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Abstract— Significant recent progress has shown ear recognition 

to be a viable biometric. Good recognition rates have been 

demonstrated under controlled conditions, using manual 

registration or with specialised equipment. This paper describes 

a new technique which improves the robustness of ear 

registration and recognition, addressing issues of pose variation, 

background clutter and occlusion. By treating the ear as a planar 

surface and creating a homography transform using SIFT 

feature matches, ears can be registered accurately. The feature 

matches reduce the gallery size and enable a precise ranking 

using a simple 2D distance algorithm. When applied to the 

XM2VTS database it gives results comparable to PCA with 

manual registration. Further analysis on more challenging 

datasets demonstrates the technique to be robust to background 

clutter, viewing angles up to ±13 degrees and with over 20% 

occlusion. 

I. INTRODUCTION 

Ears offer an exciting new approach to non-contact 

biometrics. They have a number of advantages over other 

recognition features. In particular, ears are suitable for use at a 

distance and have the advantage of being relatively constant 

over a person’s life. Also, in comparison with faces, ears do 

not suffer from variation due to expressions. 

An overview of existing ear recognition techniques, by 

Hurley et al. [1], shows that some of the best results use 3D 

object matching [2] [3] [4]. With this approach, ears can be 

recognised under varying lighting conditions and poses (out of 

plane rotations). One limitation of the technique, however, is 

that a specialised camera is required to capture the 3D data. 

Also, these cameras need controlled lighting to produce 

accurate results [5]. Where these conditions cannot be met, as, 

for example, in ‘ID at a distance’ situations where there are 

restricted data sources, such as grey scale video from security 

cameras, 2D techniques have to be used. This paper proposes 

enhancements to the current 2D approach. 

Essentially, 2D ear recognition has three stages: detection, 

registration and classification. Here detection refers to the 

finding of an ear in a probe image, registration as the aligning 

of a potential gallery ear with the probe and classification as 

the ranking of gallery ears to identify the most likely person in 

the probe. Most existing research has concentrated on the 

classification stage, with ears being identified and registered 

manually. Good recognition has been obtained with manual 

registration, even in the presence of occlusion [6]. However, 

there is currently no well-established scheme for automatic 2D 

detection and registration. Several techniques have been 

proposed but many rely on controlled imaging conditions, 

such as assuming that the image is a single head profile in 

front of a flat background.  

The main contribution of this paper is to propose an 

improved ear registration technique based on the object 

recognition algorithm of Brown et al. [7]. Their technique 

attempts to create a homography transform between a gallery 

object image and a probe image using SIFT (Scale-Invariant  

Feature Transform) point matches. The probe is considered to 

include an image of the gallery object, if an homography can 

be created. In addition, the homography defines the 

registration between the gallery and the probe. This creates a 

very accurate registration. Brown demonstrated good results 

for various objects but is insufficiently discriminating to rank 

ear images. The work described in this paper extends their 

technique with an image distance algorithm to obtain a precise 

ranking. To calculate the image distance accurately, gallery 

ears are segmented using a mask. These masks are semi-

automatically created as a preprocessing step on the gallery.  

Collectively, these developments create an automated, 

accurate, ear recognition technique that is robust to location, 

scale, pose, background clutter and occlusion. Effectively, the 

technique is a step towards achieving the accuracy of 3D ear 

recognition with unconstrained 2D data.  

The paper describes the proposed technique and its 

evaluation, with four datasets used to assess its robustness and 

accuracy. Section II discusses existing automated registration 

algorithms and reviews their strengths and weaknesses. 

Following this, Section III describes the stages of the 

technique, including the semi-automatic creation of gallery 

masks. The registration calculation and its theoretical 

justification are also described, as well as an overview of the 

distance measure for accurate ranking. In Section IV the paper 

then discusses the evaluation of the proposed technique. This 

includes both a traditional, controlled environment, 

recognition test as well as more challenging datasets that 

evaluate the techniques robustness to occlusion, background 

clutter and pose variation. The paper concludes with 

suggestions for future work. 

II. RELATED WORK 

A number of approaches to ear recognition in 2D have been 

proposed. Of these, PCA (Principal Components Analysis) is 

often used as a baseline comparison because of its good 

performance in controlled conditions [2] [8]. Unfortunately, it 

is very sensitive to occlusion and misregistration [8]. 

Occlusion, in particular, is a key problem as the ear is 

frequently obscured by hair or earrings. Some progress has 



been made to address this issue by, for example, using ear 

models [8] or by adapting the PCA algorithm [6].  

In terms of registration, a number of techniques have been 

suggested. Broadly they can be categorised as edge shape 

matching  and area matching approaches.  

For edge shape matching (usually based on finding the 

outer ear curve), Ansari et al. [9] propose a method based on 

completing convex curved edge regions to find the outer ear. 

Despite producing precise registrations, this approach can 

generate many false positives by matching non ear convex 

regions. Also occlusion is likely to invalidate the convex 

assumption.  

Arbab-Zavar et al. [10] have proposed an enrolment 

technique exploiting the elliptical shape of the outer ear. This 

has produced good results with occlusion, but the accuracy of 

registration is much less than can be achieved manually. Also, 

it makes the assumption that the ear is the principal elliptical 

shape in the image. This restricts its use to controlled settings, 

as the presence of background objects can produce false 

positives. 

The remaining approaches involve area matching. These 

techniques can have very fast implementations but often have 

lower registration accuracy, especially when the objects are 

occluded. One approach, originally developed for face 

recognition, is the use of a Haar-like feature object detector, as 

proposed by Viola et al. [11]. This is a fast and robust 

technique but suffers from inaccuracy in localisation. A 

refinement, for ear detection, by Abate et al. [12] uses the 

edge centre of mass for localisation but this is sensitive to 

occlusion. 

Abdel-Mottaleb et al. [13] use Hausdorff edge template 

matching between an example ear helix edge and edges 

identified on skin coloured regions of an image. This relies on 

relatively constrained lighting conditions (to detect the skin 

region accurately) and is sensitive to outer ear edge occlusion 

by hair. 

Finally, a real-time technique has been developed by Laszlo 

et al. [14]. This uses edge orientation pattern matching 

followed by an active contour. By combining the speed of 

template matching with the accuracy of active contours 

accurate registration can be achieved. This process is robust to 

significant pose variation but the pattern matching localisation 

is sensitive to occlusion, leading to poor active contour fitting. 

This paper approaches ear registration from a new 

perspective. By matching sets of points, rather than areas or 

edge shapes, the registration transform can be precisely 

calculated even under occlusion, background clutter and pose 

variation. This is now described. 

III. TECHNIQUE 

Before any probe images can be tested, the gallery images 

are processed to segment the ears. Each gallery image is then 

analysed to determine its SIFT feature points. Once this is 

complete a probe image can be recognised.  

The first step is to identify feature points in the probe. For 

each of these points the gallery is searched to find 

correspondences. If four points can be matched between the 

probe and the gallery, they are used to calculate a perspective 

transformation that registers the probe. Once the two images 

are aligned, the distance between the images is calculated. The 

nearest gallery image identifies the person.  

Each stage of this process is described in the sub-sections 

that follow. 

A. Building the gallery database 

Images of the same ear taken at different times can vary 

significantly due to changes in hair length and colour. This 

variation can create many false point matches and 

significantly reduces the accuracy of image distance 

measurements. For this reason, gallery ears are masked to 

segment the ear from the surrounding skin and hair, as 

illustrated in Figure 1.  

 

 

Fig. 1  A gallery ear image and its associated mask  

By assuming that ear variations can be achieved through a 

series of smooth local deformations, these masks can be semi-

automatically created. Under this assumption, and by using a 

sufficiently large gallery, each ear is likely to share at least 

four points with an ear from a different subject. Some 

evidence for this hypothesis has been provided by Arbab-

Zavar’s model-based ear recognition algorithm [8], which 

describes six growth factors that define an ear’s shape. 

The masks are created through a bootstrapping process as 

follows:  

A seed ear is selected and a mask manually created for that 

ear. The rest of the gallery ears are then matched against the 

seed (following the same technique used for probe 

recognition). Each match defines a mask for that ear. All the 

masked ears now form a larger seed, against which the 

remaining gallery images are tested. This process is repeated 

until there are no more matches.  

If there are any gallery images remaining, a new mask is 

created manually and that image added to the seed. This is 

repeated until all gallery images have masks. 

B. Feature detection 

SIFT [15] was used for the detection of features. It is an 

effective feature detector, robust to scale in plane rotation and 

to lighting, and with some robustness to pose (out of plane 

rotation) .  

To make the matching of features against a large gallery 

more efficient the Approximate Nearest Neighbours [16] 

algorithm was used. This enables efficient 128 dimensional 

point matches in O(log(n)) where n is the number of feature 

points in the gallery. 



C. Registration calculation 

Eight non planar point correspondences between two 

images provide enough information to calibrate two cameras, 

thereby fully registering a three-dimensional solid object 

between two views. Unfortunately finding eight non-planar 

point correspondences reliably is too tight a constraint for 

ears. However, if all the points lie in a plane, only four point 

correspondences are needed [17]. These correspondences can 

be used to define the transformation of the plane from one 

image to the other. This transformation is known as an 

homography and its calculation is as follows. 

Let x  be a homogeneous point in the probe image and x′  

be a homogeneous point in the gallery image, then the 

homography H  is defined by 

Hxx =′  
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This can be expressed as 

0=×′ Hxx  

By considering H  as a matrix of row vectors 
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This is a linear equation in h of the form 0Ah = , where 

A is a 3x9 matrix and h is a 9 vector. A  has only two 

linearly independent equations as the third row is the sum of 

x′− times the first row and y′−  times the second. By 

omitting this equation the remaining set becomes 
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This shows that each point correspondence adds two 

independent equations in the entries of H . By combining 

these equations into a single matrix, four point 

correspondences create a matrix with a size 8x9 and rank 8. 

This matrix has a 1-dimensional null-space which can be 

solved to produce a solution to H  up to a non-zero scale. As 

these points are homogeneous, if the transformed points are 

normalised by dividing through by their third component, this 

scale factor will be removed. 

By making the simplification that an ear is a planar 

structure, ears can be registered accurately. The SIFT 

matching distance is quite generous to enable large variations 

in pose and lighting which produces a significant number of 

false positives in the point correspondences. Performance and 

accuracy were improved by using an evidence gathering 

strategy. Feature matches contain position, scale and rotation 

information and therefore each point provides an estimate of 

the in-plane affine transform of the probe to the gallery. 

Correctly matching points will have approximately the same 

in-plane affine transform (the greater the out of plane rotation 

the less this will be true). By grouping points into bins based 

on their affine transform, many false positives can be 

excluded.  

The potential space of affine transforms was subdivided 

into four dimensions: two for position, one for logarithm of 

the scale, and one for rotation. Each of these dimensions was 

then partitioned into bins: eight for scale and rotation and one 

for every 128 pixels in width and height. A low resolution of 

bins was used to ensure the matching is robust to pose 

variation. Each point match is placed in the appropriate bin 

and in its closest neighbour (sixteen bin entries per point). If 

any bin contains four or more point matches its points are 

passed to the next stage.  

Even after this process, false positive point matches remain. 

To address this, a RANSAC algorithm was used: random sets 

of four points are selected from the list of point 

correspondences and an homography calculated. The 

homography that matches the most points within some 

threshold, in this case 1% of the ear mask size, is selected as 

the best match.  

Gallery images that provide valid homographies are then 

passed to the distance measure. The combination of 

Generalised Hough Transform and valid homography greatly 

reduces the set of potential gallery matches. 

D. Distance measure 

Once the gallery images have a good registration they are 

matched against the probe. The distance is calculated as the 

robust sum of the squared pixel error after normalisation. The 

distance measure is made robust to occlusion by thresholding 

the error. Pixels that differ by more than half the maximum 

brightness variation are considered to be occluded and so 

excluded. 

Normalisation involved adjusting the scale and offset of the 

intensity values to achieve a defined mean and standard 

deviation before comparison. This removed variation in 

brightness and contrast due to different lighting conditions and 

camera properties. 



IV. EVALUATION 

Four datasets were used for evaluation. The first provided a 

straight test of recognition accuracy on a relatively 

constrained dataset. For this, a subset of the XM2VTS [18] 

face-profile database was chosen. It consists of 63 subjects 

with relatively unoccluded ears. This is the same dataset used 

by Hurley et al. [19] and Arbab-Zavar et al. [8]. 

The second and third datasets were synthesised from the 

XM2VTS images to test the effects of occlusion and 

background clutter. The fourth and final dataset was created 

by recording 20 subjects from a range of angles to test the 

technique’s robustness to pose variation.  

A. Recognition evaluation 

Comparison implementations 

For the constrained gallery set, two comparison 

implementations were created. The first used manually 

registered ear images, applying the technique described by 

Yan et al. [2]. This involved defining the Triangular Fossa and 

Incisure Intertragica of each ear manually. These landmarks 

were then used to standardise the scale and rotation of all 

gallery and pose images. The resulting normalised images 

were segmented with a rectangular mask in the centre of the 

image capturing the inner ear features.  

The second technique applied the algorithm described by 

Arbab-Zavar [10] to register the ear automatically, using the 

outer ear ellipse. In both cases the intensity values had their 

mean and standard deviation normalised. These registered 

images were ranked using the PCA technique giving the 

results shown in Table I. 

Each technique used the ‘leave one out’ strategy, with each 

image removed from the gallery and tested against the rest of 

the dataset in turn.  

TABLE I 
RECOGNITION RATE FOR DIFFERENT REGISTRATION TECHNIQUES  

Registration Technique % Rank 1  
Manual PCA 96% 

Automatic using outer ellipse PCA 75% 

Automatic using homography Image distance 96% 

Mask creation 

The bootstrapping process, using the first ear, matches over 

75% of the gallery. In total, 22 masks were created manually 

to cover 252 gallery images.  

Generally, the masks are not a precise fit for the ears but 

the accuracy is sufficient to obtain enough feature points for 

the registration and distance measures. 

Registration calculation 

It can be seen from Table II that the homography 

registration is the primary point at which the ears are 

recognised, going from almost the entire gallery down to four 

candidate images. The registration calculation is also the 

cause of 4% of the probe images remaining unclassified. All 

of these ears failed to produce a valid homography because of 

insufficient SIFT point matches. 

TABLE II 

NUMBER OF FEATURES AT EACH STAGE XM2VTS DATASET 

Feature Count 
Number of gallery images 251 

Number of gallery SIFT points 14,234 

Average number of SIFT points on XM2VTS image 

(720x576) 

4,659 

Average number of SIFT matches 20,834 

Average number of images with SIFT matches 250 

Average number of images with valid homographies 4 

B. Robustness evaluation 

Gallery 

The second dataset was created by randomly placing 

XM2VTS masked ear images on a set of complex background 

images. These images more closely represent the type of 

unconstrained environment present with covert biometrics. 

The third dataset was built by adding varying sized solid black 

rectangles over the top or side of the original gallery images. 

This reflects the areas of the ear that are most frequently 

occluded by hair. Finally, to generate the fourth dataset, 20 

subjects were recorded turning in front of a camera. Each 

person had a camera calibration grid affixed to a hat that was 

worn as they were photographed. This grid enabled the 

camera intrinsics and pose angles to be calculated accurately. 

These calculations were performed using the standard camera 

calibration algorithms provided with the OpenCV [20] 

libraries. Figure 2 shows examples from each of these 

datasets. 

 

 

Fig. 2 Examples of more challenging probe images. From left to right 

background clutter, occlusion and pose variation 

Results 

Table III summarises the results of these recognition tests. 

Background clutter was found to have little effect on the 

recognition rate as was up to 20% occlusion from above and 

10% occlusion from the side. However, any greater occlusion 

significantly reduced the technique’s accuracy. Once again, 

this was due to failing to find sufficient SIFT matches to 

calculate the homography.  

Figure 3 shows the average recognition rate for 40 ears 

with varying pose. The technique maintains 100% recognition 

rate up to ±13 degrees. As an experiment to improve this 

technique’s robustness to pose variation, additional gallery 

images were synthesised at novel poses. This was achieved by 

treating the ear image as a plane photographed at an estimated 

distance with an approximated field of view. The plane was 

then rotated in the image plane x and y axes and re-rendered to 

simulate different poses. This increased the number of SIFT 

matches but also the number of false positives. As the ears are 



not completely planar the image distance increases with angle 

resulting in incorrect ears having a shorter image distance and 

so no significant increase in robustness was observed.  

TABLE III 

AVERAGE RECOGNITION RATES FOR MORE CHALLENGING DATASETS 

Technique % Rank 1 

Recognition 

Examples 

Base recognition rate 96% 

 
Background clutter 93% 

 
20% occlusion from 

above 

92% 

 
30% occlusion from 

above 

74% 

 
10% occlusion from 

the side 

92% 

 
20% occlusion from 

the side 

66% 

 
0 degrees pose 

variation 

100% 

 
13 degrees pose 

variation 

100% 

 
22 degrees pose 

variation 

33% 

 

Fig. 3 Recognition rate with varying pose, with and without synthesised ear 

images 

The approach described is relatively successful in 

identifying ears under different conditions but as is evident 

from Table III it would be desirable to increase the degree of 

pose variation over which recognition can be achieved. One 

strategy would be to record subjects at multiple angles, either 

at gallery creation or as probes. Alternatively, if this were not 

possible, the synthesis algorithm could be improved through 

the use of a morphable model [21]. Further work will explore 

these possibilities. 

Another limitation of the approach is the increased 

computation time required to achieve the accuracy of the 

algorithm. Despite the use of the ANN library, the processing 

of each 720x576 probe image takes over a minute on a 2.4Ghz 

Dual Core PC. Further work will explore performance 

improvement through a generic ear model, such as the Viola-

Jones classifier [11] trained on ear images. The model would 

identify regions where an ear is likely to be found, thereby 

reducing the number of SIFT points that need to be matched. 

Further improvement might be achieved through a histogram 

pyramid matching technique. Typically, this enables efficient 

comparisons between sets of high dimensional features and 

can be scaled to very large datasets. 

In addition, the current system uses image pixel difference 

as a distance measure. Further work will investigate the 

benefits of more invariant measures such as Hausdorff edge 

distances [22]. 

V. CONCLUSIONS 

This paper describes a new technique for ear recognition in 

2D images using homographies calculated from SIFT point 

matches. When applied to the XM2VTS database the 

technique gives results comparable to PCA with manual 

registration. In addition, when used on more challenging 

datasets, it shows robustness to background clutter, 20% 

occlusion and over ±13 degrees of pose variation. Further 

work will focus on performance improvement and increased 

robustness. 



 Overall, this paper has demonstrated that automatic, 

unconstrained 2D ear recognition can be achieved effectively 

with the proposed homography approach.  
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