u) (PNx, AX).

Let0 < N; < N; < - - - be some increasing integer sequence. Then

0 < (PyyX, AX) < (PryX, AX) < -+ < Joo(x) < C{X,X) (34)

where the constant C > 0 was given above. This means that
{4*Py;} is a nondecreasing bounded above sequence of nonneg-
ative self-adjoint operators. Hence by the Banach-Steinhaus theo-
rem this operator sequence has a strong nonnegative operator limit
T,ie.

lim A*Pyx =Tx Vx € P(R").

1—>00

Since r(+4) < 1then the operator A* is invertible and from (34) it
follows that the sequence PN is convergent. Let lim;_, o PN Xx = Px

and also we have already shown that J,,(x) > (PNx, Ax) for all
x € PP(R™ and any N. Taking limit as N — 00, we get Jo,(x) >
(Px, AX). Also it is easy to see that J,,(x) takes the value (Px, Ax)
when u* = —R71B*Px, i.e. u = u* is optimal. It is also easy to
show thatuf, t € Z,, produces the solution x}, t € Z, for

Xiy1 = (h— BRTIB*P)x;, X=X, t€EZy.

Also this solution satisfies

(Pxy, AX() — (Pxiiq, AX) = (@74, X ) + (Rug, uf)

and then
Jw) =Y [(@xt. &) + (Ru, up)]
t=0
= (Px, Ax) + lim (PX}, AXY). (35)

Since x* € I%(R"), then [xf|| — 0,t — oo. This shows that
Joo(x) = J(*) = (Px, Ax) and the proof is complete. H

The optimal solution for the problem (4)-(6) can be re-formulated
in the frequency domain using the discrete Fourier transform.
(These results are of interest in engineering, where the frequency
domain is a standard extremely important option.)

Theorem 5. The discrete Fourier transform

o0
> e me ™, wel02mlf=-1 (36

m=—00o

Ui (w) =

of the optimal control u®(t, m) (with T — oo) can be written as
Ue(w) = K(0)Xt(w)

where X:(w) denotes the Fourier transformation of the optimal
trajectory x°(t, m) and

K(w) = —[R+ B*P(w)B] " 'B*P(w)A(w), A(w) =

+0o0
Z ejkwAk.

k=—o00
Here P(w), w € [0, 21] is given by
P(w) = Q + A% (w)P(w)A()
— A*(w)P(w)B[R + B*P(w)B]"'B*P(w)A(w). (37)

Also, the minimal cost value is
1 2
Ja) = — / (Xo(@). P(@)Xo(@))dao
27 0

Proof. Applying the discrete Fourier transformation to (4) with
respect to the variable m, i.e.

X (w) = Zxo(t, mye ™ o e[0,2r]
mez

gives

Xi+1(w) = A(w)X; (w) + BUt (w),

Aw) = Y ™A, wel0,2n].

k=—o00

Using Parseval’s identity, the cost function can be written as

2
JWw) = f Xt (@), X (@)X (@)) + (Ut (@), RU(w))dw
t€Z+
Let P(w), w € [0, 2r], be an arbitrary collection of nonnegative
operators from C" to C" such that fozn IP(w)]|dw < oco.Then

— Y {P(@)Xe(@), X ()

teZ4

+ Y (P(@A@)P(@)X: (@)

teZy

+ BU; (@), A(w)P(w)X (w) + BUi(w)).

0 = (P(w)Xp(w), Xo(w))

Integrating this last identity over w € [0, 2], adding the result to
J, and then adding and subtracting

(P(@)A(@)X; (), BIR + B*P(w)B]~'B*P(0)A(@)X: ())
from the result gives

1 2
Jw = o / (P(@)Xo(@), Xo(@)) + Y _[{F(@)X: (), X (@)
0

teZ4

+ {((R + B*P(w)B)V;(w), Vi (w))] dw

where
F(w) = Q — P(w) 4+ A" (w)P(w)A(w)

— A*(w)P(w)B[R + B*P(w)B] " 'B"P(w)A(w)
Vi(w) = Up(w) + [R + B*P(w)B] " 'B*P(0)A(w)X; (w).

Note that the inverse of the operators here exist because P(w) > 0
and R > 0 is positive operators.

The second term in the cost function here does not depend on
control input since Xp(w) = >, ¢(s)e ™, w € [0, 27r]. Choose
now P(w) such that F(w) = 0 holds. Then the cost function can be
rewritten as

1 2
JWw) = 7/ (P(@)Xo(w), Xo(®))
T Jo

+00
+ Y ([R+ B*P()B]™'Vi(w), Vi(@))de (38)

t=0

and clearly its minimum value is

1 2
jo = o / [{P(@)Xo(@). Xo(@))]dw
0

which is feasible if, and only if, V;(w) = 0, i.e. if, and only if,
Ui(w) = K(w)X;(w). Thus the required representation for the
optimal control law and the function K(w) and P(w) have been
obtained and the proof is complete. ®
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The following result holds for the feedback control case.

Theorem 6. The optimal feedback control for (4), (5) and (6) in the
case when T — o0 is given by

+o00
u(t,m) =y Kix(t, m+i) (39)

i=—o00
where K;, i € Z, is a set of r x n-matrices.
Proof. First note that (37) admits the solution P = P(z) which is
analytic in a domain including the unit disc of complex plane C and

hence the function K = K(z) is analytic in the same domain. Hence
J e > 0such that K(z) can be expanded in series form as

+00
K@= Y Kz 1-e<lzl<1+e

i=—00

and also

+00
Ui (w) = K(0)Xe (@) = Z Kie'X, ().

i=—o00
The inverse Fourier transform of X; (w) now yields

1 T +oo . .
/ Z Kel™ X, (w)e™ dw

u(t, m) —
2r ) g =

2 .
i=—00 i=—00

Note now that the matrices K; are the coefficients of the series
expansion of K(z) and the proof is complete. =

1 +00 b . . +00
= Z 1<i/ X, (w)elMDvdy) — Z Kix(t, m + i).
. ,

6. Conclusions

This paper deals with the so-called wave repetitive processes
whose existence and relevance to engineering applications has
been highlighted. These processes evolve in the upper-half of
the 2D plane and hence existing control systems’ analysis tools
for repetitive processes which evolve in the positive quadrant of
the 2D plane is not applicable. Consequently, as the first major
analysis tool for this new model, an optimal control problem has
been formulated and solved. This is based on first introducing
a 1D equivalent model of the process dynamics in an infinite-
dimensional systems’ setting. Also it has been shown that this
solution can be written in the feedback form. These results
provide a solid basis on which to progress to the design and
implementation of the control laws.
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