D to UML-B

using

Atlas Transformation Language (ATL)

Outlines

ATL Overview

Structure of ATL Module

Timing diagram Metamodel & UML-B Metamodel
Examples of ATL transformation rules

Examples of UML-B models are created from ATL
Examples of Event-B models are created from UML-B

Point out the manually additional information

Ongoing works

ATL

« ATL transformation program is composed of
rules that define how source model elements are

matched and navigated to create and initialize
the elements of the target model.

Overview of the TD to UML-B

conforms to

transformation

Ecore

confoims to

ATL
TDMetamodel
7y conforms to
conforms to
TTBB.atl

Timing Diagram
(TD)

source

Transformation

conforms to

umlbMetamodel

4

confg

A

rms to

UM

L-B

target

Structure of ATL Module

Header

Imports

Helpers

Transformation rules

Structure of ATL Module (cont)

* Header
- defines name of transformation model
- declares the source and target models

module TTBB;
create OUT : umlbMetamodel from IN : TDMetamodel;

* Imports
- declare which ATL libraries have to be imported

uses strings;

Structure of ATL Module (cont)

* Helpers
- Can be viewed as Java methods

- Make it possible to defined factorized ATL code that
can be called from different points of an ATL
transformation

helper context TDMetamodel!TDNodeType
def : SimpleCond() : String =
self.predicates -> iterate(e; ret : String =" |
ret -> concat(' & ' + e.predicate));

* Transformation rules express the transformation logic

rule Machine{ — > Rule’s name
fromt : TDMetamodel!TDMachine > Source model
to m :umlbMetamodellUMLBMachine

(name <- t.name,

classes <- t.class),

e : umlbMetamodel!lUMLBEvent \
(name <- 'ticktok'),

a : umlbMetamodellUMLBAction
(name <- 'Action1’,
action <- 'gclock := gclock + 1'),

target models

“- - comment
gclk : umibMetamodellUMLBVariable /
(name <- 'gclock’,

initialValue <-'0'), initialValueAs defined in UMLBvariableElement

ctx : umlbMetamodellUMLBContext

(name <- t.name +'_ctx') “do” specify some imperative code that

do {m.events <- m.events.append(e):; —— will be executed after the initialization of
e.actions <- e.actions.append(a); the target elements generated by the rule

m.variables <- m.variables.append(gclk);
thisModule.umlbproject.constructs <- thisModule.umlbproject.constructs.append(ctx);
thisModule.umlbmachine <- m;

bl

| TDPredicate
o predicate

0.

*

E Mame
= name

states

H TDstate
= jnitial

= final
segments

causesource

H Simple
predicates

| TDProject

TDMetamodel

construct
l”*
E TDMachine
class
1”*
; . * H TDParameter
H TDClass | parameter g
= param Type
timeline
0“*
| TDTimeline
timelinetransitions
D. : *
outgoing 0.* H TDTimelineTransition
H TDSegment -
= Gl incoming 0.
D *
i 1.1 _
sOLCe
1.1 target
D i *
constraints)
Simul
0. o H TDTiming
|| TDConstraints timing Al = lowerlimit
= upperlimit
effectsource
1.1
H TONodeType
2.4 2.
or And
H OR_node H AND_node

source .

H UMLBExtendedClassType

H UMLBClass
= fixed H UMLBClass Type H UMLBRefinedClass|
a e]
rg t "
refines
H UMLBMachine
3 @ i 0.1
2 markkinds £ translationkind refines
= modelValidator - state_sets [UMLBabstractClass
= translator - state_function classes o.*
= staticChecker
e siTing extends
5
L e 2 eventkinds events cantexts variables
= normal o.* 1.1
= constructor 0. 0l.* events
= destructor i classtypes
s-iakre [UMLEContext
H UMLBVariable
0..*/5 UMLBabstractClassType
H UMLBInheritedAttribute
ol H umMLBAttibute = Jabel
extends
supertype £ UMLBEvent O™ constants E UMLBtypeExtension
H UMLBclassifier [kt inherits " = label
= eventkind H UMLBConstant 0 attributes
0.1 g+ refines 11
H UMLBguardedAction H UMLBvariableElernent constantAttributes H UMLBabstractAttribute [UMLBStatemachine
= initialValue ol = AR
H UMLBconstrainedElement. H UMLBConstantAttributel
. transitions
actjons eventvariables oL*
instances o.*
0. Qs
H UMLBTransition
witness 0
guards P N statemachines
H UMLBAction H UMLBEventVariable H UMLBproperty
* 0,.*
0y1 o action 0, L 0.4 g o |ocal = surjective target source o oLt
= injective
H UMLBPredicate = tatal states
o predicate = functional outgoing
H UMLEProject H UMLBTypeExpression| 1.1 1.1
incoming
typeExpressions @, * LIMLBState
E UMLBtypedElement fnal g
B UMLBconstruct] =i
o= initial
notransitionsfromfinal
0% # noincomerstoinitial o.*
typeProvider ## noregionsoninitialorfinal
constructs
E UMLBtypePravider
[UMLBstatemachineCallection
H umMLBnamedConstrainedelement
H UMLEnamadElement.
type
type
14
¥.1
E UMLBEnor umibElement.. 1 F UMLBelement] E UMLBtype
= kind . = marked
0.* erors
= message = comment
H UMLBname

% uniqueElementMames

Lit

floorlamp €
FloorLamp
(f:FLOOR) Unlit

On

floorsensor €
Floorsensor (f:FLOOR)
Off

requestlamp €

Lit

RequestLamp

(f:FLOOR) Unlit

MovingArrivingUp /

f'= currentF] T E

[0,1]

o Lift Specifications

‘ [2.5)
f'= currentFl

f'= currepftFl

. ~
ff= currentFl = -

MovingUp |
I [0,1]
I
MovingDepartingUp 'l
|
lift :)
. StopAtFl
Lift(EFLOOR) R N
MovingDepartingDown |’ \
I o
I N
MovingDown :|.
" !
MovingArrivingDown : \ I
f: reqRl, [1,5] 1|
f= curﬂlcl\tF : ‘\ [1.5] | N
I
\ I
Open | Co / \
door ¢ \ :)/ Y
Door(f:FLOOR) [N A J/ \
Closed TN T 7 \
\ AN \ s \
| h N S - \
\ ~<
Deactivated \ ! |
uplamp : \\ Y |
UpLamp \ \ \ \l
\ \
Activated — N :
\ A \ |
\ \ I
\ N |
\ N |
. N e S - I
downlamp : Deactivated . o S __ ‘l
DownLamp I’ 1 1
i

Activated

Input : sampleTD.tmd

ecore

i sampleTD.tmd 23

) Resource Sek

Bl 4 platform:fresource/sampleTDysample TD: tmd
H-4 TD Project LiftSwstem_ATL

=4 TD Machine LiftSystem_ATL

Input : sampleTD.tmd

xml

1<?%xml wversion="1.0" encoding="UTF-5"2>

Z<THMD: TDProject xmwi:version="z2Z.0" xmlns:xmi="http://wuw.omy.org/ XM

3 <oconstruct nawe="LiftATL™>

= % TD Class FloorSensor
=4+ TD Timeline Floorsensar

~4 TD Timeling Transition
4 TD Timeline Transition
-4 TD State Cn
< TD Segment Oni
= 4 TD Segment On3
El*\'-‘* TD Conskraints
E| 4 OR node
E| {:r Simple
-4 TD Predicate F = currentFl
E|"-+ Simple
i i 4 TD Predicate f = currentFl
el TD Timirg 2
-4 TD State Off
-4 10 Segment OffZ
=- {? TD Constraints
El 4? OR node
El ‘¢* Simnple

& {} Sirnple

< TD Timing 2

=% ¢- TO Class Door

=4 TD Timeline door
E < TD Timeline Transition
E| {.‘* TD State Closed
: 4 TD Segment Closed1
= + TD State Open

- TD Segment Open2

El*\'-‘* TD Conskraints
E| ﬂ'-‘* Sirnple

4 TD Predicate F : reqFl & F = currentF

i s TD Timing 1

~ 4 TD Predicate F= currentFl & dir = Up

- 4 T Predicate f = currentFl & dir = Down

4 <czlass name="FloorZensor'>

5 <timeline name="floorsensor'>

£ <timelinetransitions source="//fconstruct.0/fclass.0/BLime
7 <states name="0on">

=] <Segments name="0nl" index="1"/>

=] <fstatess

10 <states name="0fL">

11 <segments name="0LffZ" index="2">

12 <oconstraintss

13 <effectsource Xsi:type="THD:OR node™:>

14 <0r xsi:type="THD:S3imple" causescurce="//Hconstruc
15 <predicates predicate=" £ = currentFl & dir
16 </ 0>

17 <0r xsi:type="THD:S3imple" causescurce="//Hconstruc
18 <predicates predicate="f = currentFl & dir -
19 </ 0>

</effectsources
<timing lowerlimit="2Z" upper

<fconstraintss
z </ zegmentar
24 <fstatess
z5 </ timelines
Z6 <fclass>
27 <class name="Loor">
28 <timeline name="door":>
29 <timelinetransitions source="//feco
30 <3tates name="Closed">
3l <segments name="Closedl" index="
32 </statess>
33 <states name="Open':>
34 <segments name="0penz™ index=MZ"
35 <constraintss
36 <effectsource xsi:type="THMD:
37 <predicates predicate="f
35 </feffectsourcer
39 <timing lowerlimit="1" upper
40 </constraintss
g1 </ segmentax
4z </ =atates>

43 <ftimelines

limit="5"/>

nstruct.0/fclass. 1/ @t ime

1"/

=

Simple™ causesource="//[
regFl famp: £ = current

limit="5"/>

& ATL - TTBB/sampleTD.tmd - Eclipse SDK

File Edit

|

MNavigake

Search Project

Run

ATL Compatibility Window Help

- @ - 0-Q- |0+ |2 -6-00- 0

=
TS Mavigator B3

— e
B | (@ TTBB.AH B2

[T

----- 127 SideEffecta

----- T SideEffecta, edit
----- 120 SideEffecta, editor
----- 120 SideEffecta, bests
----- 120 SideEffectE

----- 0 T2UMLE

-5 TD

7124 TD.edit

'[é'l' TOr.editor

'[é'l' TD.tesks

=% TDZUMLE_ME'W
H-12% Thesis_PIC_UML-B

== T16E
F--[Z= .settings
..... |¥] project

.....) e

T
e TTEE, atl

7/

----- @ TDMetampiodel, ecor
""" TDMetArmodel, ecore_diagranm

----- @ umlbMetarmodel, ecofe
----- urnlbMetamodel. ecore_diagran)

umlbMM. ecore_diagram 1 TDMetamodel ecore_diagram 1 TDApril. ecore_diagram 1 *urnlbMet

—— Batlocompiler atlZO0s

e TTEBE; -- Module Template

umlbMetamodel from IN : TDhMetamodel:

umlbproject
umlbmachine

umllbMe ode 1l 'TMLEFProject
etamode l ' THLEMachine

unlbMetamode l ' TMLEProject;
unlbMetamode l ' TMLEMachine;

w1l

Project
from t
to

etamodel 'ThProject

umnlbMetamode l ' THLEFProject

[name <-— t.nagoe,
COnsStructs <— L.construct)

do {thizModule.wnlbproject <-— u; }

u

ATL
perspective

rule Machine |
from © ThMetamodel ' TDMachine
to T umlbMetamodel ' THLEMachine
[hame <-— T.hame,
| Clmmses. s Postlnas
4

----- 1T TUMLE_Conskruct
----- T UMLEMetamaodel1

----- 20 UMLEMEM

""" 1T UMLEMetamadel1 , edit
""" T UMLEMetamaodel1, editar
""" T UMLBMetamodell bests

sampleUMLE. umlb (EI sampleTC Emd £3

1<?xml wersion="1.0" encoding="UTF-S">?=>
Z<THD: TDProject xmi:version="2.0" xmlns:xmi="http://wuw.ong.org/XMI" xmlns:xsi="ht
3 <construct nawme="LiftSystem ATL":>

4 <z lass name="FloorSensor'>

5 <timeline name="floorsensor ">

& <timelinetransitions source="//fconstruct.0/fclass.0/Btimeline.0/Bstates.
7 <timelinetransitions source="//fconstruct.0/Bclass.0/Btimeline.0/@states.
=] <states name="Con">

9 CIZEQMENTE name="0nl"™ index="1"/>»
10 <Segmwents name="0on3i" index=T"53T>
11 <constraincs:

12 <effectsource Hsi:type="THD:OR node':>

I s am— TR .Y . . —_—e s _m

Example ATL rule : Project

H TDProject
D
rule Project { construct
from t : TDMetamodel!TDProject "
to u: E;:ﬁ?;e H TDMachine
umlbMetamodellUMLBProject
(name <- t.name,
constructs <- t.construct) ~ crrrrrrrrrrmmmmmmssnnnnnnnnnnnn e
do {thisModule.umlbproject <- u; } UMLB

}

=Mkt Construct 0..* H UMLBronstruct

H UMLEname
O pame
##E unigueElementMames

H UMLEnamedElement
i

14

Example ATL rule : Machine

rule Machine { 5 Name
fromt : TDMetamodel!TDMachine = name £ TDMachine
to m :umlbMetamodellUMLBMachine

(name <- t.name, class

classes <- t.class), D

L
e : umlbMetamodellUMLBEvent H TDClass
(name <- 'ticktok'),

a :umibMetamodellUMLBACtiON L
(name <- 'Action1’, _
action <- 'gclock := gclock + 1Y,] UMLBMachine H UMLBabstractClass

o
\ 4

gclk : umibMetamodellUMLBVariable

(name <- 'gclock’,
initialValue <-'0'), .
events O/ contex\..
ctx : umlbMetamodellUMLBContext

H UMLBEvent

(name <- t.name + '_Ctx') p—— H UMLBContext H UMLBVariable
do {m.events <- m.events.append(e); \
e.actions <- e.actions.append(a); \
m.variables <- m.variables.append(gclk); \ UML-B
thisModule.umlbproject.constructs <- thisModuIe.umIbp\roject.constructs.append(ctx);
thisModule.umlbmachine <- m; \
H UMLBAction
} } = action 15

Example ATL rule : Transition

rule Transition {
from t : TDMetamodel!TDTimelineTransition
to u:umlbMetamodellUMLBTransition
(name <- t.target.getTransitionName(),
target <- t.target.eContainer(),

source <- t.source.eContainer(), HTostste
guards <- t.target.constraints, o
actions <- t.target.Simul
} H UMLBguarded&ction
]
actions
I:Iu* *
guards O..

H UMLEPredicate
H UMLBACtion o predicate
= action

RS . outgeing 0..* |B TDTimelinaTransition
egdmen
o indef incoming 0.*
segments 0.* 1.1
SOLrCe
1.1 target
H UMLBETransition
target source o.*% 0.*
aLtgoing
1.1 1.1
inComing
H UMLEState U M L_ B
= final
= initial

8 notransitionsfrormfinal
&8 noincomerstoinitial
8 noregionsoninitialorfinal 16

helper : getTransitionName()

helper context TDMetamodel'TDSegment
def : getTransitionName() : String =
let simuls : Set(TDMetamodel!TDSegment) =
TDMetamodel!TDSegment.alllnstances() ->
select(c|c.Simul -> includes(self))
in
if simuls -> isEmpty() then

self.eContainer().eContainer().name + self.eContainer().name
else

simuls.last().getTransitionName()
endif;

17

Output : sampleUMLB.umlb

<?xml version="1.0" encoding="1SO-8859-1"?>

<umlbMetamodel:UMLBProject xmi:version="2.0" xmIns:xmi="http://www.omg.org/XMI" xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:umlbMetamodel="http:///umibMetamodel.ecore" name="LiftSystemATL">

<constructs xsi:type="umlbMetamodel:UMLBMachine" name="LiftATL">

<variables name="gclock" initialValue="0"/>

<variables name="floorsensorOnTime" initialValue="0"/>

<variables name="floorsensorOffTime" initialValue="0"/>

<variables name="doorClosedTime" initialValue="0"/>

<variables name="doorOpenTime" initialValue="0"/>

<variables name="|iftStopAtFloorTime" initialValue="0"/>

<variables name="liftMovingNearUpTime" initialValue="0"/>

<variables name="liftMovingNearDownTime" initialValue="0"/>

<variables name="liftMovingUpTime" initialValue="0"/>

<variables name="liftMovingDownTime" initialValue="0"/>

<variables name="uplampActivatedTime" initialValue="0"/>

<variables name="uplampDeactivatedTime" initialValue="0"/>

<variables name="downlampActivatedTime" initialValue="0"/>

<variables name="downlampDeactivatedTime" initialValue="0"/>

<classes xsi:type="umlbMetamodel:UMLBClass" name="FloorSensor">

<statemachines name="floorsensor">
<states name="0On" outgoing="//@constructs.0/@classes.0/@statemachines.0/@transitions.0"/>
<states name="0Off" incoming="//@constructs.0/@classes.0/@statemachines.0/@transitions.0"/>
<transitions name="floorsensorOff" target="//@constructs.0/@classes.0/@statemachines.0/@states.1" source="//@constructs.0/@classes.0/@statemachines.0/@states.0">
<actions name="gClockAction" action="floorsensorOffTime := gclock"/>

<guards name="TimingCnstrntGuard" predicate="((gclock - liftMovingNearUptime >= 2) & (gclock - liftMovingNearUptime <= 5) & f = currentF| & dir = Up) or
?(gclock - liftMovingNearDowntime >= 2) & (gclock - liftMovingNearDowntime <= 5) & f = currentFl & dir = Down)"/>

</transitions>
</statemachines>
</classes>
<classes xsi:type="umlbMetamodel:UMLBClass" name="Door">
<statemachines name="door">
<states name="Closed" outgoing="//@constructs.0/@classes.1/@statemachines.0/@transitions.0"/>
<states name="0Open" incoming="//@constructs.0/@classes.1/@statemachines.0/@transitions.0"/>
<transitions name="doorOpen" target="//@constructs.0/@classes.1/@statemachines.0/@states.1" source="//@constructs.0/@classes.1/@statemachines.0/@states.0">
<actions name="gClockAction" action="doorOpenTime := gclock"/>
<guards name="TimingCnstrntGuard" predicate="(gclock - liftStopAtFloortime >= 1) & (gclock - liftStopAtFloortime <= 5) & f : reqFl & f = currentFI"/>
</transitions>
</statemachines>
</classes>

18

Parts of UML-B are created from ATL

Package diagram,

5* . *
ces Context diagram
o FloorSensor o Door o Lift o LplLamp
Attributes Attributes Attributes Attributes
Events Events Events Events
Statemachines Staternachines Statemachines Staternachines
S floorsensar S door S lift S Lplarmp
4 floorsensoroff % dooropen # liftMovingDepartingUp % 11ftMovingDepartilngDown
% floorsensoror 4 liftMovingDepartingDown
Invariants % LiftMovi nglp Invariants
Invariants Thearems # h T tMovingDown Theorems
Theorems # liftMowingArrivinglp

1iftMowingArrivingDown

Irvariants
++ Machine Everit

i ck ok Thesters Class diagram

@ Machine Wariable @ Machine Yariable @ Machine Yariable @ Machine Wariable
gclock: MAT ™ floorsensoronTime: NAT1 floorsensorGffTime: MAT1 liftMovingUpTime: MAT1

@ Machine Wariable @ Machine Variable @ Machine Wariable @ Machine Wariable
uplampDeactivatedTime: MAT1 | liftMowingDepartingUpTime: MWAT1 | doorClosedTime: WAT1| LiftMowlngDownTime: MAT

@ Machine Wariable @ Machine Wariable @ Machine Wariable @ Machine Ya
liftMovingArrivingDownTime: MAT1 | liftMovingDepartingDownTime: MAT1 | doorOpenTime: MAT1| downlampActivated

@ Machine Wariable @ Machine Wariable @ Machine Wariable @ Machine Wariable
liftStopatFloorTime: MATL uplampActivatedTime: MATL [LiftMovingArrivingUpTime: WAT1 | downlampDeactivatedTin

% | @ Machine Variable | 4 | @ Machine Yariable
reqFl: P(FLCOR) currentFL: FLOOR

Note : * Manually create o

Parts of UML-B are created from ATL (cont’)

4 MovingArrivingUp 4 MovingArrivingDown
Statemachines Skakemachines
Irvvariants Irvvariants
Theorerms Theorems
* . *
liftstopatFloorl 4 liftStopAtFloor2

4 StopAtFloor
Statemnachines
l1ftMovingArrivinglp Invariants # 1iftMovingarrivingDown
Thearems

l1ftMovingDepartinglp
l1ftMovingDepartingDown

4 MovingDepartingUp 4 MovingDepartingDown
Statemachines Statemachines
Irvvariants Irvvariants
Theorems Theorems
l1ftMovingUp 4 11ftMovingDown
4 MovingUp

4 MovingDown

Statemachines ,
Statemnachines
Invariants -
Invariants
Thearems

Theorems 20

Examples of UML-B are created from ATL

(cont’)

4 of f
Statemachines
Invvariants

Theorems

4% floorsensorof f 1% floorsensorct

4 1N
Skatemachines
Invariants

Theorems

i

State diagram

E Properties &8 [E_L, Pruhlems} sz, Tasksw

Transition : floorsensorOn = Off -2 On

R
Properties Marne: }ﬂoo rsensoron
Refines
Parameters:
Parameters
Witnesses
Guards Witness:
Ackions . . - . | | - |
Errars Guards: {{gclock - liftMovingarrivingUptime == 2] & (gclock - liftMovingArrivinglptime == 5
. tloorsensorOnTime := gclock
Actions:
Camment: |

21

Examples of Event-B are created from UML-B

floorsensorOff =

WHICH IS
ordinary
ANY
self
WHERE
self.type : self € FloorSensor
source state : Tloorsensor{self) = 0On
floorsensorOff.TimingCnstrntGuard : ((gclock — liftMovingDepartingUptime = 2) a (
THEN
target state : floorsensor(self) = Off
floorsensorOff.gClockAction : floorsensorOffTime = gclock

END

floorsensorQOn =

WHICH IS
ordinary
ANY
self
WHERE
self.type : self € FloorSensor
source state : floorsensor(self) = Off
floorsensorOn.TimingCnstrntGuard : ((gclock — 1liftMovingArrivingUptime = 2) A (gc
THEN
target state : floorsensor(self) = 0On
floorsensorOn.gClockAction : floorsensorOnTime = gclock

END

Ongoing works : Simultaneity

@ Lift
Attributes
Events

Statemachines
S lift

% 1iftMovingDepartingUp
1iftMovingDepartingDown
% 1LiftMovingUp

% 1iftMovingDown

% LiftMovingArrivinglp

LiftMovingArrivingDown
% 1iftStopatFloorl

Movingarrivingd
* 9 9-p # liftStopatFloorz

Stakemachines
- Invariants
Invariants
Theorems
Theorems

liftStopAtFloorl

4 StopatFloor
Skatemachines
liftMovingArrivinglp Invariants

Thearems

liftMovingDepartingllp

4 Mow1ngArrivingDown
Statermachines
Invariants

Theorem:s

liftStopAtFloor2

¥ T1if tMovingArrivingDown

%‘?| 11iftMovingDepartingDown

4 MovingDepartinglp
Stakemachines
Irveariants

Theorems
liftMovingUp

4 MowingUp
Statermachines
Inveariants

Theorems

Stakemachines
Irveariants

Theorems

4 MovingDepart1ngDown

¥ 111 tMovingDown

4 MovingDown
Statemachines
Invariants

Theorems

2 UpLamp
Attributes
Events
Staternachines

S uplamp
LiftMovingDepartingDown

Invariants

Theorems

4 ACtivated
Statemachines
Irvariants

Theorems

s 11 tMovingDepartingDown

4 Deactivated
Statemachines
Imvariants

Theaorems

23

Ongoing works : Simultaneity (cont’)

lLiftMovingDepartingDown =

STATUS
ordinary
ANY
UpLampSelf::::::;%/— contextual instance of class UpLamp
LiftSelf /1 contextual instance of class Lift
WHERE
UpLampSelf.type : UpLampSelf € UpLamp
LiftSelf.type : LiftSelf e Lift
uplamp isin_ Activated : uplamp(UpLampSelf) = Actiuated‘/////////
lift isin StopAtFloor : Lift(LiftSelf) = StopAtFloor
liftMovingDepartingDown.TimingCnstrntGuard : (gclock - doorClosedtime = 1) A (gclock - door(
THEN
Lift _enterState MovingDepartingDown : lift(LiftSelf) = MovingDepartingDown
liftMovingDepartingDown.gClockAction : uplampDeactivatedTime = gclock
uplamp enterState Deactivated : uplamp (UpLampSelf) = Deactivated
END

24

Ongoing works : Simultaneity (cont’)

MovingArrivingUp
MovingUp
MovingDepartingUp
lift :
StopAtF1
Lift(f:FLOOR) OpALRoor
MovingDepartingDown -
MovingDown < N
\ N N
f:rejiFl & \ N
MovingArrivingDown f < cyrrentF] \ N
s N\
| \
Open / \
door ¢ K \
Door(f:FLOOR) / |
Closed / \
s 7 \
7 7 \
- \
Deactivated |
uplamp : ‘.
UpL ‘
pLamp Activated '|
|
[
[
I
I
Deactivated I;
downlamp : I
DownLamp ,'
Activated

A very special THANKS to

Dr. Colin Snook

26

