
1

TD to UML-B

using

Atlas Transformation Language (ATL)

2

Outlines

• ATL Overview

• Structure of ATL Module

• Timing diagram Metamodel & UML-B Metamodel

• Examples of ATL transformation rules

• Examples of UML-B models are created from ATL

• Examples of Event-B models are created from UML-B

• Point out the manually additional information

• Ongoing works

3

ATL

• ATL transformation program is composed of

rules that define how source model elements are

matched and navigated to create and initialize

the elements of the target model.

4

Timing Diagram

(TD)
UML-B

source target

Transformation

TTBB.atl

umlbMetamodelTDMetamodel

Ecore

ATL

conforms toconforms to
conforms to

conforms to

conforms to

conforms to

Overview of the TD to UML-B
transformation

5

Structure of ATL Module

• Header

• Imports

• Helpers

• Transformation rules

6

Structure of ATL Module (cont’)

• Header
- defines name of transformation model

- declares the source and target models

- - @atlcompiler atl2006

module TTBB;

create OUT : umlbMetamodel from IN : TDMetamodel;

• Imports
- declare which ATL libraries have to be imported

uses strings;

7

• Helpers

- Can be viewed as Java methods

- Make it possible to defined factorized ATL code that
can be called from different points of an ATL

transformation

helper context TDMetamodel!TDNodeType

def : SimpleCond() : String =

self.predicates -> iterate(e; ret : String = '' |

ret -> concat(' & ' + e.predicate));

Structure of ATL Module (cont’)

8

rule Machine {
from t : TDMetamodel!TDMachine
to m : umlbMetamodel!UMLBMachine

(name <- t.name,
classes <- t.class),

e : umlbMetamodel!UMLBEvent
(name <- 'ticktok'),

a : umlbMetamodel!UMLBAction
(name <- 'Action1',
action <- 'gclock := gclock + 1'),

gclk : umlbMetamodel!UMLBVariable
(name <- 'gclock',
initialValue <- '0'), - - initialValue is defined in UMLBvariableElement

ctx : umlbMetamodel!UMLBContext
(name <- t.name + '_ctx')

do {m.events <- m.events.append(e);
e.actions <- e.actions.append(a);

m.variables <- m.variables.append(gclk);
thisModule.umlbproject.constructs <- thisModule.umlbproject.constructs.append(ctx);
thisModule.umlbmachine <- m;
} }

• Transformation rules express the transformation logic

Rule’s name

Source model

target models

“do” specify some imperative code that

will be executed after the initialization of

the target elements generated by the rule

“- -” comment

9

source :

TDMetamodel

10

target :

umlbMetamodel

11

TD

Lift Specifications
�������������

	�����������
��	�

��

�

��

��������

����
��	�

��
������	����

�����

�������

����
��	�

��

���

������

�������	��

����� �����	�

��!��"#���

��!��"#�

��"���$"���

����$"���

��� ����"#���

��� ����"#�

��	�

��

���

%����

�&���

����� �����	�'�$��(%�

'�$��(���"����(��!�

'�$��(��!�

�)���

����� �����	��*

��������!�

����� �����	��*

������%�

�)���

����� �����	� ����� �����	�

��������	��*

������ �����	�

�������	��*

��+�� �����	�

�������	��*

��,�� �����	�

�����

�����

�����

 ��"#���

%��"#�

��"���$"���

����$"���

������"#���

	�����"#�

��	�

��

���

%����

����� �����	��

����� �����	��

�&���

�&���

'�$��(����$��(��!�

'�$��(����$��(%�

'�$��(���"����(%�

12

Input : sampleTD.tmd

(ecore)

Input : sampleTD.tmd

(xml)

13

ATL

perspective

14

Example ATL rule : Project

rule Project {

from t : TDMetamodel!TDProject

to u :
umlbMetamodel!UMLBProject

(name <- t.name,

constructs <- t.construct)

do {thisModule.umlbproject <- u; }

}
UMLB

TD

���������					
���

15

Example ATL rule : Machine
rule Machine {
from t : TDMetamodel!TDMachine
to m : umlbMetamodel!UMLBMachine

(name <- t.name,
classes <- t.class),

e : umlbMetamodel!UMLBEvent
(name <- 'ticktok'),

a : umlbMetamodel!UMLBAction
(name <- 'Action1',
action <- 'gclock := gclock + 1'),

gclk : umlbMetamodel!UMLBVariable
(name <- 'gclock',
initialValue <- '0'),

ctx : umlbMetamodel!UMLBContext
(name <- t.name + '_ctx')

do {m.events <- m.events.append(e);
e.actions <- e.actions.append(a);

m.variables <- m.variables.append(gclk);
thisModule.umlbproject.constructs <- thisModule.umlbproject.constructs.append(ctx);
thisModule.umlbmachine <- m;
} }

class 0..*

variables 0..*
context 0..*events 0..*

TD

UML-B

16

Example ATL rule : Transition

rule Transition {

from t : TDMetamodel!TDTimelineTransition

to u : umlbMetamodel!UMLBTransition

(name <- t.target.getTransitionName(),

target <- t.target.eContainer(),

source <- t.source.eContainer(),

guards <- t.target.constraints,

actions <- t.target.Simul

) ,

.

}

guards 0..*

TD

UML-B

17

helper context TDMetamodel!TDSegment

def : getTransitionName() : String =

let simuls : Set(TDMetamodel!TDSegment) =

TDMetamodel!TDSegment.allInstances() ->

select(c|c.Simul -> includes(self))

in
if simuls -> isEmpty() then

self.eContainer().eContainer().name + self.eContainer().name

else
simuls.last().getTransitionName()

endif;

helper : getTransitionName()

18

Output : sampleUMLB.umlb

<?xml version="1.0" encoding="ISO-8859-1"?>
<umlbMetamodel:UMLBProject xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:umlbMetamodel="http:///umlbMetamodel.ecore" name="LiftSystemATL">
<constructs xsi:type="umlbMetamodel:UMLBMachine" name="LiftATL">

<variables name="gclock" initialValue="0"/>

<variables name="floorsensorOnTime" initialValue="0"/>
<variables name="floorsensorOffTime" initialValue="0"/>
<variables name="doorClosedTime" initialValue="0"/>
<variables name="doorOpenTime" initialValue="0"/>
<variables name="liftStopAtFloorTime" initialValue="0"/>

<variables name="liftMovingNearUpTime" initialValue="0"/>
<variables name="liftMovingNearDownTime" initialValue="0"/>
<variables name="liftMovingUpTime" initialValue="0"/>
<variables name="liftMovingDownTime" initialValue="0"/>

<variables name="uplampActivatedTime" initialValue="0"/>
<variables name="uplampDeactivatedTime" initialValue="0"/>
<variables name="downlampActivatedTime" initialValue="0"/>
<variables name="downlampDeactivatedTime" initialValue="0"/>
<classes xsi:type="umlbMetamodel:UMLBClass" name="FloorSensor">

<statemachines name="floorsensor">
<states name="On" outgoing="//@constructs.0/@classes.0/@statemachines.0/@transitions.0"/>
<states name="Off" incoming="//@constructs.0/@classes.0/@statemachines.0/@transitions.0"/>
<transitions name="floorsensorOff" target="//@constructs.0/@classes.0/@statemachines.0/@states.1" source="//@constructs.0/@classes.0/@statemachines.0/@states.0">
<actions name="gClockAction" action="floorsensorOffTime := gclock"/>

<guards name="TimingCnstrntGuard" predicate="((gclock - liftMovingNearUptime >= 2) & (gclock - liftMovingNearUptime <= 5) & f = currentFl & dir = Up) or
((gclock - liftMovingNearDowntime >= 2) & (gclock - liftMovingNearDowntime <= 5) & f = currentFl & dir = Down)"/>

</transitions>

</statemachines>
</classes>
<classes xsi:type="umlbMetamodel:UMLBClass" name="Door">
<statemachines name="door">

<states name="Closed" outgoing="//@constructs.0/@classes.1/@statemachines.0/@transitions.0"/>

<states name="Open" incoming="//@constructs.0/@classes.1/@statemachines.0/@transitions.0"/>
<transitions name="doorOpen" target="//@constructs.0/@classes.1/@statemachines.0/@states.1" source="//@constructs.0/@classes.1/@statemachines.0/@states.0">
<actions name="gClockAction" action="doorOpenTime := gclock"/>
<guards name="TimingCnstrntGuard" predicate="(gclock - liftStopAtFloortime >= 1) & (gclock - liftStopAtFloortime <= 5) & f : reqFl & f = currentFl"/>

</transitions>

</statemachines>
</classes>

.

19

Parts of UML-B are created from ATL

*

*

* *

Package diagram,

Context diagram

Class diagram

Note : * Manually create

*

20

Parts of UML-B are created from ATL (cont’)

* *

21

State diagram

Examples of UML-B are created from ATL
(cont’)

22

Examples of Event-B are created from UML-B

23

Ongoing works : Simultaneity

24

Ongoing works : Simultaneity (cont’)

Uplamp(self) = Deactivated

25

Ongoing works : Simultaneity (cont’)

��������

����
��	�

��
������	����

�������

����
��	�

��

���

������

��"���$"���

����$"���

'�$��(%�

'�$��(���"����(��!�

'�$��(��!�

�������	��*

��,�� �����	�

�����

��"���$"���

����$"���

'�$��(����$��(��!�

'�$��(����$��(%�

'�$��(���"����(%�

��!��"#���

��!��"#�

 ��"#���

%��"#�

26

A very special THANKS to

Dr. Colin Snook

