UML-B: A plug-in for the Event-B tool set:

Colin Snook and Michael Butler

University of Southampton,
United Kingdom
{cfs,mjb} @ecs.soton.ac.uk

UML-B is a graphical formal modelling notation that relies on Event-B for its
underlying semantics and is closely integrated with the ‘Rodin’, Event-B verification
tools. UML-B is similar to UML but has its own meta-model. UML-B provides tool
support, including drawing tools and a translator to generate Event-B models. When a
UML-B drawing is saved the translator automatically generates the corresponding
Event-B model. The Event-B verification tools (syntax checker and prover) then run
automatically providing an immediate display of problems which are indicated on the
relevant UML-B diagram. The UML-B modelling environment consists of a UML-B
project containing a UML-B model. Four interlinked diagram types (package, context,
class and statemachine) are available. Package Diagrams are used to describe the
‘refines’ and ‘sees’ relationships between top level components (machines and
contexts) of a UML-B project. UML-B mirrors the Event-B approach where static
data (sets and constants) are modelled in a separate package called a ‘context’. The
context diagram is similar to a class diagram but has only constant data represented
by ClassTypes, Attributes and Associations. ClassTypes define ‘carrier’ sets or
constant subsets of other ClassTypes. ClassTypes may own immutable attributes and
associations which represent constant functions. The behavioural parts (variables and
events) are modelled in a Class diagram which is used to describe the ‘machine’.
Classes represent subsets of the ClassTypes that were introduced in the context. The
class’ associations and attributes are similar to those in the context but represent
variables instead of constants. Classes may own events that modify the variables.
Event parameters can be added to an event, providing local variables to be used in the
transition’s guards and actions. Class events utilise a parameter, self, to non-
deterministically select the affected instance of the class. State machines may be used
to model behaviour. Transitions represent events with implicit behaviour associated
with the change of state. Additional guards and actions can be attached to the
transition. UML-B retains sufficient commonality with UML for the main goals of
approachability to be attained by industrial users. Since UML-B automates the
production of many lines of textual B, models are quicker to produce and hence
exploration of a problem domain is more attractive. This assists novices in finding
useful abstractions for their models. We have found that the efficiency of UML-B and
its ability to divide and contextualise mathematical expressions assists novices who
would otherwise be deterred from writing formal specifications. UML-B is also a
useful visual aid for more experienced formal methods users.

! This work was carried out under the EU projects, Rodin [IST-511599] and ICT project
Deploy [IP-214158].



