

What can artificial life offer ecology?

Jason Noble, Donna Clarke
and Rob Mills

University of Southampton

Relating simulation results to real data

- How can we show which of two simulations is a better match to real data?
- Choosing between models is central to statistics.
- In stats, a *likelihood function* allows us to quantify how well a model accounts for data:
 - Example: toss a coin 100 times. Is it a fair coin or a 25/75 biased coin? Binomial probability allows us to calculate the likelihood of each model.
 - Important point: the likelihood function is something we can calculate.

ALife's ambivalent relationship with data: "fact free science"?

- For strong ALife, simulation output *is* the data.
 - A controversial position.
- For most of us, the simulation is not intended to be "matched" against real data, but is used as a theoretical playground, proof of concept, intuition pump, "opaque thought experiment", etc.
 - Legitimate and valuable tool.
- But can we do more? Can we fit simulations to data just as statistical models are fitted?
- Problem: complicated simulations have no analytically tractable likelihood function. We might be stuck with qualitative comparisons.

Introducing ecology

- The study of the distribution of organisms and their interactions with each other and their environment.
- Complex ecosystems seen as arising from the interactions of many component organisms.
- Obvious affinity with the theoretical perspective of ALife.

Models in ecology

- Ecologists know they are studying a complex dynamical system:
 - Animal A eats plant B, influencing its distribution, which in turn influences the distribution of other animals that may compete with A, etc.
- But the standard model-building tool in ecology is multiple regression -- a bit like a multi-way correlation analysis.
- Regression models do not make it easy to capture complex causal relationships acting over time and space.
- Ecologists are potentially interested in the *process* models of ALife but they need to know that these models can relate to real data.

A typical problem from ecology

A typical problem from ecology

- Effects of power-line corridors on the distributions of native and introduced mammals in Australia.
- Clarke, Pearce and White, 2006. *Wildlife Research*, 33 .
- Goals of the research:
 - Reporting on species prevalence.
 - Could the corridors provide a benefit for some species that favour a transitional forest environment?
 - Suggestions for more subtle management policy: manage fire risk while maximizing species diversity.

Modelling power-line corridors

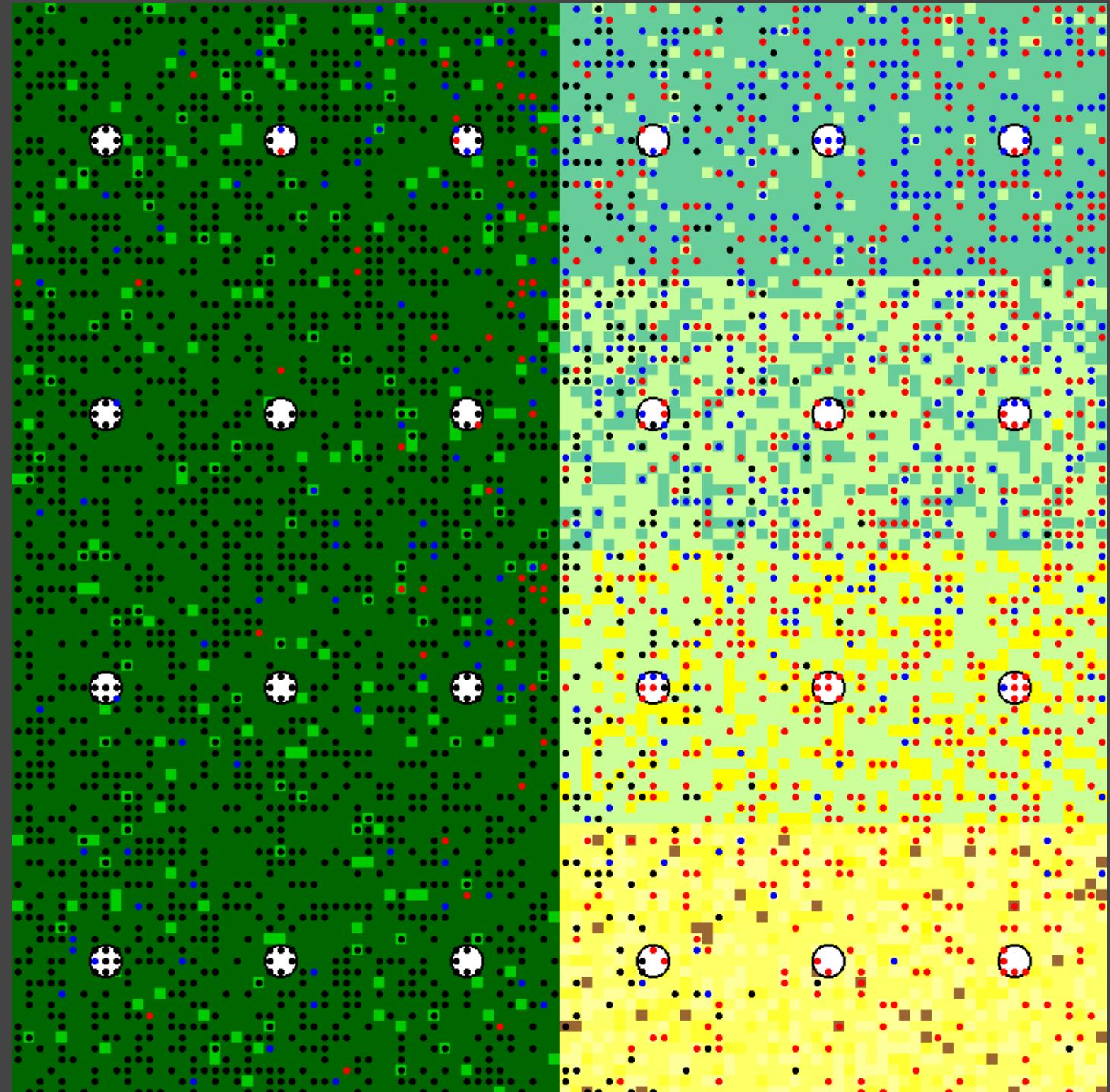
- Clarke et al. used regression models of species prevalence on environmental variables such as grass, shrubs, fallen logs, tree cover, etc.

- Simplified view?

- A simulation of processes could shed light on the system.
- ALife has no problem representing animals in an environment.
- The difficulty is in judging whether one simulation variant is a better fit to the real data than another.

Indirect inference

- The trick we need is called indirect inference (Gouriéroux et al., 1993. *Journal of Applied Econometrics*, 8.)
- Can't calculate likelihood functions for simulations.
- But we can fit an *auxiliary model* to both the real data and to the output of candidate simulations.
- Auxiliary model need not be perfect, but it does need a likelihood function, e.g., regression.
- We fit the auxiliary to both the real data and the simulated data, giving us a location in the auxiliary's parameter space for each case.
- The simulation we prefer is the one whose location in aux-p-space is closest to that of the real data!


Ways of thinking about indirect inference

- Indirect inference looks a bit magical at first.
- Think of the auxiliary model as a window into the larger space of all possible simulations.
- Alternatively, view it as compressing the many degrees of freedom of the simulation output down into only a few dimensions, those of the auxiliary's parameter space.
- Distance from the real data in this parameter space stands in for the tractable likelihood function we've been missing all along.

A fictional data set: why?

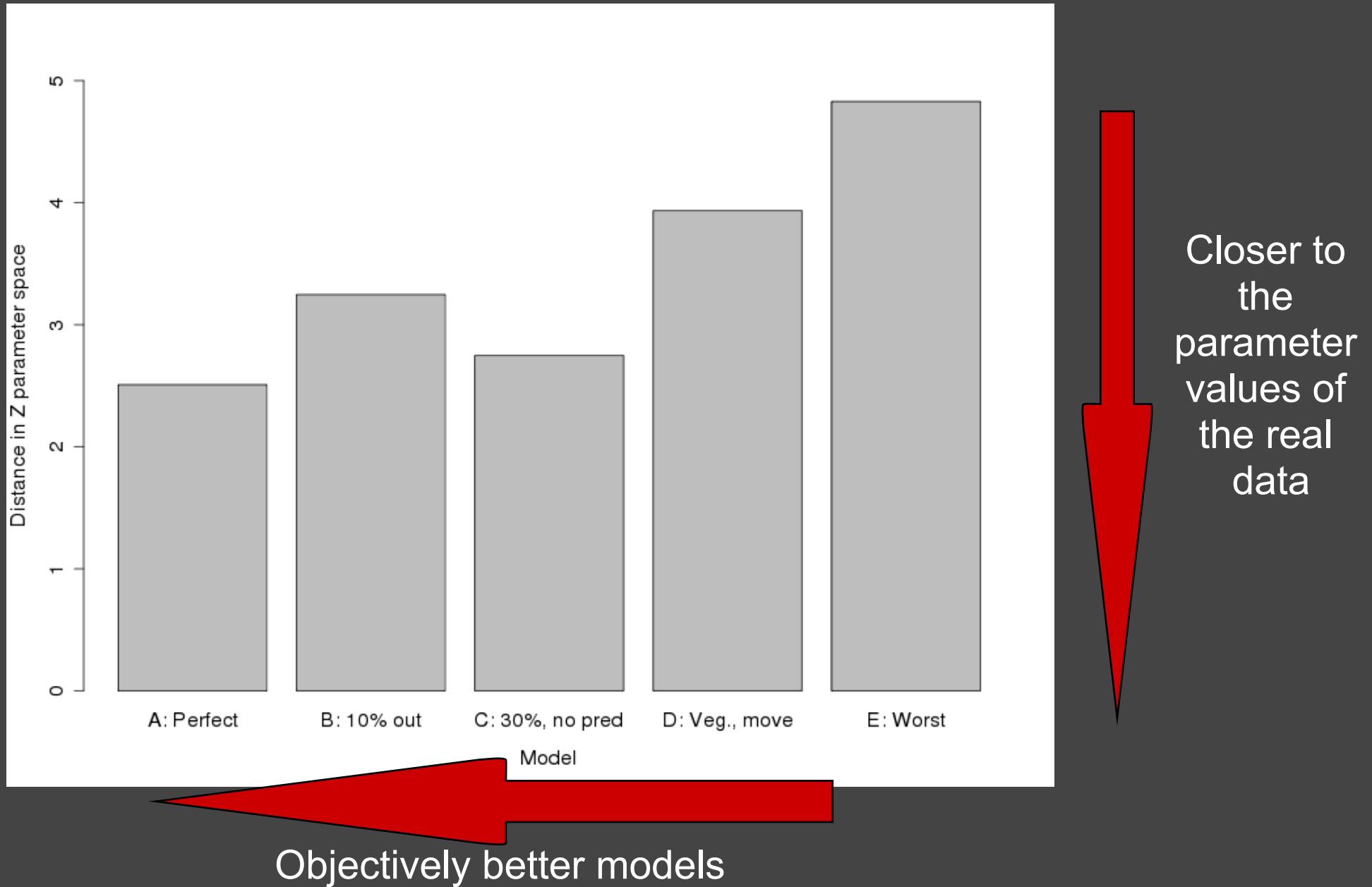
- Can we test this idea using Clarke et al.'s real data?
- Problem: we don't know the real causal story behind this data. It's an open empirical question.
- So we need a fictional data set where the truth is known from the outset.
- Devised a fictional system based on Clarke's real system:
 - Three small-mammal species coexisting in forest and corridor environments, sections of the power-line corridor periodically cleared, etc.
- We test the indirect inference method by seeing whether it identifies the right model as being closest to the "real data".

- Forest on the left, cleared ground on the right.
- Vegetation changes as time since clearance increases (most recent at bottom)
- Three small mammal species in red, blue and black
- Trap sites shown as white circles

Statistical analysis of "real" data

The auxiliary model: regression of species A density, reduced using AIC.

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-2.5122404	0.9387635	-2.676	0.00836	**
ShortShrubs	0.1486472	0.0232270	6.400	2.29e-09	***
ForestDist	0.0805033	0.0137331	5.862	3.25e-08	***
TSM	0.0248839	0.0112968	2.203	0.02928	*
SpB	0.3292179	0.1563186	2.106	0.03702	*
ShortShrubs:TSM	-0.0005703	0.0002517	-2.266	0.02502	*
TSM:SpB	-0.0006755	0.0003728	-1.812	0.07214	.


Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1

Residual standard error: 2.14 on 137 degrees of freedom

Multiple R-squared: 0.7669, Adjusted R-squared: 0.7567

F-statistic: 75.12 on 6 and 137 DF, p-value: < 2.2e-16

Results: distance from the "real" data

Conclusions and future work

- The right model was identified as the preferred simulation.
- Indirect inference is a promising method for getting the complex simulations of ALife to connect to real data in ecology and other sciences.
- Future work:
 - How to specify p-space: we used Z-scores across all observed parameter values but other methods possible.
 - How rich does the auxiliary need to be to capture enough complexity?
 - Comparison with a machine learning approach: search for good simulation parameters by splitting the real data, training on one half and testing on the other.