Results on the PASCAL challenge
“Simple causal effects in time series”

Ivan Markovsky

School of Electronics and Computer Science
University of Southampton, SO17 1BJ, UK
Email:i m@cs. sot on. ac. uk

Abstract

A solution to the PASCAL challenge “Simple causal effectgiime series” yw. causal i ty. i nf. et hz. ch)is pre-
sented. The data is modeled as a sum of a constant-plusssiratel a term that is a linear function of a small number of ispu
The problem of identifying such a model from the data is nowea in the frequency and phase parameters of the sin and is
combinatorial in the number of inputs. The proposed metkaiboptimal and exploits several heuristics. First, tiddlpm is
split into two phases: 1) identification of the autonomoud pad 2) identification of the input dependent part. Secdochl
optimization method is used to solve the problem in the firgtge. Third/; regularization is used in order to find a sparse
solution in the second phase.

Keywords: system identification, sparse approximatiénregularization.

1 The proposed model and the corresponding identification pyblem
The given data in the PASCAL challenge “Simple causal effettime series” [4] is in the form of two vector time series
ug(l),...,ug(T)eR™  and  yg(1),...,ya(T) € RP,

whereuy is referred to as an input (cause) aids referred to as an output (effect). The subscript “d” derétlata” and is used
in this paper to distinguish thgiven time seriequg, yq) from ageneral trajectory(u,y) of a model. In(ug,Yq), the number of
time samples i = 1095, the number of inputs i = 1000, and the number of outputsps= 100. The inputs are binary, i.e.,
ug(t) € {0,1}™ however, we do not exploit this feature of the data and top@sed method is applicable for real valued input
data.

According to the problem specification, each outpuhas a correspondinigaseline component, denoted byyy, j, that is
periodic and slowly changing and a second component thatesmined by a small number (between 0 and 50) of inputs. We
model the baseline as an offset-plus-sin in order to cagheenean value and (slow) periodicity in the data. The baseli
componentis given by the following autonomous model

Yol,j (t) = bj +c¢jsin(wjt + @), (aut)

where(bj,cj, wj, ;) are parameters of the model. In order to emphasize the faiygh (t) depends on the parametéxs c;,
wj, andg;, occasionally we writgy, j (t;bj,cj, wj, @).

We model the component that is determined by the inputs asearlifunctiony;(t) = Au(t). The matrixA corresponds
to what is called influence matrix in the problem descripiiseewww. causal i ty. i nf. et hz. ch). With this choice, the
overall model is an affine function of the inputs

Yi(t) = Yoj (t; bj,Cj, wj, @) + Au(t). (m)

The prior knowledge that only a few inputs affect each outrarslates to the constraint that the paramateRP*M is a sparse
matrix, i.e., a matrix with many zero elements.

Note 1. In system theoretic terms, the input-output relation (n@ static model that decouples intandependent single output
multi inputs submodels. The overall model, however, is taticbecause the baseline is a response of an autonomoatyh
system (of order 3). Itis linear in the parametiysc;, A, and nonlinear irw; andg;.

*Techincal report 16779, ECS, University of Southamptuint p: / / epri nts. ecs. sot on. ac. uk/



Technical report 16779, ECS, University of Southampton, UKpri nt s. ecs. sot on. ac. uk 2

Define

Yi=[y1) o M), Yor=[wi@) o w(T)],  and  U:=[ud) - u(T)].

(“:=" stands for “left hand side is defined to be equal to the rigitcside.”) With this notation, the model (m) is written more
compactly as the following matrix equation
Y =Yu(b,c,w,p)+AU. (M)

Here again we explicitly show the dependenc¥pbn the

o offsetsb:= (by,...,bp), o frequenciesv = (wy,...,wp), and

e amplitudesc:= (cy,...,Cp), e phasesp:= (@,...,¢%).

We define the matrice% andUy, constructed from the given data similarlyYoandU. An identification problem corre-
sponding to (M) is

minimize ovem,c,w e RP, g € [-m, 1P, andA € RP*™  ||Yy — Yui(b, ¢, 0, @) — AUq4||
subjectto Ais a sparse matrix; in particular, each rowfofias at most 50 nonzero elements.

(P)
Problem (P) is not completely specified because the norm tosexasure the approximation error is not specified and the
sparsity constraint is vague. Independent of the choiceoafnhowever, problem (P) is a nonconvex optimization pgobl
because the parametawsand ¢ enter nonlinearly in the model (M), and the sparsity corstrdaken to mean “less than 50
nonzero elements in each rowAf) is combinatorial. In addition, the datag, yq) in the PASCAL challenge makes problem (P)
a medium size optimization problem, so that computing a@leblution is not feasible.
In what follows, we describe heuristics for finding a subwoyati solution of problem (P).

e First, we minimize the fitting criteriofiYq — Ypi(b, ¢, w, @) — AUy|| overb, c, w, andg, assuming thah = 0, i.e., we fit the
data by a constant-plus-sin model without considering ffezeof the inputs.

e Second, we apply thé heuristic for fining sparse solutichto problem (P), with the parametexsand ¢ of theYy term
fixed to the value computed in the first step.

2 ldentification of the autonomous term
In this section, we solve the problem
minimize ovem,c,we RPandp e [-m,mP |[Yg— Yui(b,c,w, )|k (P1)

Here we have chosen the fitting criterion to be the Frobervuasin

[El[F:=1/3M15" 16F

of the fitting errorE ;=Y — Y, Note that problem (P1) decouples imidndependent problems
minimize overbj,cj,wj € Randg € [—-m, 1  |lyaj — Yo (bj,Cj, @}, @) |2, (p1)
whereyyq j is the jth row of Yq andyy j is the jth row of Yy, i.e.,
youj(b, ¢, @, @) := [bj+cjsin(wj1+ @) bj+cjsin(w2+@) - bj+cjsinwT+g)].

A generalization of this problem to sum ofsinusoids is well studied in signal processing, wheres iknown asharmonic
retrieval andline spectral estimation. For an outdated but nicely written overview of the relevdatature, we refer the reader
to [3]. For our purposes, it suffices to say that the metholisisf suboptimal heuristics (subspace-type methodd)raathods
based on local optimization (maximum likelihood-type nuath).

For the problem at hand, we use a method from the local opdiioiz family because this approach allow us to fix the
frequency to a predefined value chosen from empirical observof the data. For ajl=1,..., p, the frequencyw; seems to be
equal to either 1&/T (one year period) or®/T (half year period). We solve two problems wiih = 1277/ T and 61/ T choose
the fit that leads to a smaller value of the cost function. eliminatew; from the optimization problem (p1).

The idea described next is called tyeriable projections method. For a given value ofy;, problem (pl) is a least squares
problem inb; andc; and therefore it can be solved efficiently and reliably. Heergthe minimization oveg; still remains
to be carried out. This is the difficult part of the problemchese it is a nonlinear least squares problem with respegt to
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Alternatively, the linear least squares problem (georoally a projection) gives us the cost function’s value ofltteer problem
with ¢; as the only optimization variable.

For the actual implementation, we use general purposerdocatd optimization solver (them nbnd function of MATLAB's
Optimization Toolbox) where in addition it is possible toesffy lower and upper bounds on the optimization variafyles
[, ). For initial approximation we choosg = 0. The results of concrete simulation examples are showigiwr& 1. The
implementation of (pl) in the software accompanying thipguasf it _si n. By running the script est _fit _sin, the
reader can verify that for the data in the challenge the neetirks without apparent problems. Such problems can inrgéne
occur due to convergence to a local minimum of (p1).
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Figure 1: Examples of offset-plus-sin fits produced by _si n.
Solid line —yqg ; (left plot j = 3, right plotj = 4), dashed line— (locally) optimal fityg“-.

3 Identification of the term involving the inputs
Let ¢*, w* be a (locally) optimal solution of (P1). The problem we amaiag to solving in this section is
minimize overb,c € RP andA € RP*™ | Yq— Yui(b,c, ¢*,w*) — AUqg||[r  subjectto Ais sparse. (P2)

Note that the difference between the original problem (B)@oblem (P2) is that the andw parameters are fixed to the values
¢@* andw* computed in advance (from problem (P1)). Obviously, thep sif fixing optimization variables leads to suboptimality,
however, it simplifies the problem and is an intuitively jtiable heuristic.

The main difficulty in solving problem (P2) is the sparsitynstraint. The approach we adopt is based on/t{heeuristic
for producing sparse solutions, also known in the stadibtiterature as théasso method. Note that, similarly to the situation in
Section 2, problem (P2) is row-wise separable:

minimize overbj,c; € RP andaj € R™ |lyq j — You,j(bj,Cj, ¢, w)) —aJ-TUdHZ subjectto a; is sparse. (p2)

In the rest of this section, we describe two heuristics fatifig efficiently a suboptimal solution to problem (p2).

3.1 /;-regularization of the cost function

We replace the sparsity constraint in problem (p2) by adiditf the regularization termj||a;||1 in the cost function. The
resulting problem is

minimize over,c € RP anda; € R™ ||yd,j—yb|,j(b,C,qo*7w*)—ajTUd||2+)\j||aj|\l. (p2)

The scalarAj > 0 is a parameter that controls the accuracy vs sparsity-wtde~or largeA;, the solutiona; computed by
problem (p2), tends to have many zero elements. Achievisgtlean 50 nonzero elements (see the constraint of problgm (P
requires choosing “sufficiently large” value #f. Too large values, however, produce poor fit and are thexefot desirable.
The right trade-off between accuracy and sparsity is proldlependent and the choiceAfis not automated. The value &f

is chosen for the specific dafay, yq) by trail and error.
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Problem (p2’) is a convex optimization problem and therefcan be solved efficiently. We us€¥X, a package for spec-
ifying and solving convex programs [1, 2], in order to tratel(p2’) to standard convex optimization problem and sdlg
existing software. The computational engines, use@\Wy are the SDPT3 and SeDuMi. Since the numerically computad sol
tion has small but nonzero elements, we truncate elemertstbht are below the convergence tolerance used by the solver t
zero.

Figure 2 shows examples of fits obtained with models (m) ifledtby solving problems (p1) and (p2’). The model corre-
sponding to the left plot involves 4 inputs and the relatitténfy error

o (1.} — Yoij — & Udl|2
a 1¥a,jll2

(+)

(i.e., a normalization of the cost function)es = 0.0622. The model corresponding to the right plot involvesfuis and the
fitting error ise; = 0.0624. Comparing the results in Figure 1 with those in Figyri€i2 visible how some features of the data
that are not captured by the autonomous part of the modeltta@ fiy the part involving the inputs.
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Figure 2: Examples of fits obtained by the overall model (agntified solving problems (p1) and (p2’).
Solid line —yq j (left plot j = 3, right plotj = 4), dashed line— suboptimal fity;.

3.2 /{y-regularization of the cost function

The main difficulty in using (p2’) as a heuristic for (p2) issthser choice of the regularization paraméterin cases when one
solves a single instance of the problem, one can afford totipdosparsity vs accuracy trade-off curve and choose \isfram
the curve a suitable value fa;. In the PASCAL challenge, however, the goal is to solve 16@inces of problem (p2), so that
the manual selection of; becomes time consuming (and boring). In addition, it ineslthe human as a part of the solution,
which from our point of view is not acceptable: we are lookingtead for an automated solution, which does not involeg us
defined parameters, that are determined by trail and error.

Motivated by the difficulty of choosing th&; parameter (p2’), we propose the following alternative Fstigrfor finding a
suboptimal solution of (p2)

minimize overbj,c; € RP andaj € R™  |lyaj — Ybrj(bj,Cj, ¢, i) —a/Ugll2  subjectto [jaj|1 < y. (P27)
In (p2”), the ¢y regularization is given as a bound @a;||; rather than as a term in the cost function. The scglaf 0 plays a
similar role to the on@; plays in (p2’). Moreover, there is a one-to-one relationtsnA; andy; (duality theory).

Contrary toAj, howevery; > 0 has a direct interpretation as a bound on the solution $izis.allows us to propose a simple
and computationally inexpensive way of choosipgautomatically. Suppose that we are aiming to compute a ssalsition
with at mostk nonzero elements. We choose randokiigws ofUy (e.g., in the reported simulation results, we choose thigfirs
rows) and letJ) be the matrix of the chosen rows stacked under each othen Wa¢ake

Vi = 110 — You UG s 0)

whereU/" is the pseudo inverse &f}. Obviously éx) is heuristic because of the random selection that it iremMowever, it
has the justification that/q j — yui j)Ug" is a particular solution witlk nonzero elements.
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Figure 3 shows examples of fits obtained with models (m), tiied by solving problems (p1) and (p2”). The model
corresponding to the left plot involves 24 inputs and thafitierror ise3 = 0.0518. The model corresponding to the right plot
involves 25 inputs and the fitting errorés = 0.0387. In comparison with the results obtained by using (p®v the models

have more inputs and achieve smaller fitting errors. Thisigstd the choice of different points on the correspondindgtraff
curves.
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Figure 3: Examples of fits obtained by the overall model (agntified solving problems (p1) and (p2”).
Solid line —yq j (left plot j = 3, right plotj = 4), dashed line— suboptimal fity;.

4 Nonunigueness of the solution

For a given baseling,, model (M) is an overdetermined linear system of equatibrsy, = AU in A. Therefore, in order to be
able to determind uniquely fromU andY — Y, we needJ to be full rank. This condition is not satisfied for the givaputsUg
(because ranldq) = 862). Taking into account the sparsity constraint, howevemay still be able to recover a unique solution.
This would be the case if any nontrivial element in the lefit space ofA is a dense vector. (Indeed, if a dense vector in the left
null space is added to a sparse particular solution, thétirgggolution would be dense.)

We consider two special cases that lead to rank deficiendy of

e Zero inputs can not affect the output and therefore removing them fraemtlodel leads to an equivalent reduced model
Y — Yo = AredUrea- Going back from the reduced model to the original model aGaddne by inserting arbitrary columns
in Areq at the places of the removed inputs. In order to get as spahséom as possible, however, we have to insert zero

columns inAeg. The interpretation of this augmentation is to declare #gabrding to the model certain inputs (the zero
inputsug j) to have no effect on the outputs.

e Inputs that are multiples of other inputs! lead to essential nonuniqueness of the solution, which caberecovered by
the sparsity constraint. Lek = u; for somek andl. Then the model

Y—Yb|:[>f< O A R T VA >|<}U7
wherew is in thekth column ands is thelth column ofA and the model
Y—Yb|:[* cee %V ke kW k *}U,

wherev is in thekth column andw is thelth column ofA are equivalent (have the same sparsity and achieve the same
input-output relation). Therefore, there is no reason &fgyrone of these models over the other.

Based on the above consideration, we remove from the datpriepaocessing step, zero inputs and multiple copies ofahees
input, identify (solving problems (p1) and (p2”)) a modelhvthe reduced set of inputs, and in a postprocessing stepaec
from the reduced model an equivalent model with the origmmhber of inputs. Apart from reducing the size of the probileen
pre and postprocessing steps have the advantage of reyaaliiniqueness of the solution.

For binary inputs this means inputs that are exact copiethef inputs.
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Note 2. For the datdug,Yq), it turns out that all inputs that are copies of other inpués@nstants 1, i.e., all time active inputs.
Such inputs have the net effect of an offset on the output. é¥ew offset is already included in the autonomous part ef th
model, see (aut), so that we remove all inputs that are coinktarhe convention of including the offset in the autonospart

of the model has the advantage of resolving the nonuniqgeriése solution problem.

5 Results

The authors of the challenge provide an influence mattithat shows which inputs affect which outputs. In the evaduadf

the model obtained by the proposed identification methoahnsarized in Algorithm 1, we assume that the nonzero elements
of W indicate the “true” inputs affecting each output. Table dows the number of inputs affecting each output, accorttirugir
method, the true number of inputs affecting each outputthecumber of correctly identified inputs by our method. Bafe
reproducing the results is available froht:t p: / / ww. ecs. sot on. ac. uk/ ~i nf chal | enge. t ar (The total execution
time is about 3 hours on MATLAB 7.3, run on a PC with 2.13GHz CPU
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Algorithm 1 Algorithm for identification of model (M).

Input: Ug € R™T andYy € RP*T.
1: Preprocessing: detect and remove redundant inputs, i.e., zero rowdqgadnd rows that are multiple copies of other rows
of Ug. The subsequent steps are applied on the reduced ratrix
2: for j=1topdo
3:  Let f’ be a (local) minimum of (p1) withw; = 671/T and Iet(pj’ be a corresponding optimal solution.
4:  Let f” be a (local) minimum of (p1) witkw; = 1277/ T and lety’ be a corresponding optimal solution.
5

if /< f”then
Let wj 1= 6r7/T andg := ¢.
6: else
Let wj :=12r1/T andg; := ¢f'.
7. endif

8 Letyj:=(Ydj — Yol.j)Ud(1:10,:)"||1 (here we use MATLAB notation for indexing).
9: Let a’j be a solution to (p2”) with parametegs = ¢ andwj = w".
10:  Determine the sparsity pattern aijf by truncating elements smaller by the convergence tolertnzero.
11: Let(bj,cj,aj) be a solution to problem (p2) with the sparsity pattern aeteed on the previous step and with parameters
¢ = ¢ andwj = wj'. (Thisis a linear least squares problem)
12: end for
13: Postprocessing: add zero rows iA* that correspond to the removed inputs in the preprocestepg s

Output: Yyi(b*,c*, w*, ¢*) andA*.

output 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# computedss || 11 1 24 25 33 17 7 32 10 21 34 15 18 21 20 18 15 |31
# trueu's 12 2 7 39 13 20 23 41 14 23 23 33 30 15 30 46 8 1
# correctu’s 2 1 2 7 4 4 5 6 6 7 11 7 9 0 5 5 3 L
output 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |36
# computeds’s || 17 22 10 2 16 15 22 36 25 21 7 24 25 11 24 14 8 [18
# trueu's 17 45 13 2 25 10 24 39 41 30 20 47 23 2 45 26 4 140
# correctu’s 6 5 6 2 10 2 6 5 9 8 4 2 7 2 6 3 4 B
output 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |54
# computeds's 2 14 58 39 9 10 7 19 23 24 14 18 18 24 15 3 16 (15
# trueu's 2 33 11 14 31 2 5 48 39 38 13 33 50 24 15 4 22 7
# correctu’s 1 5 6 4 5 1 4 8 4 6 5 7 5 5 5 3 5 B
output 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |72

# computeds’s || 31 137 16 5 14 14 1 8§ 11 3 14 5 15 26 10 3 14 B2
#trueu's 48 41 47 4 23 34 1 10 34 8 20 12 22 26 16 13 10 |50
# correctu’'s 10 19 8 2 7 4 1 3 6 2 6 5 3 10 2 3 3 0

output 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |90
# computeds’s || 28 4 17 18 23 16 10 13 14 16 7 13 30 12 4 2 14 (7
#trueu's 42 4 40 36 30 20 10 12 17 15 6 24 27 383 4 5 9 43

3

# correctu's 10 3 8 7 4 5 5 3 4 4 6 5 5 3 2 6 5
output 91 92 93 94 95 96 97 98 99 10p total for the 100 outputs
# computeds’s || 14 17 14 31 8 15 13 27 28 14 1796
# trueu's 36 14 17 41 20 41 34 44 38 16 2321
# correctu’s 3 6 5 7 6 7 3 10 10 2 507

Table 1: Results for the model identified by Algorithm 1.

First roov — number of inputs affecting an output according time identified model.

Second row — number of inputs affecting an output accordirtye influence matrix, supplied by the organizers.
Third row — the number of correctly identified inputs by Algom 1.
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