A roadmap for the Rodin toolset™
Version 1.0: 12 June 2008

Jean-Raymond Abrial', Michael Butler?, Stefan Hallerstede?, and Laurent Voisin?

! ETH Zurich, Switzerland, jabrial@inf.ethz.ch
2 University of Southampton, United Kingdom, {mjb,sth}@ecs.soton.ac.uk
3 Systerel, France, laurent.voisin@systerel.fr

1 Event-B and the Rodin Platform

Event-B is a formal method for system-level modelling and analysis [1]. Key features
of Event-B are the use of set theory as a modelling notation, the use of refinement to
represent systems at different abstraction levels and the use of mathematical proof
to verify consistency between refinement levels.

The Rodin Platform? [2] is an Eclipse-based [3] toolset for Event-B that provides
effective support for refinement and mathematical proof. Keep aspects of the are

support for abstract modelling in Event-B

support for refinement proof

extensibility

open source

To support modelliing and refinement proofs Rodin contains a modelling database
surrounded by various plug-ins: a static checker, a proof obligation generator, au-
tomated and interactive provers. The extensibility of the platform has allowed for
the integration of various plug-ins such as a model-checker (ProB), animators, a
UML-B transformer and a I TEX generator. The database approach provides great
flexibility, allowing the tool to be extended and adapted easily. It also facilitates
incremental development and analysis of models. The platform is open source, con-
tributes to the Eclipse framework and uses the Eclipse extension mechanisms to
enable the integration of plug-ins.

2 Roadmap

In its present form, Rodin provides a powerful and effective toolset for Event-B
development and it has been validated by means of numerous medium-sized case
studies. Naturally further improvements and extensions are required in order to
improve the productivity of users further and in order to scale the application of
the toolset to large industrial-scale developments. We outline the main extensions
to Rodin that we have planned for a four year time frame. The outline descriptions
of these planned extensions are grouped into sections 2.1 to 2.5 as follows.

* The continued development of the Rodin toolset is funded by the EU research project
ICT 214158 DEPLOY (Industrial deployment of system engineering methods providing
high dependability and productivity) www.deploy-project.eu. The toolset was originally
developed as part of the project IST 511599 RODIN (Rigorous Open Development
Environment for Complex Systems).

4 Available from www.event-b.org



2.1 Model construction

Rodin provides a structured editor for constructing and modifying models stored in
the database. As mentioned above, this facilitates easy extension as well as incre-
mental development and analysis of models. Rodin needs further improvement to
make it easier to perform standard editing tasks such as text search, copy/paste and
undo/redo. Rodin will be extended to provide refactoring facilities, such as identifier
renaming, that can be applied not just to models but to proof obligations, proofs
and other forms of elements. Better support for browsing refinement links between
models will be provided, for example, allowing the refinements and abstractions of
events to be followed down or up a refinement chain.

2.2 Scaling

Event extension: In many Event-B developments it is common to perform super-
position refinement where existing model features are maintained and additional fea-
tures are added (e.g., additional variables, invariants, events and additional guards
and actions for existing events). Currently events can be inherited as a whole but
not extended. Rodin will support event extension (or superposition) where only
the additional features are defined in a refined event and the existing features are
inherited.

Composition and decomposition: Composition and decomposition of mod-
els is essential for scalability. There are plans to support two styles of composition
for Event-B in Rodin:

Style A Sub-models interact via shared variables
Style B Sub-models interact via synchronisation over events

Rodin will be extended to provide support for composing models as well as de-
composing models according to these styles. The proof obligation generator will be
extended to enable independent refinement of sub-models.

Team-based development: Support for composition and decomposition will
go some way towards enabling team-based development. But there will still be
situations where a team needs to access a common set of models. Rodin will be
extended to support concurrent modification of developments by providing viewing
of change conflicts and automated merge of changes. It will provide support for
version control. Support to analyse the impact of multiple user modifications on
proof will be investigated.

2.3 Extending the proof obligations and theory

Proof obligations: Event-B models will be extended to include external vari-
ables. The proof obligation for such variables is that they must be preserved via a
functional gluing invariant between abstract and concrete external variables. Other
forms of proof obligations will also be added to support different paradigms (con-
current, distributed, sequential systems). These include proof obligations for preser-
vation of event enabledness and richer variant structures(such as pointwise ordering
and lexicographic ordering) for convergence proof obligations.

Mathematical extensions: Rodin will be extended to support richer types
such as record structures and user-defined data types including inductive data types.
Appropriate automated and interactive proof support for richer types will be inves-
tigated and provded. Higher order provers should enable proof support for inductive
datatypes. Users will be able to define operators of polymorphic type (but not use
operator overloading) as well as parameterised predicate definitions. Support for
disjointness constraints will be added.



2.4 Proof and model checking

Rodin provides an open architecture for proof in the form of a proof manager
that can use a range of provers to discharge proofs and sub-proofs. The existing
automated provers will be extended with more powerful decision procedures. The
use of existing first order and higher order automated provers will be investigated. As
mentioned already, higher order provers should enable proof support for inductive
datatypes. The possibility of exploiting automated techniques such as SMT and
SAT will be investigated. The facilities of the ProB model checker will be fully
integrated into Rodin.

2.5 Animation

Prototype animation plug-ins already exist. The animation facilities will be ex-
tended to allow for greater automation of large animations to support regression
testing of models. A clear API to the animation will be provided to allow for easy
integration with graphical animation tools.

2.6 Process and productivity

Requirements Handling and Traceability: The interplay between informal
requirements and formal modelling is crucial in system development and needs
better tool support. Facilities for constructing structured requirements documents
and for building links between informal and formal elements will be added to Rodin.
These will support traceability between requirements and formal models. Support
for recording validation of these links and for managing consistency under change
to requirements and to formal models will be provided.

Document management: Currently, the B2Latex plug-in for Rodin gener-
ates a WTEX version of an Event-B model. The structure of the document follows
the structure of the model. For proper document generation tool support will be
provided whereby users dictate the order in which parts of the model are presented.
They should be able to write a document, structured according to their needs that
includes parts of an Event-B project and that is automatically kept in synchrony
with the models.

Automated model generation: Automatic generation of refinements will be
investigated and appropriate tool support provided. More general modelling and
refinement patterns, enabling greater reuse of modelling and refinement idioms,
will be investigated and tool support provided. Code generation from models will
be investigated. An indirect route for achieving code generation will be to generated
classical B and use the existing code generators for classical B.

3 Tool development procedures

We are promoting a rigorous approach to the development of Rodin. Key features
of Rodin, e.g., the static checker and the proof obligation generator, were specified
formally before being implemented. Test procedures are developed in tandem with
implementing. We are setting up rigorous specification and code review procedures.
The development of new features should also follow this approach.

Many of the extensions listed above will first be implement as separate Eclipse
plug-ins. When their general value and quality is assured, they will be incorporated
into the platform release.

The management of platform release versions will be coordinated amongst the
platform and plug-in developers. Facilities for importing existing developments into
newer versions of Rodin will be provided. Support documentation and tutorial mate-
rial for tool users and plug-in developers will continue to be improved and updated.



4 Concluding

Many of the Rodin extensions outlined above will be implemented as part of the
DEPLOY project. However, we welcome support from other researchers and tool de-
velopers in elaborating and realising the roadmap. Furthermore, we anticipate that
researchers will investigate and implement Rodin extensions that are not identified
in our roadmap.

References

1. Jean-Raymond Abrial. Modelling in Event-B: System and software engineering. To be
published by Cambridge University Press, 2008.

2. Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, and Laurent Voisin. An
open extensible tool environment for Event-B. In Z. Liu and J. He, editors, ICFEM
2006, volume 4260, pages 588—605. Springer, 2006.

3. Erich Gamma and Kent Beck. Contributing to Eclipse. Addison Wesley, 2003.

Acknowledgements

We would like to thank all members of the RODIN and DEPLOY projects and oth-
ers who are contributing to the toolset especially Jens Bendisposto, Dominique
Cansell, Kriangsak Damchoom, Thai Son Hoang, Cliff Jones, Thierry Lecomte,
Michael Leuschel, Farhad Mehta, Christophe Métayer, Colin Snook and Francois
Terrier.



