
An Adaptive Time Management System for Student Learning

Andrew M. Gravell

School of Electronics & Computer Science, University of Southampton, UK, amg@ecs.soton.ac.uk

Till Rebenich

School of Electronics & Computer Science, University of Southampton, UK, tr306@zepler.net

Abstract: We present a modular framework for an adaptive and position-aware student time

management system, and a prototype implementation distributed between a desktop PC and a

mobile device (PDA). The system uses an adapted version of Soloman & Felder’s Index of

Learning Styles questionnaire to determine the student’s learning style. This is matched with the

teaching style of module, acquired by using a complementary teaching style questionnaire, to

create an individual study plan for a user-defined learning task hierarchy. Microsoft Outlook and

Pocket Outlook are used as a user frontend for this plan. Based on user feedback the schedule is

continually adapted using a multi-layered neural network in combination with an iterative back-

propagation learning algorithm to adjust the time devoted to a particular task. Experiments have

shown that the system adapts satisfactorily to individual student requirements. The neural network

error threshold and an additional boosting factor control its adaptation behaviour. The mobile part

of the system uses GPS data to track the current user position and launches position-related

reminders. In practice, this mechanism was found to be unreliable in high-density areas, and very

power intensive. The novelty of our approach is its comprehensive character, combining aspects

of education theory, time management, machine learning, and position-awareness technology in a

single framework. Our prototype shows its practical applicability. Remaining work includes the

integration into the university computing infrastructure and a thorough evaluation by a

representative group of students.

1 Introduction
This paper presents the prototype of an adaptive software system, focussed on the university education domain,

aimed at supporting students in planning study activities, and addressing two of the main student issues: time-

management and study organisation.

Universities require students to learn independently. This involves coping with course objectives, planning

learning tasks (Marshall & Rowland, 1998), and sustaining a workload necessary to achieve learning goals. To meet

these requirements, students need to acquire a certain degree of self-organisation driven by “inner motivation” and

self-discipline (Payne & Whittaker, 2000). The flexible nature of university courses leaves a great deal of

responsibility to the student (Moore, 1973). Universities merely set learning goals, but are also support systems

offering learning materials and employing teaching staff. It is therefore more appropriate to speak of students as

“autonomous learners” (Broad, 2006). Although they are dependent on lectures, information sources, and university

facilities, the teacher’s role moves from that of a “director of learning” towards “resource” and “helper”. An

autonomous student is thus “responsible for his own learning” (Moore, 1973) and shows a number of traits.

These are (1) the inclination towards planning ahead, (2) the ability to commit to a plan and to adapt it, (3)

effective time management, (4) open-mindedness towards new things, reading, writing, listening, and discussing, (5)

questioning, testing, analysing, and abstraction of basic ideas, (6) note-taking, remembering, and establishing

relationships between materials, and finally (7) cooperation with other learners while learning on their own (Moore,

1973).

In contrast, the most frequent difficulties encountered by students are their inability to organise and plan work

properly, using study time effectively, handing in assignments on time, and structuring material (Main, 1980). Our

software supports students in adopting traits 1 to 3 by creating a personalised study schedule, while traits 4 to 6 are

not addressed explicitly. The system framework is extensible to support collaboration and cooperation, and is not

only aimed at students lacking self-organisation but also at experienced time managers. To achieve this objective,

we use machine learning to adapt to the user’s individual learning progress as the scheduled plan is being followed.

But how do we measure the time for a particular learning task and how do we determine whether it was spent

effectively?

When coping with learning tasks, students pursue two phases. In the first phase, they approach them dependent

on their curiosity/interest in the subject, and in the second phase they deal with them over time. With regard to the

first phase, (Prosser & Trigwell, 1999) mention the deep and the surface approach, i.e. a qualitative definition of

how intensively students deal with learning material presented to them. (Richardson, 1994) later added the strategic

approach, which characterises the degree to which marks influence this process. Other sources (Saunders, 1994)

focus on temporal aspects: reactive students are prone to procrastination, whereas proactive students do things

earlier rather than later.

In the second phase, learning styles come into play. Again, we find many competing or supplementary learning

style models, focussing on three aspects: the learning environment, the structure of learning material, and individual

learning skills based on past experience. Regarding the latter aspect, researchers came up with dimensional models.

A simple, one-dimensional model by (Main, 1980) distinguishes syllabus-bound and syllabus-free students. The

former require learning incentives derived from structural/temporal regulations (e.g. hand-in dates), the latter prefer

to be more adventurous and experimental.

(Kolb, 1984) presents a two-dimensional model, yielding four learning styles of experiential learning.

Convergers focus on active experimentation and abstract conceptualisation, divergers use a combination of concrete

experience and reflective observation, assimilators apply reflective observation and abstract conceptualisation, and

accommodators active experimentation in combination with concrete experience. Kolb’s learning style model is

widely used in study skills literature, e.g. (Payne & Whittaker, 2000) and (Cottrell, 2003), whereby the latter source

uses more figurative terms (diver, dreamer, logician, and searchlight).

The Felder & Silverman learning style model (Felder & Silverman, 1988) adds another perspective. In addition

to the way a learner learns, it focuses on the learning environment and its impact on the learner, which can be more

or less stimulating. The model comprises five dimensions, namely processing, perception, input, understanding, and

organisation. Its key feature is the incorporation of teaching and learning style. A learner’s performance is the result

of a comparison between these two styles: the more discrepancies the poorer the learning outcome. Felder &

Silverman’s model is also the foundation of the Index of Learning Styles (ILS) (Soloman & Felder, 2001), which

determines a user’s learning style from a questionnaire comprising 44 questions, 11 for each of four dimensions; the

organisation dimension is not included (Zywno, 2003). In cases where learning and teaching style in a subject do not

match, the poor learning outcome can be compensated by devoting more time to it. Conversely, less time must be

spent on subjects where both styles match closely. Thus, learning style models can help us measure the amount of

time, and they are explicit indicators of effectiveness.

Apart from learning and teaching, there are other aspects influencing time: the location, the individual “body-

clock” (Payne & Whittaker, 2000), and motivation (Main, 1980). Study guides (Marshall & Rowland, 1998) suggest

that learning activities should be performed at the “right” location, e.g. the library for literature-intensive tasks.

Moreover, the best outcome is achieved when they are performed at peak energy times, and motivation is needed to

start on a task and to move on the next one.

2 A Framework for Student Time Management
We then derived requirements from the above findings and applied an object-oriented and architecture-driven design

using UML 2.0 as a modelling language.

2.1 Requirements

Being an autonomous learner means defining personal study objectives, deadlines, and associating study material

and other resources with the subject so that they can be accessed easily and quickly. The system should endeavour to

prevent the procrastination of study activities, especially if they are perceived difficult or complex.

Such activities are the result of a divide-and-conquer approach applied to the predefined university course

structure. We distinguish structural elements of organisational/hierarchical nature, and teaching units embedded in

this organisational apparatus. A module provides one or more learning units of weight w

%)100%100%0(=Σ∧≤< iww , e.g. examinations or assignments, broken down into several tasks and sub-tasks

which are to be performed to meet a learning unit goal. (Cottrell, 2003) calls these sub-tasks “mini-goals”. All tasks

are integrated (relating to a larger plan, project or subject), manageable and realistic, specific (containing description

of the expected outcome), measurable, and flexible (allowing for unforeseen circumstances). We adopt the time

management cycle shown in Figure 1.

Figure 1: Time management cycle (based on (Cottrell, 2003; Drew & Bingman, 2001))

Each task is assigned a specified time to target, dependent on the student’s learning style and the teaching style

in the corresponding module. Here the system must maintain the work-life-balance, i.e. tasks are not scheduled at

times devoted to leisure activities. Moreover, individual time patterns such as the preferred time of day for study,

learning slot length, and breaks between slots must be considered.

The scheduled plan should be accessible to the user at all times, preferably on a mobile device (PDA),

integrated into existing personal information manager (PIM) architectures. This enables the use of position-

awareness technology to ensure that learning tasks are performed at the “ideal” location.

2.2 Architecture

The system comprises five basic components (Figure 2), three of which are deployed to a mobile device. The

master data library handles non-volatile data, e.g. faculties, schools, courses etc., manageable through a graphical

user interface (GUI), which is also used for triggering planning-related functions located in the planning library. The

main components here are the planner, creating the study plan, and the synchroniser synchronising it with a PIM. All

data is stored in databases.

On the mobile device, the study plan is used together with position-awareness technology (GPS) to introduce a

location dimension into the reminder mechanism, i.e. students are notified when and where to start on a task. The

framework is extensible by other plug-ins, e.g. navigation systems.

Figure 2: System architecture (as component diagram)

2.3 System Design

The master data library contains classes representing the university’s organisational structure, i.e. multiple faculties

containing multiple schools. The latter provide different types of courses, which again hold multiple modules

offered in a particular semester. A module provides learning materials covered during a semester. For each

association between a module and a semester, classes (e.g. lectures) take place periodically at a specified location.

Besides, we define multiple learning units to be performed per module. They are assessed by examination or

coursework, and broken down into a nested task hierarchy consisting of tasks and sub-tasks. We follow the

recommendations made in (Cottrell, 2003; Leung & Li, 2003; Vavoula & Sharples, 2002), which use different terms

for these elements. We also introduce actors, namely students and members of staff. A student is associated with

Mobile PIM

«datastore»

Database

«datastore»

Mobile Loca tion

Data base

«library»

Master Data

«library»

Planning

«library»

Positioning

GPS Reader

«executable»

Administration GUI

Planner Synchroniser
PIM

«executable»

Mobile

Administration GUI

«use»

«use»

«use» «flow»

«flow»

«flow»

«flow»

Synchron isation

«flow»

«flow»

Appointments

«flow»
«flow»

exactly one user account, augmented by personal planning preferences. This data structure contains the individual

learning time patterns, slot and break lengths, and system-related preferences controlling the planning behaviour.

2.3.1 Planning
The planning library handles variable data, including the user’s module selections and its difficulty assessment, the

learning tasks, and the calendar entries scheduled for each of them. In this context we distinguish predefined from

adopted or user-defined tasks. The university defines a set of recommended tasks for each learning unit, and the user

can define their own personal tasks either from scratch or by adopting predefined tasks. A task is also assigned a

priority, “composed of two elements in various mixtures: urgency and importance” (Adair, 1982), a complexity

level, and an order criterion determining its position in the task list, implying that it is always dependent on the

completion of another task. Learning and teaching styles are four-dimensional data structures holding a numeric

value for every dimension (Soloman & Felder, 2001).

Moreover, controller classes hold complex algorithms for planning and synchronisation. We use a Strategy

design pattern (Shalloway & Trott, 2005) to separate the abstract algorithm definition from its implementation.

The synchroniser controls the synchronisation of calendar entries between PIM and system database, whereas

the planning algorithm schedules calendar entries for each personal task. A calendar entry has a start and an end

date, and can be associated with a location specified in the task. We distinguish personal calendar entries, imported

from an existing PIM, module calendar entries (classes or lectures), and task calendar entries. For planning and

performance reasons, a slot manager divides a planning period into a sequence of uniform slots

),...,,,(321 nSSSSP = where n denotes the number of slots contained in the period and iS the slots. n is defined

as
d
l with l being the length of the period in minutes subject to the constraint { } 0|Zmax3

3
=≤∈⋅− dnnd (cf.

Figure 3).

Figure 3: Planning slot structure

A slot can have one of two states { }occupied,free and is only occupied by one calendar entry at a time.

2.3.2 Neural Network
The adaptive system behaviour is controlled by the neural network manager, a proxy for the neural network library

(Fleurey, 2002). It invokes the learning algorithm with training samples created from user feedback gathered after

each passed calendar entry, which is the task’s overall percentage of completion. We use a multi-layered neural

network comprising 7 inputs and 6 layers including the output layer, and a back-propagation learning algorithm

(Nilsson, 1998, p. p. 46). Its input vector

()T
ncmuuuux ,,,,,, 4331=

v

consists of

• The differences 41...uu between learning and teaching style of the task’s module, gathered by using a simplified

version of the ILS (Soloman & Felder, 2001) comprising only a random selection of 5 out of 11 questions per

dimension. We had to conceive a complementary teaching style questionnaire, taking the learning style

questions as templates. This yields a total of 20 questions per questionnaire and values ranging from 0 to 10 for

the differences per dimension, such that iii qpu −= with ip being the learning and iq the teaching style

value of the i th dimension.

• A module difficulty m between 0 and 4 as assessed by the user when choosing their modules

• A task complexity c between 0 and 4

• The task importance n , which is either 0 (not important) or 1 (important)

This results in a total of 050,7322511 24 =×× different input vectors. The output y is a floating point value

between 0 and 1. After applying the linear scaling yb 2= , we receive values between 0 and 2, which are used

directly to determine the scheduled task time btt ⋅= 0 with 0t being the base task time excluding the adaptive

factor.

Initially, we take an artificial set of training samples containing only significant input vectors with

{ }10,5,0=iu , { }4,2,0, =cm , and { }1,0=n , restricting the set of possible vectors to 1,458, which are then presented

to the network. The desired output is:














++++= ∑

=

4

1

025.0012.0007.0015.05.0'
i

i ncmuy

2.3.3 Positioning
The GPS positioning component uses a polling algorithm to read GPRMC sentences from the serial port of the

mobile device. A location is identified by its name and refers to a position, comprising a latitude tp and a longitude

lp . The reminder manager detects whether an appointment C contains a reference to a known location. If the

current position does not match the position specified for this location, the device launches a reminder following the

function

() ()[] () ()[]



 ∆+∆−∈∧∆+∆−∈

=
else0

)(,)()(,)(1
)(

pCppCpppCppCpp
CR

lllttt

where p∆ is a positional tolerance specified by the user. The precision can be configured by evaluating the mean

dilusion of precision (DOP) of GPGSA sentences.

2.4 Implementation

Our prototype is a Microsoft .NET application developed in C# with Visual Studio 2005 and executed on a

Windows XP/Vista platform. We use Windows Mobile 5.0 on a HTC P3300 PDA with a built-in GPS receiver.

Outlook 2007 serves as personal information manager, and its counterpart on the PDA is Pocket Outlook. The

synchronisation between desktop and PDA is completely opaque to our system since ActiveSync or the Mobile

Device Center deals with this issue. Application-specific data is stored in SQL Server 2005 Express Edition. We

chose these technologies to provide an execution environment as homogeneous as possible (cf. Figure 4).

Figure 4: System hardware setup

The core system component is the planner. During a planning cycle, the following steps are performed:

1. Initialisation (preparing neural network and planning period)

2. Outlook synchronisation (taking stock of existing appointments)

3. Scheduling of module calendar entries (creating periodical appointments for classes, lectures etc.)

4. Grouping of leaf tasks

5. Feedback processing

6. Neural network training

7. Creation of planning items

8. Scheduling of task calendar entries (the appointments created for leaf tasks)

9. Outlook synchronisation (submitting changes)

2.4.1 Grouping of Leaf Tasks
Principally, only leaf tasks, i.e. tasks at the bottom level of the hierarchy, are considered during the planning

process. They are grouped according to the associated learning unit and their position in the task list. For this

purpose, we define a task order criterion denoting the position in the sub-task list of its parent relative to the

hierarchy.

2.4.2 Feedback Processing and Neural Network Training
The adaptation mechanism is dependent on user feedback provided after each passed calendar entry. It consists of a

real number defining the task’s percentage of completion. A 100% complete task is no longer considered by the

planner and all associated calendar entries are removed. A feedback is a training sample

()',, yyxH
v

=

with x
v

 being the input vector, y the output before training, and 'y the desired output. The latter two values are real

numbers determining the factor applied to the planned task time 0t . 'y is defined as

()()11' −+ −−−= ii kkkgyy

where 1+ik is the planned percentage of completion after a calendar entry has passed, 1−ik the old percentage of

completion, and g a boosting factor expediting the neural network learning behaviour. Values between 3 and 5 for

g were found to be most effective.

2.4.3 Creation of Planning Items
For each grouped leaf task on the list, a so called planning item is created. It consists of the task itself and the time

0t , which is made up as follows:

• The minimal time mt (in minutes) to be spent on a module, dependent on the number of credit points a gained

for the module: atm ⋅⋅= 6010 .

• The weight w (in percent) of a learning unit is used to distribute mt over the units associated with a module,

such that
100
w

mu tt = with 100=∑ iw .

• The task time 0t is determined by setting the task complexity c in relation with n complexity values of all

other leaf tasks of the same learning unit:

un

i

c
t

c
t

i∑ =

+

+
=

1 5

10

5

1

We further define

• The remaining time
100

100
0

k
r tt −= after reducing the task time by the percentage k already completed.

• The total time btt rt ⋅= including the neural network output factor b .

2.4.4 Scheduling of Task Calendar Entries
Once the total time is known for a task, it is split into calendar entries of user-defined length, leaving a break at the

end. It is scheduled with the help of the slot manager, which holds a bitmap of all slots in the specified planning

period, complying with the user’s body clock time patterns and preserving the task grouping.

3 Evaluation
To evaluate the planning accuracy, we create two sample modules “M1” and “M2” of difficulty 0 and 2, and with 10

and 20 credit points, respectively. Both modules contain a 100% coursework-only learning unit holding two main

tasks with two sub-tasks of increasing complexity each. Moreover, two student profiles with differing learning styles

are created. The calendar entry length is 120 minutes, and there is a 30 minutes break between subsequent entries,

scheduled between 8:00-10:00 and 12:00-22:00 on the day. Both profiles use the same neural network training

configuration with an error threshold of 0.01, 3,000 training iterations, and a boosting factor of 4.

Each profile uses its own neural network instance, and we perform an initial planning for all tasks. Afterwards,

we run up to 10 successive cycles. Before each cycle, one of the scheduled appointments in Outlook is manually

moved into the past, causing the system to request a feedback. The data output (total task time and training

behaviour) is collected for statistical purposes.

We conduct two scenarios per user, one simulating a swift downward trend, i.e. the user completes the task

earlier than expected, and one assuming a more realistic, fluctuating trend with no, very small, or negative progress

feedback.

The time change 100⋅=∆
−

o

no

t

tt
t in percent, with ot being the old and nt the new time, is then plotted as

shown in Figure 5a, here for task 1.2 of module “M1”.

 (a) Changes between successive runs (b) Scheduled times before and after training

Figure 5: Scheduling results of the first scenario

The change for task 1.2 is steeper than that of the other tasks since it already includes the reductions caused by

its partial completion. However, the system decreases the time for other tasks fairly proportionally. If we repeated

the same scenario using the trained neural network, less time would be scheduled for all tasks (cf. Figure 5b). Due

to the “high” error threshold, the neural network reacts reluctantly to user feedback (cf. Figure 6a). The graph

(Figure 6b) starts off with a low training error, which is rising in the course of the scenario, reaching a maximum in

the second run. In the third run, the network already needed six iterations as opposed to just one in previous runs to

stay under the threshold.

 (a) Output, expected output, and new output (b) Training error

Figure 6: Neural network training results of the first scenario

0

5

10

15

20

25

30

35

40

45

C
h

a
n

g
e

 (
%

)

Percentage of Completion

M1 Task 1.1

M1 Task 1.2

M1 Task 2.1

M1 Task 2.2

M2 Task 1.1

M2 Task 1.2

M2 Task 2.1

M2 Task 2.2

0 4000 8000

Task 1.1

Task 1.2

Task 2.1

Task 2.2

Task 1.1

Task 1.2

Task 2.1

Task 2.2

M 1

M 1

M 1

M 1

M 2

M 2

M 2

M 2

Scheduled Time (mins)

Before Training

After Training

0,7

0,8

0,9

1

1,1

1,2

10% 30% 50% 70% 100%

F
a

ct
o

r

Percentage of Completion

Output

Expected

New 0

0,002

0,004

0,006

0,008

0,01

0,012

10% 30% 50% 70% 100%

E
rr

o
r

Percentage of Completion

Error

Since all other scenarios yield similar results, the algorithm copes equally well with differing input vectors. In

conclusion, the training error threshold can serve as a factor for the adaptation quality, and the boosting factor

controls the adaptation steepness.

The positioning component was tested directly on the mobile device by conducting a series of steps: First, we

scheduled a calendar entry C in the near future, associated with a location whose position was known to the system,

and set the reminder. We then walked to a position different from the specified one, started the application, and

approached the original position while observing the system behaviour. For all tests, a detection interval of 2

minutes was used. We tried different values for the positional tolerance p∆ (between 0.01 and 0.02) and the

maximum DOP.

We found that a high maximum DOP leads to false reminders although a position was reached, or no reminders

at all when it was not reached. Moreover, the weather had a greater influence on the precision than expected. On

cloudy days it took up to 3 minutes until valid positions were available. It was also impossible to get fixed positions

with an acceptable precision at the inside of buildings and in high-density areas.

4 Conclusions and Future Work
We developed a framework and prototype of an adaptive time management system, making use of sophisticated

methodologies presented in contemporary research literature on learning styles (Felder & Spurlin, 2005). The

novelty of our approach is its comprehensive character, combining advanced Windows programming, education

theory, time management, and machine learning. Furthermore, GPS is utilised to introduce a positional dimension to

time management and study organisation.

Our main objective was to provide a tool supporting students in structuring their study activities, assessing

their learning capabilities, and planning the resulting learning tasks over time. The system thus deals with a variety

of different types of learners, whose learning and time management capabilities change over time. Giving a typical

application scenario, a student would first define the structure of their course of study. This includes both

organisational and temporal data known to the student, e.g. the modules and dates of lectures etc. The system then

uses a wizard-like approach to assess the learning capabilities and to gather data influencing the amount of time to

devote to a module. This typically yields data the student is not consciously aware of. After they have identified and

entered learning tasks, the time for a module is distributed over its task hierarchy and continually adapted as the

resulting schedule is being followed. For this purpose, the system expects feedback from the user and utilises it to

re-schedule existing or plan new learning tasks. This iterative process should lead towards a personalised study time

planner which can improve the individual learning performance and mitigate existing time management deficits. The

use of positioning technology can help disorganised students to optimise their self-management skills and improve

the outcome of learning activities. Furthermore, our framework can serve as a foundation for additional tools aimed

at enhancing a student’s learning experience, e.g. by integrating social network components.

We note akin methods for improving student learning and study planning in (Vavoula & Sharples, 2002),

(Brown, Ryu, & Parsons, 2006), (Ab Hamid, Chuan, & Kasirun, 2006), (Kelly & Tagney, 2005), and (Parvez &

Blank, 2007), which may contribute to a better use of time, but are not specifically aimed at time management and

do not cover all the aspects mentioned above.

Positioning: Due to technical limitations, GPS is not the best option in view of the way it is used in our

system. The device cannot react intelligently on positional changes due to the low signal strength inside of buildings

and its higher-than-average power consumption. We use a periodical polling strategy, switching the receiver off

after each valid position. Consequently, the system is far less flexible with respect to position changes. However, we

refer to other useful applications of GPS technology, e.g. guiding students to the location of their next appointment

as presented in (Brown, Ryu, & Parsons, 2006). For our purpose, the use of alternative positioning technologies

(wireless network or mobile telephone signals) seems more sensible.

System Integration: In its current state, master data must be entered manually into the system. In the next

version of the system, we would use a server providing an interface for retrieving such data, and the client would

only download a subset dependent on the user’s study profile. Other issues are user-friendliness (the user interface is

too simplistic) and the integration into the university’s computing infrastructure. The confinement to Microsoft

technologies is also problematic in view of inhomogeneous environments. Other promising ideas for future versions

are social networking and cooperation modules (e.g. for groupwork assignments), a better integration of learning

materials, and a component combining training samples of multiple students to produce more accurate planning

outputs.

Planning: Our planning algorithm is robust, but not very flexible. It uses a forward planning strategy,

scheduling calendar entries at the start of the planning period and leaving leeway at the end. This makes sense in

training mode when it is likely that this time will be needed for plan adjustments. In non-training mode we would

expect more evenly distributed entries. Furthermore, the current version of the algorithm is very performance-

intensive with more than a third of the time spent on Outlook synchronisation. In future versions, the planner could

also include a risk management module to further improve the time estimation process.

Adaptation: The use of a neural network for system adaptation is feasible, produces acceptable results, and is

relatively easy to implement. Its main drawback is the limited range of output values, so they need to be scaled. We

note that there are other approaches such as Bayesian networks (Jensen, 2001) or Fuzzy systems (Kruse, Gebhardt,

& Klawonn, 1994), which were not evaluated in this project. However, Fuzzy sets are complex in view of seven

input vector coordinates, and a good deal of experimentation is needed to find an appropriate fuzzy set function

()x
v

µ . Similarly, the use of Bayesian networks requires the definition of a graphical decision model, entailing

additional complexity.

We use a simplistic feedback model, consisting only of the overall percentage of task completion. We are not

sure whether all users are able to estimate this value accurately and if the adaptation mechanism compensates such

inaccuracies. In future versions, feedback could be provided from within Outlook – possibly by using another

feedback mechanism – or directly on the mobile device.

System Evaluation: Finally, the system has not yet been evaluated by a representative group of students,

which is mainly due to the short time scope of the project. A thorough evaluation means using the system prototype

over an adequate period of time. Moreover, it requires specific hardware (PDA) and software (Windows

environment).

References

Ab Hamid, H. S., Chuan, T. H., & Kasirun, Z. M. (2006). L3OP: Learning Styles Application Using Learing Objects Approach.

The Sixth IEEE Conference on Computer and Information Technology, 2006. CIT '06, (pp. 255-255).

Adair, J. (1982). Effective Time Management. Pan Books.

Broad, J. (2006). Interpretations of Independent Learning in Further Education. Journal of Further and Higher Education , 30

(2), 119-143.

Brown, R., Ryu, H., & Parsons, D. (2006). Mobile Helper for University Students. OZCHI '06: Proceedings of the 20th

conference of the computer-human interaction special interest group (CHISIG) of Australia on computer-human interaction,

design, activities, artefacts and environments (pp. 297-300). New York, NY, USA: ACM Press.

Cottrell, S. (2003). The Study Skills Handbook (2nd Edition ed.). Palgrave McMillan.

Drew, S., & Bingman, R. (2001). The Student Skills Guide (2nd Edition ed.). Gower.

Felder, R. M., & Silverman, L. K. (1988). Learning and Teaching Styles in Engineering Education. Engineering Education , 78

(7), 674-681.

Felder, R. M., & Spurlin, J. (2005). Applications, Reliability and Validity of the Index of Learning Styles. International Journal

of Engineering Education , 21 (1), 103-112.

Fleurey, F. (2002, April). CSharp Neural Network Library. Retrieved September 2007, from

http://franck.fleurey.free.fr/NeuralNetwork/index.htm

Jensen, F. V. (2001). Bayesian Networks and Decision Graphs. Springer.

Kelly, D., & Tagney, B. (2005). 'First Aid for You': Getting to Know your Learning Style Using Machine Learning. Fifth IEEE

International Conference on Advanced Learning Technologies, 2005. ICALT 2005, (pp. 1-3).

Kolb, D. A. (1984). Experiential Learning: Experience as the Source of Learning and Development. Prentice-Hall.

Kruse, R., Gebhardt, J., & Klawonn, F. (1994). Foundations of Fuzzy Systems. John Wiley & Sons.

Leung, E. W., & Li, Q. (2003). A Dynamic Conceptual Network Mechanism for Personalized Study Plan Generation. In W.

Zhou, P. Nicholson, B. Corbitt, & J. Fong (Ed.), ICWL. 2783, pp. 69-80. Springer.

Main, A. (1980). Encouraging Effective Learning. Scottish Academic Press.

Marshall, L. A., & Rowland, F. (1998). A Guide to Learning Independently (3rd Edition ed.). Longman.

Moore, M. G. (1973). Towards a Theory of Independent Learning and Teaching. The Journal of Higher Education , 44 (9), 661-

679.

Nilsson, N. J. (1998). Artificial Intelligence: A new Synthesis. Morgan Kaufmann Publishers.

Parvez, S. M., & Blank, G. D. (2007). A Pedagogical Framework to Integrate Learning Style into Intelligent Tutoring Systems. J.

Comput. Small Coll. , 22 (3), 183-189.

Payne, E., & Whittaker, L. (2000). Developing Essential Study Skills. Pearson Education.

Prosser, M., & Trigwell, K. (1999). Understanding Learning and Teaching: The Experience in Higher Education. The Society

for Research into Higher Education & Open University Press.

Richardson, J. T. (1994). Using Questionnaires to Evaluate Student Learning: Some Health Warnings. In G. Gibbs (Ed.),

Improving Student Learning: Theory and Practice (pp. 73-88). The Oxford Centre for Staff Development.

Saunders, D. (Ed.). (1994). The Complete Student Handbook. Blackwell.

Shalloway, A., & Trott, J. R. (2005). Design Patterns Explained: A New Perspective on Object-Oriented Design (2nd Edition

ed.). Addison-Wesley.

Soloman, B. A., & Felder, R. M. (2001). Index of Learning Styles Questionnaire. Retrieved September 2007, from

http://www.engr.ncsu.edu/learningstyles/ilsweb.html

Vavoula, G. N., & Sharples, M. (2002). KLeOS: A Personal, Mobile, Knowledge and Learning Organisation System.

Proceedings of the 2002 IEEE International Workshop on Wireless and Mobile Technologies in Education, (pp. 152-156).

Zywno, M. S. (2003). A Contribution to Validation of Score Meaning for Felder-Soloman's Index of Learning Styles.

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition.

