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ATL

« ATL transformation program is composed of
rules that define how source model elements are

matched and navigated to create and initialize
the elements of the target model.
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Structure of ATL Module (cont)

* Header
- defines name of transformation model
- declares the source and target models

module TTBB;
create OUT : umlbMetamodel from IN : TDMetamodel;

* Imports
- declare which ATL libraries have to be imported

uses strings;




Structure of ATL Module (cont)

* Helpers
- Can be viewed as Java methods

- Make it possible to defined factorized ATL code that
can be called from different points of an ATL
transformation

helper context TDMetamodel!TDNodeType
def : SimpleCond() : String =
self.predicates -> iterate(e; ret : String =" |
ret -> concat(' & ' + e.predicate));




* Transformation rules express the transformation logic

rule Machine{ — > Rule’s name
fromt : TDMetamodel!TDMachine >  Source model
to m :umlbMetamodellUMLBMachine

(name <- t.name,

classes <- t.class),

e : umlbMetamodel!lUMLBEvent \
(name <- 'ticktok'),

a : umlbMetamodellUMLBAction
(name <- 'Action1’,
action <- 'gclock := gclock + 1'),

target models

“- - comment
gclk : umibMetamodellUMLBVariable /
(name <- 'gclock’,

initialValue <-'0'), initialValueAs defined in UMLBvariableElement

ctx : umlbMetamodellUMLBContext

(name <- t.name +'_ctx') “do” specify some imperative code that

do {m.events <- m.events.append(e):; —— will be executed after the initialization of
e.actions <- e.actions.append(a); the target elements generated by the rule

m.variables <- m.variables.append(gclk);
thisModule.umlbproject.constructs <- thisModule.umlbproject.constructs.append(ctx);
thisModule.umlbmachine <- m;

bl
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Input : sampleTD.tmd

ecore

i sampleTD.tmd 23

) Resource Sek

Bl 4 platform:fresource/sampleTDysample TD: tmd
H-4 TD Project LiftSwstem_ATL

=4 TD Machine LiftSystem_ATL

Input : sampleTD.tmd

xml

1<?%xml wversion="1.0" encoding="UTF-5"2>

Z<THMD: TDProject xmwi:version="z2Z.0" xmlns:xmi="http://wuw.omy.org/ XM

3 <oconstruct nawe="LiftATL™>

= % TD Class FloorSensor
=4+ TD Timeline Floorsensar

~4 TD Timeling Transition
4 TD Timeline Transition
-4 TD State Cn
< TD Segment Oni
= 4 TD Segment On3
El*\'-‘* TD Conskraints
E| 4 OR node
E| {:r Simple
-4 TD Predicate F = currentFl
E|"-+ Simple
i i 4 TD Predicate f = currentFl
el TD Timirg 2
-4 TD State Off
-4 10 Segment OffZ
=- {? TD Constraints
El 4? OR node
El ‘¢* Simnple

& {} Sirnple

< TD Timing 2

=% ¢- TO Class Door

=4 TD Timeline door
E < TD Timeline Transition
E| {.‘* TD State Closed
: 4 TD Segment Closed1
= + TD State Open

- TD Segment Open2

El*\'-‘* TD Conskraints
E| ﬂ'-‘* Sirnple

4 TD Predicate F : reqFl & F = currentF

i s TD Timing 1

~ 4 TD Predicate F= currentFl & dir = Up

- 4 T Predicate f = currentFl & dir = Down

4 <czlass name="FloorZensor'>

5 <timeline name="floorsensor'>

£ <timelinetransitions source="//fconstruct.0/fclass.0/BLime
7 <states name="0on">

=] <Segments name="0nl" index="1"/>

=] <fstatess

10 <states name="0fL">

11 <segments name="0LffZ" index="2">

12 <oconstraintss

13 <effectsource Xsi:type="THD:OR node™:>

14 <0r xsi:type="THD:S3imple" causescurce="//Hconstruc
15 <predicates predicate=" £ = currentFl &amp; dir
16 </ 0>

17 <0r xsi:type="THD:S3imple" causescurce="//Hconstruc
18 <predicates predicate="f = currentFl &amp; dir -
19 </ 0>

</effectsources
<timing lowerlimit="2Z" upper

<fconstraintss
z </ zegmentar
24 <fstatess
z5 </ timelines
Z6 <fclass>
27 <class name="Loor">
28 <timeline name="door":>
29 <timelinetransitions source="//feco
30 <3tates name="Closed">
3l <segments name="Closedl" index="
32 </statess>
33 <states name="Open':>
34 <segments name="0penz™ index=MZ"
35 <constraintss
36 <effectsource xsi:type="THMD:
37 <predicates predicate="f
35 </feffectsourcer
39 <timing lowerlimit="1" upper
40 </constraintss
g1 </ segmentax
4z </ =atates>

43 <ftimelines

limit="5"/>

nstruct.0/fclass. 1/ @t ime

1"/

=

Simple™ causesource="//[
regFl famp: £ = current

limit="5"/>



& ATL - TTBB/sampleTD.tmd - Eclipse SDK
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----- urnlbMetamodel. ecore_diagran)

umlbMM. ecore_diagram 1 TDMetamodel ecore_diagram 1 TDApril. ecore_diagram 1 *urnlbMet

—— Batlocompiler atlZO0s

e TTEBE; -- Module Template

umlbMetamodel from IN : TDhMetamodel:

umlbproject
umlbmachine

umllbMe ode 1l 'TMLEFProject
etamode l ' THLEMachine

unlbMetamode l ' TMLEProject;
unlbMetamode l ' TMLEMachine;

w1l

Project
from t
to

etamodel 'ThProject

umnlbMetamode l ' THLEFProject

[ name <-— t.nagoe,
COnsStructs <— L.construct)

do {thizModule.wnlbproject <-— u; }

u

ATL
perspective

rule Machine |
from © ThMetamodel ' TDMachine
to T umlbMetamodel ' THLEMachine
[hame <-— T.hame,
| Clmmses. s Postlnas
4

----- 1T TUMLE_Conskruct
----- T UMLEMetamaodel1

----- 20 UMLEMEM

""" 1T UMLEMetamadel1 , edit
""" T UMLEMetamaodel1, editar
""" T UMLBMetamodell  bests

sampleUMLE. umlb (EI sampleTC Emd  £3

1<?xml wersion="1.0" encoding="UTF-S">?=>
Z<THD: TDProject xmi:version="2.0" xmlns:xmi="http://wuw.ong.org/XMI" xmlns:xsi="ht
3 <construct nawme="LiftSystem ATL":>

4 <z lass name="FloorSensor'>

5 <timeline name="floorsensor ">

& <timelinetransitions source="//fconstruct.0/fclass.0/Btimeline.0/Bstates.
7 <timelinetransitions source="//fconstruct.0/Bclass.0/Btimeline.0/@states.
=] <states name="Con">

9 CIZEQMENTE name="0nl"™ index="1"/>»
10 <Segmwents name="0on3i" index=T"53T>
11 <constraincs:

12 <effectsource Hsi:type="THD:OR node':>

I s am— TR .Y . . —_—e s _m




Example ATL rule : Project

H TDProject
D
rule Project { construct
from t : TDMetamodel!TDProject "
to u: E;:ﬁ?;e H TDMachine
umlbMetamodellUMLBProject
( name <- t.name,
constructs <- t.construct) ~ crrrrrrrrrrmmmmmmssnnnnnnnnnnnn e
do {thisModule.umlbproject <- u; } UMLB

}

=Mkt Construct 0..* H UMLBronstruct

H UMLEname
O pame
##E unigueElementMames

H UMLEnamedElement
i

14



Example ATL rule : Machine

rule Machine { 5 Name
fromt : TDMetamodel!TDMachine = name £ TDMachine
to m :umlbMetamodellUMLBMachine

(name <- t.name, class

classes <- t.class), D

L
e : umlbMetamodellUMLBEvent H TDClass
(name <- 'ticktok'),

a :umibMetamodellUMLBACtiON L
(name <- 'Action1’, _
action <- 'gclock := gclock + 1Y, ] UMLBMachine H UMLBabstractClass

o
\ 4

gclk : umibMetamodellUMLBVariable

(name <- 'gclock’,
initialValue <-'0'), .
events O/ contex\..
ctx : umlbMetamodellUMLBContext

H UMLBEvent

(name <- t.name + '_Ctx' ) p—— H UMLBContext H UMLBVariable
do {m.events <- m.events.append(e); \
e.actions <- e.actions.append(a); \
m.variables <- m.variables.append(gclk); \ UML-B
thisModule.umlbproject.constructs <- thisModuIe.umIbp\roject.constructs.append(ctx);
thisModule.umlbmachine <- m; \
H UMLBAction
} } = action 15



Example ATL rule : Transition

rule Transition {
from t : TDMetamodel!TDTimelineTransition
to u:umlbMetamodellUMLBTransition
( name <- t.target.getTransitionName(),
target <- t.target.eContainer(),

source <- t.source.eContainer(), HTostste
guards <- t.target.constraints, o
actions <- t.target.Simul
} H UMLBguarded&ction
]
actions
I:Iu* *
guards O..

H UMLEPredicate
H UMLBACtion o predicate
= action

RS . outgeing 0..* |B TDTimelinaTransition
egdmen
o indef incoming 0.*
segments 0.* 1.1
SOLrCe
1.1 target
H UMLBETransition
target source o.*%  0.*
aLtgoing
1.1 1.1
inComing
H UMLEState U M L_ B
= final
= initial

8 notransitionsfrormfinal
&8 noincomerstoinitial
8 noregionsoninitialorfinal 16



helper : getTransitionName()

helper context TDMetamodel'TDSegment
def : getTransitionName() : String =
let simuls : Set(TDMetamodel!TDSegment) =
TDMetamodel!TDSegment.alllnstances() ->
select(c|c.Simul -> includes(self))
in
if simuls -> isEmpty() then

self.eContainer().eContainer().name + self.eContainer().name
else

simuls.last().getTransitionName()
endif;

17



Output : sampleUMLB.umlb

<?xml version="1.0" encoding="1SO-8859-1"?>

<umlbMetamodel:UMLBProject xmi:version="2.0" xmIns:xmi="http://www.omg.org/XMI" xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:umlbMetamodel="http:///umibMetamodel.ecore" name="LiftSystemATL">

<constructs xsi:type="umlbMetamodel:UMLBMachine" name="LiftATL">

<variables name="gclock" initialValue="0"/>

<variables name="floorsensorOnTime" initialValue="0"/>

<variables name="floorsensorOffTime" initialValue="0"/>

<variables name="doorClosedTime" initialValue="0"/>

<variables name="doorOpenTime" initialValue="0"/>

<variables name="|iftStopAtFloorTime" initialValue="0"/>

<variables name="liftMovingNearUpTime" initialValue="0"/>

<variables name="liftMovingNearDownTime" initialValue="0"/>

<variables name="liftMovingUpTime" initialValue="0"/>

<variables name="liftMovingDownTime" initialValue="0"/>

<variables name="uplampActivatedTime" initialValue="0"/>

<variables name="uplampDeactivatedTime" initialValue="0"/>

<variables name="downlampActivatedTime" initialValue="0"/>

<variables name="downlampDeactivatedTime" initialValue="0"/>

<classes xsi:type="umlbMetamodel:UMLBClass" name="FloorSensor">

<statemachines name="floorsensor">
<states name="0On" outgoing="//@constructs.0/@classes.0/@statemachines.0/@transitions.0"/>
<states name="0Off" incoming="//@constructs.0/@classes.0/@statemachines.0/@transitions.0"/>
<transitions name="floorsensorOff" target="//@constructs.0/@classes.0/@statemachines.0/@states.1" source="//@constructs.0/@classes.0/@statemachines.0/@states.0">
<actions name="gClockAction" action="floorsensorOffTime := gclock"/>

<guards name="TimingCnstrntGuard" predicate="((gclock - liftMovingNearUptime >= 2) &amp; (gclock - liftMovingNearUptime &lt;= 5) &amp; f = currentF| &amp; dir = Up) or
?(gclock - liftMovingNearDowntime >= 2) &amp; (gclock - liftMovingNearDowntime &lt;= 5) &amp; f = currentFl &amp; dir = Down)"/>

</transitions>
</statemachines>
</classes>
<classes xsi:type="umlbMetamodel:UMLBClass" name="Door">
<statemachines name="door">
<states name="Closed" outgoing="//@constructs.0/@classes.1/@statemachines.0/@transitions.0"/>
<states name="0Open" incoming="//@constructs.0/@classes.1/@statemachines.0/@transitions.0"/>
<transitions name="doorOpen" target="//@constructs.0/@classes.1/@statemachines.0/@states.1" source="//@constructs.0/@classes.1/@statemachines.0/@states.0">
<actions name="gClockAction" action="doorOpenTime := gclock"/>
<guards name="TimingCnstrntGuard" predicate="(gclock - liftStopAtFloortime >= 1) &amp; (gclock - liftStopAtFloortime &lt;= 5) &amp; f : reqFl &amp; f = currentFI"/>
</transitions>
</statemachines>
</classes>

18



Parts of UML-B are created from ATL

Package diagram,

5* . *
ces Context diagram
o FloorSensor o Door o Lift o LplLamp
Attributes Attributes Attributes Attributes
Events Events Events Events
Statemachines Staternachines Statemachines Staternachines
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4 floorsensoroff % dooropen # liftMovingDepartingUp % 11ftMovingDepartilngDown
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Invariants Thearems # h T tMovingDown Theorems
Theorems # liftMowingArrivinglp

# 1iftMowingArrivingDown

Irvariants
++ Machine Everit

i ck ok Thesters Class diagram

@ Machine Wariable @ Machine Yariable @ Machine Yariable @ Machine Wariable
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@ Machine Wariable @ Machine Variable @ Machine Wariable @ Machine Wariable
uplampDeactivatedTime: MAT1 | liftMowingDepartingUpTime: MWAT1 | doorClosedTime: WAT1| LiftMowlngDownTime: MAT

@ Machine Wariable @ Machine Wariable @ Machine Wariable @ Machine Ya
liftMovingArrivingDownTime: MAT1 | liftMovingDepartingDownTime: MAT1 | doorOpenTime: MAT1| downlampActivated

@ Machine Wariable @ Machine Wariable @ Machine Wariable @ Machine Wariable
liftStopatFloorTime: MATL uplampActivatedTime: MATL [LiftMovingArrivingUpTime: WAT1 | downlampDeactivatedTin

% | @ Machine Variable | 4 | @ Machine Yariable
reqFl: P(FLCOR) currentFL: FLOOR

Note : * Manually create o



Parts of UML-B are created from ATL (cont’)

4 MovingArrivingUp 4 MovingArrivingDown
Statemachines Skakemachines
Irvvariants Irvvariants
Theorerms Theorems
* . *
# liftstopatFloorl 4 liftStopAtFloor2

4 StopAtFloor
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4 MovingUp
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Theorems 20



Examples of UML-B are created from ATL

(cont’)

4 of f
Statemachines
Invvariants

Theorems

4% floorsensorof f 1% floorsensorct

4 1N
Skatemachines
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Theorems

i

State diagram
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Transition : floorsensorOn = Off -2 On

R
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Ackions . . - . | | - |
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Actions:
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21




Examples of Event-B are created from UML-B

floorsensorOff =

WHICH IS
ordinary
ANY
self
WHERE
self.type : self € FloorSensor
source state : Tloorsensor{self) = 0On
floorsensorOff.TimingCnstrntGuard : ((gclock — liftMovingDepartingUptime = 2) a (
THEN
target state : floorsensor(self) = Off
floorsensorOff.gClockAction : floorsensorOffTime = gclock

END

floorsensorQOn =

WHICH IS
ordinary
ANY
self
WHERE
self.type : self € FloorSensor
source state : floorsensor(self) = Off
floorsensorOn.TimingCnstrntGuard : ((gclock — 1liftMovingArrivingUptime = 2) A (gc
THEN
target state : floorsensor(self) = 0On
floorsensorOn.gClockAction : floorsensorOnTime = gclock

END



Ongoing works : Simultaneity

@ Lift
Attributes
Events

Statemachines
S lift

% 1iftMovingDepartingUp
# 1iftMovingDepartingDown
% 1LiftMovingUp

% 1iftMovingDown
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Invariants
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Invariants
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# liftStopAtFloor2
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%‘?| 11iftMovingDepartingDown

4 MovingDepartinglp
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Theorems
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4 MovingDown
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Theorems

2 UpLamp
Attributes
Events
Staternachines
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Invariants

Theorems

4 ACtivated
Statemachines
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Theorems

s 11 tMovingDepartingDown

4 Deactivated
Statemachines
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Theaorems
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Ongoing works : Simultaneity (cont’)

lLiftMovingDepartingDown =

STATUS
ordinary
ANY
UpLampSelf::::::;%/— contextual instance of class UpLamp
LiftSelf /1 contextual instance of class Lift
WHERE
UpLampSelf.type : UpLampSelf € UpLamp
LiftSelf.type : LiftSelf e Lift
uplamp isin_ Activated : uplamp(UpLampSelf) = Actiuated‘/////////
lift isin StopAtFloor : Lift(LiftSelf) = StopAtFloor
liftMovingDepartingDown.TimingCnstrntGuard : (gclock - doorClosedtime = 1) A (gclock - door(
THEN
Lift _enterState MovingDepartingDown : lift(LiftSelf) = MovingDepartingDown
liftMovingDepartingDown.gClockAction : uplampDeactivatedTime = gclock
uplamp enterState Deactivated : uplamp (UpLampSelf) = Deactivated
END

24



Ongoing works : Simultaneity (cont’)

MovingArrivingUp
MovingUp
MovingDepartingUp
lift :
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\ N N
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