Timing diagrams add Requirements
Engineering capability to Event-B
Formal Development

Tossaporn Joochim

Supervisor : Dr. Michael R. Poppleton

Dependable System and Software Engineering group
School of Electronics and Computer Science
University of Southampton

Outline

 Event-B model structure

« Timing diagrams
» Notations
> Case study : The Lift System

« Pattern to transform Timing diagrams into an Event-B
model
» BNF definitions
» Translation rules

 (Conclusions and Future work

Event-B

Structure of Event-B

MACHINE name
SEES context’s name
VARIABLES
INVARIANT
INITIALISATION
EVENTS
eventname =

eventname =
END

SEES

CONTEXT

Event-B (cont’)

* The general form of an event is
E = ANY | WHERE G(l,v) THEN S(I,v) END (1)

* A short form of an event omitting local variables
IS

E = WHEN G(v) THEN S(v) END (2)

Case study : The Lift System

Some specifications are
described as follows

. . . 0 On1 On3
a) The moving lift will be floorsensor € " | [2,5] |
Floorsensor [| .
stoppeq gt thg reqyested (FFLOOR) Off | Off 2 ' ff=. ﬁg N
floor within a time interval of : : :
2 — 5 seconds after floor f= curreptFI A | | |
. dir=Up ContMygUp 3 a
sensor Is set on. ContMvgUp | | ,
S e |
b). If the lift becomes stationary, MvgUp !
i i StopAtFi1 f=currentFl A I
deactivated immediately. (f:FLOOR)
MvgDwn MvgDwn5 _ \.'
c). Whenever the lift starts C‘ntMngown s| ¢
moving up/down, the current ContMvgDwn b
floor sensor will be off within S
atime interval of 2 -5 directionlamp : Deactivated g Deactivated 2
seconds after the lift starts Directionlamp _ .
Activated Activated 1

moving.

Parts : BNF Timing Diagrams definitions

A Timeline comprises a chain of segments which individual segment represents
the object state (Objst) and its position (Index) in the Timeline.

Timeline ::= Segment*
Segment ::= Objst Index
Index ::= integer

ContMvgUp3
ContMvgUp
MvgUp2
MvgUP
Lift : LIFT StopAtFI1 StopAtFl4
StopAtFI E—
f:FLOOR
() MvgDownb
MvgDown
ContMvgDown6
ContMvgDown

Translation rules

Basic rules :

Rule 1 : TState (Segment) — Objst;

This rule gives the object state for an input segment.

Rule 2: TObject(Segment) — Obyj;

This rule gives the object for an input segment.

Rule 3: TClass(Obj) — Class

This rule gives the class for an input object.

Rule 4: TParam(Class) — SqParam

This rule gives the sequence of parameters for an input class.

Rules for creating abstract model’s events

(L]
5 TTransGeneral(Segment, SeqCon, SeqPrev, SeqCause) =2 <: Y Rule 5 : rule for generatlng an

Event’s name rule) BB abstract model’s event.

Rules for identifying guards
—Rules for creating guards with parameters— TTransGeneral (Segment,SeqCon,
ANY parameters rule SeqPrev, SeqCause)
WHERE rules - group 1 Where :
—Rules for creating guards without parameters— Segment : a segment,
WHEN rules - group 2 SeqCon : a sequence of condition
segments
THEJK s for identifying act SeqPrev : a sequence of previous
ules for identifying actions
segments
actions rules
SeqCause : a sequence of cause

END segments

Example : Using rules for generating lifiStopAtFl event

= N
O TTransGeneral (StopAtFi4, <On3>, <ContMvgUp3 , ContMvgDwn6>, <On3>)

TEventName(StopAtFi4) = 6

Rules for identifying guards
Rules for creating guards with parameters

e N .
5 TTransGeneral (Segment, SeqCon, SeqPrev, SeqCause) > ANY TParam(TC1 aSS(TObJ ECt(StOpAtFI4))) 4
Event’s name rule 6
Rules for identifying guards————— WHERE
Rules for creating guards with parameters—l 7
ANY (parameters ruie TParamGuard(TParam(TClass(TObject(stopAtFi4))))
WHERE 1 -~ TCond(StopAtFi4, <On3>) 8
e > group | ’ 9 TPrevStParam(StopAtFi4, <ContMvgUp3, ContMvgDwn6>)
'1 0 ' TCausesParam(<on3>)
THEN | Rules for identifying actions
Rules for identifying actions THEN
otions rules 11 | TNormalAct(stopAtFi4)
: 1 2 <IF THasSimult(TSimul t(StopAtFi4)) THEN>
END o TObject(TSimult(StopAtFi4))state :=
(. J
TState(TSimul t(StopAtFi4))
| <END>
END

Rule 9 : TPrevStParam(Seqment, SeqPrev)

[Tt

TPrevStParam(Segment, < >) =

TPrevStParam(Segment, SeqPrev) —
<IF MultPrev(Segment, SeqPrev) THEN >
TPrevStParam(Segment, SeqPrev) =
TPrevStParamR(Segment, Head : SegmSeqTail) —
TObject(Segment)state (TParamLt(TParam(TClass(TObject(Segment))))) =
TState(Head) VvV TPrevStParam(Segment, SegmSeqTail)

< ELSE>
TObject(Segment)state ((TParamLt(TParam(TClass(TObject(Segment))))) =
TState(Elem(SegmSeqTail))

< END>
ContMvgUp3
ContMvgUp
MvgUp2
MvgUP
Lift : LIFT StopAtFI1 StopAtFil4
! StopAtFl —
f:FLOOR
() MvgDownb
MvgDown
ContMvgDon6
ContMvgDown

10

Seqment SeqPrev
N

(N —~
TPrevStParam(StopAtFl4, < ContMvgUp3, ContMvgDwn6 >)

ContMvgUp3
ContMvgUp
MvgUp2
MvgUP
Lift : LIFT StopAtFI1 StopAtFl4
! StopAtFi —
f:FLOOR
() MvgDownb
MvgDown
|ContMngo wn6

ContMvgDown

11

Example: Using rule 9 (Cont’)

1st recursion

TPrevStParam(Segment, < >) =

TPrevStParam(StopAtFl4, < ContMvgUp3, ContMvgDwn6 >) —
<IF MultPrev(StopAtFl4, < ContMvgUp3, ContMvgDwn6 >) THEN >
TPrevStParam(StopAtFl4, < ContMvgUp3, ContMvgDwn6 >) =

TPrevStParamR(StopAtFl4, ContMvgUp3 : <ContMvgDwn6 >) —
TObject(StopAtFl4)state (TParamLt(TParam(TClass(TObject(StopAtFl4)))) =

TState(ContMvgUp3) v TPrevStParam(StopAtFl4, <ContMvgDwn6 >)

2nd recursion

TPrevStParam(StopAtFl4, <ContMvgDwn6 >) —

< ELSE>
TObject(StopAtFl4)state ((TParamLt(TParam(TClass(TObject(StopAtFl4))))) =
TState(Elem(<ContMvgDwn6 >)

< END>

Output: liftstate(f) = ContMvgUp Vv liftstate(f) = ContMvgDwn

12

Example : liftStopAtFl Abstract model’s event

liftStopAtF| =
ANY f
WHERE f:FLOOR /* rule 7%
f:reqgFl f=currentFl| /* rule 8%/

liftstate(f) = ContMvgUp . .
liftstate(f) = ContMvgDown } /" rule 97
floorsensorstate(f) = On /* rule 107/
THEN
liftstate(f) := StopAtFl /*rule 11%
directionlampstate := Deactivated /* rule 12%
END

13

Rules for creating refinement model’s events

—Rules for identifying timing constraints as context—

TContext(CauseSegm, EffectSegm) 13

A SEES

4)

TTransGeneral(Segment, SeqCon, SeqPrev, SeqCause) —>

...same rule for indentifying abstract event’s name...

Rules for identifying guards
REFINES --same rule for indentifying abstract

event’s name...

—Rules for creating guards with parameters—
ANY

...same rule as defined in the abstract model...

WHERE

...same rule as defined in the abstract model...

TTimeCtrnt(SeqCause) 14

THEN

Rules for identifying actions

...same rule as defined in the abstract model...

TRefSubst(Segment) 15

END

14

Example : liftStopAtFl refinement model’s event

liftStopAtFl =
REFINE liftStopAtFI
ANY f
WHERE

... same guard as defined in the abstract model...

(gclock — floorsensorOnTime)

(gclock — floorsensorOnTime)

UPPER _LIMIT floorsensor _

™

LOWER_L/M/T_f/OOI’SGHSOI’& pa /* new guard from rule 147/

THEN

...same substitutions as defined in

liftStopAtFITime = gclock

END

the abstract model...

/* new substitution from rule 157/

15

Conclusions and Future work

.. + Input

Timing files

lagram
diagrams | . siation rules —> Event-B
* Notations
* BNF
definitions ?

+ UML-B U2B

Questions ?

17

