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Abstract

A solution to the PASCAL challenge “Simple causal effects intime series” (www.causality.inf.ethz.ch) is pre-
sented. The data is modeled as a sum of a constant-plus-sin term and a term that is a linear function of a small number of inputs.
The problem of identifying such a model from the data is nonconvex in the frequency and phase parameters of the sin and is
combinatorial in the number of inputs. The proposed method is suboptimal and exploits several heuristics. First, the problem is
split into two phases: 1) identification of the autonomous part and 2) identification of the input dependent part. Second,local
optimization method is used to solve the problem in the first phase. Third,ℓ1 regularization is used in order to find a sparse
solution in the second phase.

Keywords: system identification, sparse approximation,ℓ1 regularization.

1 The proposed model and the corresponding identification problem

The given data in the PASCAL challenge “Simple causal effects in time series” [4] is in the form of two vector time series

ud(1), . . . ,ud(T ) ∈ R
m and yd(1), . . . ,yd(T ) ∈ R

p,

whereud is referred to as an input (cause) andyd is referred to as an output (effect). The subscript “d” denotes “data” and is used
in this paper to distinguish thegiven time series(ud,yd) from ageneral trajectory(u,y) of a model. In(ud,yd), the number of
time samples isT = 1095, the number of inputs ism = 1000, and the number of outputs isp = 100. The inputs are binary, i.e.,
ud(t) ∈ {0,1}m, however, we do not exploit this feature of the data and the proposed method is applicable for real valued input
data.

According to the problem specification, each outputy j has a correspondingbaseline component, denoted byybl, j, that is
periodic and slowly changing and a second component that is determined by a small number (between 0 and 50) of inputs. We
model the baseline as an offset-plus-sin in order to capturethe mean value and (slow) periodicity in the data. The baseline
component is given by the following autonomous model

ybl, j(t) = b j + c j sin(ω jt + φ j), (aut)

where(b j,c j,ω j,φ j) are parameters of the model. In order to emphasize the fact that ybl, j(t) depends on the parametersb j, c j,
ω j, andφ j, occasionally we writeybl, j(t;b j,c j,ω j,φ j).

We model the component that is determined by the inputs as a linear functiony j(t) = Au(t). The matrixA corresponds
to what is called influence matrix in the problem description(seewww.causality.inf.ethz.ch). With this choice, the
overall model is an affine function of the inputs

y j(t) = ybl, j(t;b j,c j,ω j,φ j)+ Au(t). (m)

The prior knowledge that only a few inputs affect each outputtranslates to the constraint that the parameterA ∈ R
p×m is a sparse

matrix, i.e., a matrix with many zero elements.

Note 1. In system theoretic terms, the input-output relation (m) isa static model that decouples intop independent single output
multi inputs submodels. The overall model, however, is not static because the baseline is a response of an autonomous dynamical
system (of order 3). It is linear in the parametersb j, c j, A, and nonlinear inω j andφ j .
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Define

Y :=
[

y(1) · · · y(T )
]

, Ybl :=
[

ybl(1) · · · ybl(T )
]

, and U :=
[

u(1) · · · u(T )
]

.

(“:=” stands for “left hand side is defined to be equal to the right hand side.”) With this notation, the model (m) is written more
compactly as the following matrix equation

Y = Ybl(b,c,ω ,φ)+ AU. (M)

Here again we explicitly show the dependence ofYbl on the

• offsetsb := (b1, . . . ,bp),

• amplitudesc := (c1, . . . ,cp),

• frequenciesω := (ω1, . . . ,ωp), and

• phasesφ := (φ1, . . . ,φp).

We define the matricesYd andUd, constructed from the given data similarly toY andU . An identification problem corre-
sponding to (M) is

minimize overb,c,ω ∈ R
p, φ ∈ [−π ,π ]p, andA ∈ R

p×m ‖Yd−Ybl(b,c,ω ,φ)−AUd‖

subject to A is a sparse matrix; in particular, each row ofA has at most 50 nonzero elements.
(P)

Problem (P) is not completely specified because the norm usedto measure the approximation error is not specified and the
sparsity constraint is vague. Independent of the choice of norm, however, problem (P) is a nonconvex optimization problem
because the parametersω andφ enter nonlinearly in the model (M), and the sparsity constraint (taken to mean “less than 50
nonzero elements in each row ofA”) is combinatorial. In addition, the data(ud,yd) in the PASCAL challenge makes problem (P)
a medium size optimization problem, so that computing a global solution is not feasible.

In what follows, we describe heuristics for finding a suboptimal solution of problem (P).

• First, we minimize the fitting criterion‖Yd−Ybl(b,c,ω ,φ)−AUd‖ overb,c,ω , andφ , assuming thatA = 0, i.e., we fit the
data by a constant-plus-sin model without considering the effect of the inputs.

• Second, we apply theℓ1 heuristic for fining sparse solutionA to problem (P), with the parametersω andφ of theYbl term
fixed to the value computed in the first step.

2 Identification of the autonomous term

In this section, we solve the problem

minimize overb,c,ω ∈ R
p andφ ∈ [−π ,π ]p ‖Yd−Ybl(b,c,ω ,φ)‖F. (P1)

Here we have chosen the fitting criterion to be the Frobenius norm

‖E‖F :=
√

∑m
i=1 ∑n

j=1 e2
i j

of the fitting errorE := Y −Ybl. Note that problem (P1) decouples intop independent problems

minimize overb j,c j,ω j ∈ R andφ j ∈ [−π ,π ] ‖yd, j − ybl, j(b j,c j,ω j,φ j)‖2, (p1)

whereyd, j is the jth row ofYd andybl, j is the jth row ofYbl, i.e.,

ybl, j(b,c,ω ,φ) :=
[

b j + c j sin(ω j1+ φ j) b j + c j sin(ω j2+ φ j) · · · b j + c j sin(ω jT + φ j)
]

.

A generalization of this problem to sum ofn-sinusoids is well studied in signal processing, where, it is known asharmonic
retrieval andline spectral estimation. For an outdated but nicely written overview of the relevantliterature, we refer the reader
to [3]. For our purposes, it suffices to say that the methods split into suboptimal heuristics (subspace-type methods) and methods
based on local optimization (maximum likelihood-type methods).

For the problem at hand, we use a method from the local optimization family because this approach allow us to fix the
frequency to a predefined value chosen from empirical observation of the data. For allj = 1, . . . , p, the frequencyω j seems to be
equal to either 12π/T (one year period) or 6π/T (half year period). We solve two problems withω j = 12π/T and 6π/T choose
the fit that leads to a smaller value of the cost function. Thuswe eliminateω j from the optimization problem (p1).

The idea described next is called thevariable projections method. For a given value ofφ j , problem (p1) is a least squares
problem inb j andc j and therefore it can be solved efficiently and reliably. However, the minimization overφ j still remains
to be carried out. This is the difficult part of the problem, because it is a nonlinear least squares problem with respect toφ j.
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Alternatively, the linear least squares problem (geometrically a projection) gives us the cost function’s value of thelatter problem
with φ j as the only optimization variable.

For the actual implementation, we use general purpose scalar local optimization solver (thefminbnd function of MATLAB’s
Optimization Toolbox) where in addition it is possible to specify lower and upper bounds on the optimization variableφ j ∈
[−π ,π ]. For initial approximation we chooseφ j = 0. The results of concrete simulation examples are shown in Figure 1. The
implementation of (p1) in the software accompanying this paper isfit_sin. By running the scripttest_fit_sin, the
reader can verify that for the data in the challenge the method works without apparent problems. Such problems can in general
occur due to convergence to a local minimum of (p1).
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Figure 1: Examples of offset-plus-sin fits produced byfit_sin.
Solid line —yd, j (left plot j = 3, right plot j = 4), dashed line— (locally) optimal fity∗bl, j.

3 Identification of the term involving the inputs

Let φ∗,ω∗ be a (locally) optimal solution of (P1). The problem we are aiming to solving in this section is

minimize overb,c ∈ R
p andA ∈ R

p×m ‖Yd−Ybl(b,c,φ∗,ω∗)−AUd‖F subject to A is sparse. (P2)

Note that the difference between the original problem (P) and problem (P2) is that theφ andω parameters are fixed to the values
φ∗ andω∗ computed in advance (from problem (P1)). Obviously, this step of fixing optimization variables leads to suboptimality,
however, it simplifies the problem and is an intuitively justifiable heuristic.

The main difficulty in solving problem (P2) is the sparsity constraint. The approach we adopt is based on theℓ1 heuristic
for producing sparse solutions, also known in the statistical literature as thelasso method. Note that, similarly to the situation in
Section 2, problem (P2) is row-wise separable:

minimize overb j,c j ∈ R
p anda j ∈ R

m ‖yd, j − ybl, j(b j,c j,φ∗
j ,ω

∗
j )−a⊤j Ud‖2 subject to a j is sparse. (p2)

In the rest of this section, we describe two heuristics for finding efficiently a suboptimal solution to problem (p2).

3.1 ℓ1-regularization of the cost function

We replace the sparsity constraint in problem (p2) by addition of the regularization termλ j‖a j‖1 in the cost function. The
resulting problem is

minimize overb,c ∈ R
p anda j ∈ R

m ‖yd, j − ybl, j(b,c,φ∗,ω∗)−a⊤j Ud‖2 + λ j‖a j‖1. (p2’)

The scalarλ j > 0 is a parameter that controls the accuracy vs sparsity trade-off. For largeλ j, the solutiona j computed by
problem (p2), tends to have many zero elements. Achieving less than 50 nonzero elements (see the constraint of problem (P))
requires choosing “sufficiently large” value ofλ j. Too large values, however, produce poor fit and are therefore not desirable.
The right trade-off between accuracy and sparsity is problem dependent and the choice ofλ j is not automated. The value ofλ j

is chosen for the specific data(ud,yd) by trail and error.
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Problem (p2’) is a convex optimization problem and therefore can be solved efficiently. We usedCVX, a package for spec-
ifying and solving convex programs [1, 2], in order to translate (p2’) to standard convex optimization problem and solveit by
existing software. The computational engines, used byCVX are the SDPT3 and SeDuMi. Since the numerically computed solu-
tion has small but nonzero elements, we truncate elements ofa j that are below the convergence tolerance used by the solver to
zero.

Figure 2 shows examples of fits obtained with models (m) identified by solving problems (p1) and (p2’). The model corre-
sponding to the left plot involves 4 inputs and the relative fitting error

e j :=
‖yd, j − ybl, j −a⊤j Ud‖2

‖yd, j‖2
(∗)

(i.e., a normalization of the cost function) ise3 = 0.0622. The model corresponding to the right plot involves 2 inputs and the
fitting error ise4 = 0.0624. Comparing the results in Figure 1 with those in Figure 2, it is visible how some features of the data
that are not captured by the autonomous part of the model are fitted by the part involving the inputs.
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Figure 2: Examples of fits obtained by the overall model (m), identified solving problems (p1) and (p2’).
Solid line —yd, j (left plot j = 3, right plot j = 4), dashed line— suboptimal fity∗j .

3.2 ℓ1-regularization of the cost function

The main difficulty in using (p2’) as a heuristic for (p2) is the user choice of the regularization parameterλ j. In cases when one
solves a single instance of the problem, one can afford to plot the sparsity vs accuracy trade-off curve and choose visually from
the curve a suitable value forλ j. In the PASCAL challenge, however, the goal is to solve 100 instances of problem (p2), so that
the manual selection ofλ j becomes time consuming (and boring). In addition, it involves the human as a part of the solution,
which from our point of view is not acceptable: we are lookinginstead for an automated solution, which does not involve user
defined parameters, that are determined by trail and error.

Motivated by the difficulty of choosing theλ j parameter (p2’), we propose the following alternative heuristic for finding a
suboptimal solution of (p2)

minimize overb j,c j ∈ R
p anda j ∈ R

m ‖yd, j − ybl, j(b j,c j,φ∗
j ,ω

∗
j )−a⊤j Ud‖2 subject to ‖a j‖1 ≤ γ j. (p2”)

In (p2”), theℓ1 regularization is given as a bound on‖a j‖1 rather than as a term in the cost function. The scalarγ j > 0 plays a
similar role to the oneλ j plays in (p2’). Moreover, there is a one-to-one relation betweenλ j andγ j (duality theory).

Contrary toλ j, however,γ j > 0 has a direct interpretation as a bound on the solution size.This allows us to propose a simple
and computationally inexpensive way of choosingγ j automatically. Suppose that we are aiming to compute a sparse solution
with at mostk nonzero elements. We choose randomlyk rows ofUd (e.g., in the reported simulation results, we choose the first k
rows) and letU ′

d be the matrix of the chosen rows stacked under each other. Then we take

γ j := ‖(yd, j − ybl, j)U
′+
d ‖1 (∗∗)

whereU ′+
d is the pseudo inverse ofU ′

d. Obviously (∗∗) is heuristic because of the random selection that it involves, however, it
has the justification that(yd, j − ybl, j)U

′+
d is a particular solution withk nonzero elements.
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Figure 3 shows examples of fits obtained with models (m), identified by solving problems (p1) and (p2”). The model
corresponding to the left plot involves 24 inputs and the fitting error ise3 = 0.0518. The model corresponding to the right plot
involves 25 inputs and the fitting error ise4 = 0.0387. In comparison with the results obtained by using (p2’), now the models
have more inputs and achieve smaller fitting errors. This is due to the choice of different points on the corresponding trade-off
curves.
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Figure 3: Examples of fits obtained by the overall model (m), identified solving problems (p1) and (p2”).
Solid line —yd, j (left plot j = 3, right plot j = 4), dashed line— suboptimal fity∗j .

4 Nonuniqueness of the solution

For a given baselineYbl, model (M) is an overdetermined linear system of equationsY −Ybl = AU in A. Therefore, in order to be
able to determineA uniquely fromU andY −Ybl, we needU to be full rank. This condition is not satisfied for the given inputsUd

(because rank(Ud) = 862). Taking into account the sparsity constraint, however, we may still be able to recover a unique solution.
This would be the case if any nontrivial element in the left null space ofA is a dense vector. (Indeed, if a dense vector in the left
null space is added to a sparse particular solution, the resulting solution would be dense.)

We consider two special cases that lead to rank deficiency ofU :

• Zero inputs can not affect the output and therefore removing them from the model leads to an equivalent reduced model
Y −Ybl = AredUred. Going back from the reduced model to the original model can be done by inserting arbitrary columns
in Ared at the places of the removed inputs. In order to get as sparse solution as possible, however, we have to insert zero
columns inAred. The interpretation of this augmentation is to declare thataccording to the model certain inputs (the zero
inputsud, j) to have no effect on the outputs.

• Inputs that are multiples of other inputs1 lead to essential nonuniqueness of the solution, which can not be recovered by
the sparsity constraint. Letuk = ul for somek andl. Then the model

Y −Ybl =
[

∗ · · · ∗ w ∗ · · · ∗ v ∗ · · · ∗
]

U,

wherew is in thekth column andv is thelth column ofA and the model

Y −Ybl =
[

∗ · · · ∗ v ∗ · · · ∗ w ∗ · · · ∗
]

U,

wherev is in thekth column andw is the lth column ofA are equivalent (have the same sparsity and achieve the same
input-output relation). Therefore, there is no reason to prefer one of these models over the other.

Based on the above consideration, we remove from the data in apreprocessing step, zero inputs and multiple copies of the same
input, identify (solving problems (p1) and (p2”)) a model with the reduced set of inputs, and in a postprocessing step recover
from the reduced model an equivalent model with the originalnumber of inputs. Apart from reducing the size of the problemthe
pre and postprocessing steps have the advantage of revealing nonuniqueness of the solution.

1For binary inputs this means inputs that are exact copies of other inputs.
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Note 2. For the data(ud,yd), it turns out that all inputs that are copies of other inputs are constants 1, i.e., all time active inputs.
Such inputs have the net effect of an offset on the output. However, offset is already included in the autonomous part of the
model, see (aut), so that we remove all inputs that are constant 1. The convention of including the offset in the autonomous part
of the model has the advantage of resolving the nonuniqueness of the solution problem.

5 Results

The authors of the challenge provide an influence matrixW that shows which inputs affect which outputs. In the evaluation of
the model obtained by the proposed identification method, summarized in Algorithm 1, we assume that the nonzero elements
of W indicate the “true” inputs affecting each output. Table 1 reports the number of inputs affecting each output, accordingto our
method, the true number of inputs affecting each output, andthe number of correctly identified inputs by our method. Software
reproducing the results is available from:http://www.ecs.soton.ac.uk/~im/challenge.tar (The total execution
time is about 3 hours on MATLAB 7.3, run on a PC with 2.13GHz CPU.)
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Algorithm 1 Algorithm for identification of model (M).

Input: Ud ∈ R
m×T andYd ∈ R

p×T .
1: Preprocessing: detect and remove redundant inputs, i.e., zero rows ofUd and rows that are multiple copies of other rows

of Ud. The subsequent steps are applied on the reduced matrixUd.
2: for j = 1 to p do
3: Let f ′ be a (local) minimum of (p1) withω j = 6π/T and letφ ′

j be a corresponding optimal solution.
4: Let f ′′ be a (local) minimum of (p1) withω j = 12π/T and letφ ′′

j be a corresponding optimal solution.
5: if f ′ < f ′′ then

Let ω∗
j := 6π/T andφ∗

j := φ ′
j.

6: else
Let ω∗

j := 12π/T andφ∗
j := φ ′′

j .
7: end if
8: Let γ j := ‖(yd, j − ybl, j)Ud(1:10, :)+‖1 (here we use MATLAB notation for indexing).
9: Let a′j be a solution to (p2”) with parametersφ j = φ∗

j andω j = ω∗
j .

10: Determine the sparsity pattern ofa′j by truncating elements smaller by the convergence tolerance to zero.
11: Let (b∗j ,c

∗
j ,a

∗
j) be a solution to problem (p2) with the sparsity pattern determined on the previous step and with parameters

φ j = φ∗
j andω j = ω∗

j . (This is a linear least squares problem)
12: end for
13: Postprocessing: add zero rows inA∗ that correspond to the removed inputs in the preprocessing step.
Output: Ybl(b∗,c∗,ω∗,φ∗) andA∗.

output 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# computedu’s 11 1 24 25 33 17 7 32 10 21 34 15 18 21 20 18 15 31

# trueu’s 12 2 7 39 13 20 23 41 14 23 23 33 30 15 30 46 8 1
# correctu’s 2 1 2 7 4 4 5 6 6 7 11 7 9 0 5 5 3 1

output 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
# computedu’s 17 22 10 2 16 15 22 36 25 21 7 24 25 11 24 14 8 18

# trueu’s 17 45 13 2 25 10 24 39 41 30 20 47 23 2 45 26 4 40
# correctu’s 6 5 6 2 10 2 6 5 9 8 4 2 7 2 6 3 4 3

output 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
# computedu’s 2 14 58 39 9 10 7 19 23 24 14 18 18 24 15 3 16 15

# trueu’s 2 33 11 14 31 2 5 48 39 38 13 33 50 24 15 4 22 7
# correctu’s 1 5 6 4 5 1 4 8 4 6 5 7 5 5 5 3 5 3

output 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
# computedu’s 31 137 16 5 14 14 1 8 11 3 14 5 15 26 10 3 14 32

# trueu’s 48 41 47 4 23 34 1 10 34 8 20 12 22 26 16 13 10 50
# correctu’s 10 19 8 2 7 4 1 3 6 2 6 5 3 10 2 3 3 9

output 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
# computedu’s 28 4 17 18 23 16 10 13 14 16 7 13 30 12 4 2 14 17

# trueu’s 42 4 40 36 30 20 10 12 17 15 6 24 27 33 4 5 9 43
# correctu’s 10 3 3 8 7 4 5 5 3 4 4 6 5 5 3 2 6 5

output 91 92 93 94 95 96 97 98 99 100 total for the 100 outputs
# computedu’s 14 17 14 31 8 15 13 27 28 14 1796

# trueu’s 36 14 17 41 20 41 34 44 38 16 2321
# correctu’s 3 6 5 7 6 7 3 10 10 2 507

Table 1: Results for the model identified by Algorithm 1.
First row — number of inputs affecting an output according the the identified model.
Second row — number of inputs affecting an output according to the influence matrix, supplied by the organizers.
Third row — the number of correctly identified inputs by Algorithm 1.
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