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ABSTRACT
In this paper we introduce Dynamics Based Control (DBC), an
approach to planning and control of an agent in stochastic envi-
ronments. Unlike existing approaches, which seek to optimize ex-
pected rewards (e.g., in Partially Observable Markov Decision Prob-
lems (POMDPs)), DBC optimizes system behaviortowards speci-
fied system dynamics. We show that a recently developed planning
and control approach, Extended Markov Tracking (EMT) is an in-
stantiation of DBC. EMT employs greedy action selection to pro-
vide an efficient control algorithm in Markovian environments. We
exploit this efficiency in a set of experiments that applied multi-
target EMT to a class of area-sweeping problems (searching for
moving targets). We show that such problems can be naturally de-
fined and efficiently solved using the DBC framework, and its EMT
instantiation.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]: Con-
trol Theory; I.2.9 [Robotics]; I.2.11 [Distributed Artificial Intel-
ligence]: Intelligent Agents

General Terms
Algorithms, Theory

Keywords
Control, Multi-Agent Systems, Robotics, Target Dynamics, Dy-
namics Based Control

1. INTRODUCTION
Planning and control constitutes a central research area in mul-

tiagent systems and artificial intelligence. In recent years, Partially
Observable Markov Decision Processes (POMDPs) [12] have be-
come a popular formal basis for planning in stochastic environ-
ments. In this framework, the planning and control problem is often
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addressed by imposing a reward function, and computing a policy
(of choosing actions) that is optimal, in the sense that it will result
in the highest expected utility. While theoretically attractive, the
complexity of optimally solving a POMDP is prohibitive [8, 7].

We take an alternative view of planning in stochastic environ-
ments. We do not use a (state-based) reward function, but instead
optimize over a different criterion, a transition-based specification
of the desired system dynamics. The idea here is to view plan-
execution as a process that compels a (stochastic) system to change,
and a plan as a dynamic process that shapes that change according
to desired criteria. We call this general planning frameworkDy-
namics Based Control(DBC).

In DBC, the goal of a planning (or control) process becomes to
ensure that the system will change in accordance with specific (po-
tentially stochastic) target dynamics. As actual system behavior
may deviate from that which is specified by target dynamics (due
to the stochastic nature of the system), planning in such environ-
ments needs to be continual [4], in a manner similar to classical
closed-loop controllers [16]. Here, optimality is measured in terms
of probability of deviation magnitudes.

In this paper, we present the structure of Dynamics Based Con-
trol. We show that the recently developed Extended Markov Track-
ing (EMT) approach [13, 14, 15] is subsumed by DBC, with EMT
employing greedy action selection, which is a specific parameteri-
zation among the options possible within DBC. EMT is an efficient
instantiation of DBC.

To evaluate DBC, we carried out a set of experiments applying
multi-target EMT to the Tag Game [11]; this is a variant on the
area sweeping problem, where an agent is trying to “tag” a moving
target (quarry) whose position is not known with certainty. Ex-
perimental data demonstrates that even with a simple model of the
environment and a simple design of target dynamics, high success
rates can be produced both in catching the quarry, and in surprising
the quarry (as expressed by the observed entropy of the controlled
agent’s position).

The paper is organized as follows. In Section 2 we motivate DBC
using area-sweeping problems, and discuss related work. Section 3
introduces the Dynamics Based Control (DBC) structure, and its
specialization to Markovian environments. This is followed by a
review of the Extended Markov Tracking (EMT) approach as a
DBC-structured control regimen in Section 4. That section also
discusses the limitations of EMT-based control relative to the gen-
eral DBC framework. Experimental settings and results are then
presented in Section 5. Section 6 provides a short discussion of
the overall approach, and Section 7 gives some concluding remarks
and directions for future work.



2. MOTIVATION AND RELATED WORK
Many real-life scenarios naturally have a stochastic target dy-

namics specification, especially those domains where there exists
no ultimate goal, but rather system behavior (with specific prop-
erties) that has to be continually supported. For example, security
guards perform persistent sweeps of an area to detect any sign of
intrusion. Cunning thieves will attempt to track these sweeps, and
time their operation to key points of the guards’ motion. It is thus
advisable to make the guards’ motion dynamics appear irregular
and random.

Recent work by Paruchuri et al. [10] has addressed such random-
ization in the context of single-agent and distributed POMDPs. The
goal in that work was to generate policies that provide a measure of
action-selection randomization, while maintaining rewards within
some acceptable levels. Our focus differs from this work in that
DBC does not optimize expected rewards—indeed we do not con-
sider rewards at all—but instead maintains desired dynamics (in-
cluding, but not limited to, randomization).

The Game of Tag is another example of the applicability of the
approach. It was introduced in the work by Pineau et al. [11]. There
are two agents that can move about an area, which is divided into a
grid. The grid may have blocked cells (holes) into which no agent
can move. One agent (the hunter) seeks to move into a cell occu-
pied by the other (the quarry), such that they are co-located (this is
a “successful tag”). The quarry seeks to avoid the hunter agent, and
is always aware of the hunter’s position, but does not know how the
hunter will behave, which opens up the possibility for a hunter to
surprise the prey. The hunter knows the quarry’s probabilistic law
of motion, but does not know its current location. Tag is an instance
of a family of area-sweeping (pursuit-evasion) problems.

In [11], the hunter modeled the problem using a POMDP. A re-
ward function was defined, to reflect the desire to tag the quarry,
and an action policy was computed to optimize the reward col-
lected over time. Due to the intractable complexity of determining
the optimal policy, the action policy computed in that paper was
essentially an approximation.

In this paper, instead of formulating a reward function, we use
EMT to solve the problem, by directly specifying the target dynam-
ics. In fact, any search problem with randomized motion, the so-
called class ofarea sweepingproblems, can be described through
specification of such target system dynamics. Dynamics Based
Control provides a natural approach to solving these problems.

3. DYNAMICS BASED CONTROL
The specification of Dynamics Based Control (DBC) can be bro-

ken into three interacting levels: Environment Design Level, User
Level, and Agent Level.

• Environment Design Level is concerned with the formal
specification and modeling of the environment. For exam-
ple, this level would specify the laws of physics within the
system, and set its parameters, such as the gravitation con-
stant.

• User Levelin turn relies on the environment model produced
by Environment Design to specify the target system dynam-
ics it wishes to observe. The User Level also specifies the es-
timation or learning procedure for system dynamics, and the
measure of deviation. In the museum guard scenario above,
these would correspond to a stochastic sweep schedule, and a
measure of relative surprise between the specified and actual
sweeping.

• Agent Level in turn combines the environment model from

the Environment Design level, the dynamics estimation pro-
cedure, the deviation measure and the target dynamics spec-
ification from User Level, to produce a sequence of actions
that create system dynamics as close as possible to the tar-
geted specification.

As we are interested in the continual development of a stochastic
system, such as happens in classical control theory [16] and con-
tinual planning [4], as well as in our example of museum sweeps,
the question becomes how the Agent Level is to treat the devia-
tion measurements over time. To this end, we use a probability
threshold—that is, we would like the Agent Level to maximize the
probability that the deviation measure will remain below a certain
threshold.

Specific action selection then depends on system formalization.
One possibility would be to create a mixture of available system
trends, much like that which happens in Behavior-Based Robotic
architectures [1]. The other alternative would be to rely on the esti-
mation procedure provided by the User Level—to utilize the Envi-
ronment Design Level model of the environment to choose actions,
so as to manipulate the dynamics estimator into believing that a cer-
tain dynamics has been achieved. Notice that this manipulation is
not direct, but via the environment. Thus, for strong enough estima-
tor algorithms, successful manipulation would mean a successful
simulation of the specified target dynamics (i.e., beyond discerning
via the available sensory input).

DBC levels can also have a back-flow of information (see Fig-
ure 1). For instance, the Agent Level could provide data about
target dynamics feasibility, allowing the User Level to modify the
requirement, perhaps focusing on attainable features of system be-
havior. Data would also be available about the system response to
different actions performed; combined with a dynamics estimator
defined by the User Level, this can provide an important tool for the
environment model calibration at the Environment Design Level.

UserEnv. Design Agent

Model
Ideal Dynamics

Estimator

Estimator

Dynamics Feasibility

System Response Data

Figure 1: Data flow of the DBC framework

Extending upon the idea of Actor-Critic algorithms [5], DBC
data flow can provide a good basis for the design of a learning al-
gorithm. For example, the User Level can operate as an exploratory
device for a learning algorithm, inferring an ideal dynamics target
from the environment model at hand that would expose and verify
most critical features of system behavior. In this case, feasibility
and system response data from the Agent Level would provide key
information for an environment model update. In fact, the combi-
nation of feasibility and response data can provide a basis for the
application of strong learning algorithms such as EM [2, 9].

3.1 DBC for Markovian Environments
For a Partially Observable Markovian Environment, DBC can

be specified in a more rigorous manner. Notice how DBC discards
rewards, and replaces it by another optimality criterion (structural
differences are summarized in Table 1):

• Environment Design level is to specify a tuple
< S, A, T, O, Ω, s0 >, where:

– S is the set of all possible environment states;

– s0 is the initial state of the environment (which can also
be viewed as a probability distribution overS);



– A is the set of all possible actions applicable in the en-
vironment;

– T is the environment’s probabilistic transition function:
T : S×A → Π(S). That is,T (s′|a, s) is the probabil-
ity that the environment will move from states to state
s′ under actiona;

– O is the set of all possible observations. This is what
the sensor input would look like for an outside observer;

– Ω is the observation probability function:
Ω : S × A × S → Π(O).

That is, Ω(o|s′, a, s) is the probability that one will
observeo given that the environment has moved from
states to states′ under actiona.

• User Level, in the case of Markovian environment, operates
on the set of system dynamics described by a family of con-
ditional probabilitiesF = {τ : S × A → Π(S)}. Thus
specification of target dynamics can be expressed byq ∈ F ,
and the learning or tracking algorithm can be represented as
a functionL : O×(A×O)∗ → F ; that is, it maps sequences
of observations and actions performed so far into an estimate
τ ∈ F of system dynamics.

There are many possible variations available at the User Level
to define divergence between system dynamics; several of
them are:

– Trace distanceor L1 distance between two distribu-
tionsp andq defined by

D(p(·), q(·)) =
1

2

∑

x

|p(x) − q(x)|

– Fidelity measure of distance

F (p(·), q(·)) =
∑

x

√

p(x)q(x)

– Kullback-Leibler divergence

DKL(p(·)‖q(·)) =
∑

x

p(x) log
p(x)

q(x)

Notice that the latter two are not actually metrics over the
space of possible distributions, but nevertheless have mean-
ingful and important interpretations. For instance, Kullback-
Leibler divergence is an important tool of information the-
ory [3] that allows one to measure the “price” of encoding an
information source governed byq, while assuming that it is
governed byp.

The User Level also defines the threshold of dynamics devi-
ation probabilityθ.

• Agent Level is then faced with a problem of selecting a con-
trol signal functiona∗ to satisfy a minimization problem as
follows:

a
∗ = arg min

a
Pr(d(τa, q) > θ)

whered(τa, q) is a random variable describing deviation of
the dynamics estimateτa, created byL under control signal
a, from the ideal dynamicsq. Implicit in this minimization
problem is thatL is manipulated via the environment, based
on the environment model produced by the Environment De-
sign Level.

3.2 DBC View of the State Space
It is important to note the complementary view that DBC and

POMDPs take on the state space of the environment. POMDPs
regard state as a stationary snap-shot of the environment; what-
ever attributes of statesequencingone seeks are reached through
properties of the control process, in this case reward accumulation.
This can be viewed as if the sequencing of states and the attributes
of that sequencing are only introduced by and for the controlling
mechanism—the POMDP policy.

DBC concentrates on the underlying principle of state sequenc-
ing, the system dynamics. DBC’s target dynamics specification can
use the environment’s state space as a means to describe, discern,
and preserve changes that occur within the system. As a result,
DBC has a greater ability to express state sequencing properties,
which are grounded in the environment model and its state space
definition.

For example, consider the task of moving through rough terrain
towards a goal and reaching it as fast as possible. POMDPs would
encode terrain as state space points, while speed would be ensured
by negative reward for every step taken without reaching the goal—
accumulating higher reward can be reached only by faster motion.
Alternatively, the state space could directly include the notion of
speed. For POMDPs, this would mean that the same concept is
encoded twice, in some sense: directly in the state space, and indi-
rectly within reward accumulation. Now, even if the reward func-
tion would encode more, and finer, details of the properties of mo-
tion, the POMDP solution will have to search in a much larger
space of policies, while still being guided by the implicit concept
of the reward accumulation procedure.

On the other hand, the tactical target expression of variations and
correlations between position and speed of motion is now grounded
in the state space representation. In this situation, any further con-
straints, e.g., smoothness of motion, speed limits in different lo-
cations, or speed reductions during sharp turns, are explicitly and
uniformly expressed by the tactical target, and can result in faster
and more effective action selection by a DBC algorithm.

4. EMT-BASED CONTROL AS A DBC
Recently, a control algorithm was introduced calledEMT-based

Control [13], which instantiates the DBC framework. Although it
provides an approximate greedy solution in the DBC sense, initial
experiments using EMT-based control have been encouraging [14,
15]. EMT-based control is based on the Markovian environment
definition, as in the case with POMDPs, but its User and Agent
Levels are of the Markovian DBC type of optimality.

• User Levelof EMT-based control defines a limited-case tar-
get system dynamics independent of action:

qEMT : S → Π(S).
It then utilizes the Kullback-Leibler divergence measure to
compose a momentary system dynamics estimator—the Ex-
tended Markov Tracking (EMT) algorithm. The algorithm
keeps a system dynamics estimateτ t

EMT that is capable of
explaining recent change in an auxiliary Bayesian system
state estimator frompt−1 to pt, and updates it conservatively
using Kullback-Leibler divergence. Sinceτ t

EMT andpt−1,t

are respectively the conditional and marginal probabilities
over the system’s state space, “explanation” simply means
that

pt(s
′) =

∑

s

τ
t
EMT (s′|s)pt−1(s),

and the dynamics estimate update is performed by solving a



Table 1: Structure of POMDP vs. Dynamics-Based Control in Markovian Environment

Level
Approach

MDP Markovian DBC

Environment
< S, A, T, O, Ω >,where
S — set of states
A — set of actions

Design
T : S × A → Π(S) — transition
O — observation set
Ω : S × A × S → Π(O)

User

r : S × A × S → R q : S × A → Π(S)
F (π∗) → r L(o1, ..., ot) → τ

r — reward function q — ideal dynamics
F — reward remodeling L — dynamics estimator

θ — threshold
Agent π∗ = arg max

π
E[

∑

γtrt] π∗ = arg min
π

Prob(d(τ‖q) > θ)

minimization problem:

τ
t
EMT = H[pt, pt−1, τ

t−1
EMT ]

= arg min
τ

DKL(τ × pt−1‖τ
t−1
EMT × pt−1)

s.t.

pt(s
′) =

∑

s

(τ × pt−1)(s
′
, s)

pt−1(s) =
∑

s′

(τ × pt−1)(s
′
, s)

• Agent Level in EMT-based control is suboptimal with re-
spect to DBC (though it remains within the DBC frame-
work), performing greedy action selection based on predic-
tion of EMT’s reaction. The prediction is based on the en-
vironment model provided by the Environment Design level,
so that if we denote byTa the environment’s transition func-
tion limited to actiona, andpt−1 is the auxiliary Bayesian
system state estimator, then the EMT-based control choice is
described by

a
∗ = arg min

a∈A
DKL(H[Ta × pt, pt, τ

t
EMT ]‖qEMT × pt−1)

Note that this follows the Markovian DBC framework precisely:
the rewarding optimality of POMDPs isdiscarded, and in its place
a dynamics estimator (EMT in this case) is manipulated via action
effects on the environment to produce an estimate close to the spec-
ified target system dynamics. Yet as we mentioned, naive EMT-
based control is suboptimal in the DBC sense, and has several ad-
ditional limitations that do not exist in the general DBC framework
(discussed in Section 4.2).

4.1 Multi-Target EMT
At times, there may exist several behavioral preferences. For

example, in the case of museum guards, some art items are more
heavily guarded, requiring that the guards stay more often in their
close vicinity. On the other hand, no corner of the museum is to
be left unchecked, which demands constant motion. Successful
museum security would demand that the guards adhere to, and bal-
ance, both of these behaviors. For EMT-based control, this would
mean facing several tactical targets{qk}

K
k=1, and the question be-

comes how to merge and balance them. A balancing mechanism
can be applied to resolve this issue.

Note that EMT-based control, while selecting an action, creates
a preference vector over the set of actions based on their predicted

performance with respect to a given target. If these preference vec-
tors are normalized, they can be combined into a single unified pref-
erence. This requires replacement of standard EMT-based action
selection by the algorithm below [15]:

• Given:

– a set of target dynamics{qk}
K
k=1,

– vector of weightsw(k)

• Select action as follows

– For each actiona ∈ A predict the future state distribu-
tion p̄a

t+1 = Ta ∗ pt;

– For each action, compute

Da = H(p̄a
t+1, pt, PDt)

– For eacha ∈ A andqk tactical target, denote

V (a, k) = 〈DKL (Da‖qk)〉pt
.

Let Vk(a) = 1
Zk

V (a, k), whereZk =
∑

a∈A

V (a, k) is

a normalization factor.

– Selecta∗ = arg min
a

∑k

k=1 w(k)Vk(a)

The weights vector~w = (w1, ..., wK) allows the additional
“tuning of importance” among target dynamics without the need
to redesign the targets themselves. This balancing method is also
seamlessly integrated into the EMT-based control flow of opera-
tion.

4.2 EMT-based Control Limitations
EMT-based control is a sub-optimal (in the DBC sense) repre-

sentative of the DBC structure. It limits the User by forcing EMT to
be its dynamic tracking algorithm, and replaces Agent optimization
by greedy action selection. This kind of combination, however, is
common for on-line algorithms. Although further development of
EMT-based controllers is necessary, evidence so far suggests that
even the simplest form of the algorithm possesses a great deal of
power, and displays trends that are optimal in the DBC sense of the
word.

There are two further, EMT-specific, limitations to EMT-based
control that are evident at this point. Both already have partial so-
lutions and are subjects of ongoing research.

The first limitation is the problem of negative preference. In the
POMDP framework for example, this is captured simply, through



the appearance of values with different signs within the reward
structure. For EMT-based control, however, negative preference
means that one would like toavoida certain distribution over sys-
tem development sequences; EMT-based control, however, concen-
trates on getting ascloseas possible to a distribution. Avoidance is
thus unnatural in native EMT-based control.

The second limitation comes from the fact that standard environ-
ment modeling can createpure sensory actions—actions that do
not change the state of the world, and differ only in the way obser-
vations are received and the quality of observations received. Since
the world state does not change, EMT-based control would not be
able to differentiate between different sensory actions.

Notice that both of these limitations of EMT-based control are
absent from the general DBC framework, since it may have a track-
ing algorithm capable of considering pure sensory actions and, un-
like Kullback-Leibler divergence, a distribution deviation measure
that is capable of dealing with negative preference.

5. EMT PLAYING TAG
The Game of Tag was first introduced in [11]. It is a single agent

problem of capturing a quarry, and belongs to the class of area
sweeping problems. An example domain is shown in Figure 2.
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Figure 2: Tag domain; an agent (A) attempts to seek and cap-
ture a quarry (Q)

The Game of Tag extremely limits the agent’s perception, so that
the agent is able to detect the quarry only if they are co-located in
the same cell of the grid world. In the classical version of the game,
co-location leads to a special observation, and the ‘Tag’ action can
be performed. We slightly modify this setting: the moment that
both agents occupy the same cell, the game ends. As a result, both
the agent and its quarry have the same motion capability, which
allows them to move in four directions, North, South, East, and
West. These form a formal space of actions within a Markovian
environment.

The state space of the formal Markovian environment is described
by the cross-product of the agent and quarry’s positions. For Fig-
ure 2, it would beS = {s0, ..., s23} × {s0, ..., s23}.

The effects of an action taken by the agent are deterministic, but
the environment in general has a stochastic response due to the mo-
tion of the quarry. With probabilityq0

1 it stays put, and with prob-
ability 1 − q0 it moves to an adjacent cell further away from the

1In our experiments this was taken to beq0 = 0.2.

agent. So for the instance shown in Figure 2 andq0 = 0.1:

P (Q = s9|Q = s9, A = s11) = 0.1

P (Q = s2|Q = s9, A = s11) = 0.3

P (Q = s8|Q = s9, A = s11) = 0.3

P (Q = s14|Q = s9, A = s11) = 0.3

Although the evasive behavior of the quarry is known to the
agent, the quarry’s position is not. The only sensory information
available to the agent is its own location.

We use EMT and directly specify the target dynamics. For the
Game of Tag, we can easily formulate three major trends: catching
the quarry, staying mobile, and stalking the quarry. This results in
the following three target dynamics:

Tcatch(At+1 = si|Qt = sj , At = sa) ∝

{

1 si = sj

0 otherwise

Tmobile(At+1 = si|Qt = so, At = sj) ∝

{

0 si = sj

1 otherwise

Tstalk(At+1 = si|Qt = so, At = sj) ∝
1

dist(si,so)

Note that none of the above targets are directly achievable; for
instance, ifQt = s9 andAt = s11, there is no action that can move
the agent toAt+1 = s9 as required by theTcatch target dynamics.

We ran several experiments to evaluate EMT performance in the
Tag Game. Three configurations of the domain shown in Figure 3
were used, each posing a different challenge to the agent due to par-
tial observability. In each setting, a set of 1000 runs was performed
with a time limit of 100 steps. In every run, the initial position of
both the agent and its quarry was selected at random; this means
that as far as the agent was concerned, the quarry’s initial position
was uniformly distributed over the entire domain cell space.

We also used two variations of the environment observability
function. In the first version, observability function mapped all
joint positions of hunter and quarry into the position of the hunter as
an observation. In the second, only those joint positions in which
hunter and quarry occupied different locations were mapped into
the hunter’s location. The second version in fact utilized and ex-
pressed the fact that once hunter and quarry occupy the same cell
the game ends.

The results of these experiments are shown in Table 2. Balanc-
ing [15] the catch, move, and stalk target dynamics described in
the previous section by the weight vector[0.8, 0.1, 0.1], EMT pro-
duced stable performance in all three domains.

Although direct comparisons are difficult to make, the EMT per-
formance displayed notable efficiency vis-à-vis the POMDP ap-
proach. In spite of a simple and inefficient Matlab implementation
of the EMT algorithm, the decision time for any given step aver-
aged significantly below 1 second in all experiments. For the irreg-
ular open arena domain, which proved to be the most difficult, 1000
experiment runs bounded by 100 steps each, a total of 42411 steps,
were completed in slightly under 6 hours. That is, over4 × 104

online steps took an order of magnitude less time than the offline
computation of POMDP policy in [11]. The significance of this dif-
ferential is made even more prominent by the fact that, should the
environment model parameters change, the online nature of EMT
would allow it to maintain its performance time, while the POMDP
policy would need to be recomputed, requiring yet again a large
overhead of computation.

We also tested the behavior cell frequency entropy, empirical
measures from trial data. As Figure 4 and Figure 5 show, empir-
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Figure 3: These configurations of the Tag Game space were used: a) multiple dead-end, b) irregular open arena, c) circular corridor

Table 2: Performance of the EMT-based solution in three Tag
Game domains and two observability models: I) omniposition
quarry, II) quarry is not at hunter’s position

Model Domain Capture% E(Steps) Time/Step

I
Dead-ends 100 14.8 72(mSec)

Arena 80.2 42.4 500(mSec)
Circle 91.4 34.6 187(mSec)

II
Dead-ends 100 13.2 91(mSec)

Arena 96.8 28.67 396(mSec)
Circle 94.4 31.63 204(mSec)

ical entropy grows with the length of interaction. For runs where
the quarry was not captured immediately, the entropy reaches be-
tween 0.85 and 0.952 for different runs and scenarios. As the agent
actively seeks the quarry, the entropy never reaches its maximum.

One characteristic of the entropy graph for the open arena sce-
nario particularly caught our attention in the case of the omnipo-
sition quarry observation model. Near the maximum limit of trial
length (100 steps), entropy suddenly dropped. Further analysis of
the data showed that under certain circumstances, a fluctuating be-
havior occurs in which the agent faces equally viable versions of
quarry-following behavior. Since the EMT algorithm has greedy
action selection, and the state space does not encode any form of
commitment (not even speed or acceleration), the agent is locked
within a small portion of cells. It is essentially attempting to simul-
taneously follow several courses of action, all of which are consis-
tent with the target dynamics. This behavior did not occur in our
second observation model, since it significantly reduced the set of
eligible courses of action—essentially contributing to tie-breaking
among them.

6. DISCUSSION
The design of the EMT solution for the Tag Game exposes the

core difference in approach to planning and control between EMT
or DBC, on the one hand, and the more familiar POMDP approach,
on the other. POMDP defines a reward structure to optimize, and
influences system dynamics indirectly through that optimization.
EMT discards any reward scheme, and instead measures and influ-
ences system dynamics directly.

2Entropy was calculated usinglog base equal to the number of pos-
sible locations within the domain; this properly scales entropy ex-
pression into the range[0, 1] for all domains.

Thus for the Tag Game, we did not search for a reward function
that would encode and express our preference over the agent’s be-
havior, but rather directly set three (heuristic) behavior preferences
as the basis for target dynamics to be maintained. Experimental
data shows that these targets need not be directly achievable via the
agent’s actions. However, the ratio between EMT performance and
achievability of target dynamics remains to be explored.

The tag game experiment data also revealed the different empha-
sis DBC and POMDPs place on the formulation of an environment
state space. POMDPs rely entirely on the mechanism of reward
accumulation maximization, i.e., formation of the action selection
procedure to achieve necessary state sequencing. DBC, on the
other hand, has two sources of sequencing specification: through
the properties of an action selection procedure, and through direct
specification within the target dynamics. The importance of the
second source was underlined by the Tag Game experiment data,
in which the greedy EMT algorithm, applied to a POMDP-type
state space specification, failed, since target description over such a
state space was incapable of encoding the necessary behavior ten-
dencies, e.g., tie-breaking and commitment to directed motion.

The structural differences between DBC (and EMT in particu-
lar), and POMDPs, prohibits direct performance comparison, and
places them on complementary tracks, each within a suitable niche.
For instance, POMDPs could be seen as a much more natural for-
mulation of economic sequential decision-making problems, while
EMT is a better fit for continual demand for stochastic change, as
happens in many robotic or embodied-agent problems.

The complementary properties of POMDPs and EMT can be fur-
ther exploited. There is recent interest in using POMDPs in hybrid
solutions [17], in which the POMDPs can be used together with
other control approaches to provide results not easily achievable
with either approach by itself. DBC can be an effective partner in
such a hybrid solution. For instance, POMDPs have prohibitively
large off-line time requirements for policy computation, but can
be readily used in simpler settings to expose beneficial behavioral
trends; this can serve as a form of target dynamics that are provided
to EMT in a larger domain for on-line operation.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a novel perspective on the pro-

cess of planning and control in stochastic environments, in the form
of the Dynamics Based Control (DBC) framework. DBC formu-
lates the task of planning as support of a specified target system dy-
namics, which describes the necessary properties of change within
the environment. Optimality of DBC plans of action are measured
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Figure 4: Observation Model I: Omniposition quarry. Entropy development with length of Tag Game for the three experiment
scenarios: a) multiple dead-end, b) irregular open arena, c) circular corridor.
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Figure 5: Observation Model II: quarry not observed at hunter’ s position. Entropy development with length of Tag Game for the
three experiment scenarios: a) multiple dead-end, b) irregular open arena, c) circular corridor.

with respect to the deviation of actual system dynamics from the
target dynamics.

We show that a recently developed technique of Extended Markov
Tracking (EMT) [13] is an instantiation of DBC. In fact, EMT can
be seen as a specific case of DBC parameterization, which employs
a greedy action selection procedure.

Since EMT exhibits the key features of the general DBC frame-
work, as well as polynomial time complexity, we used the multi-
target version of EMT [15] to demonstrate that the class of area
sweeping problems naturally lends itself to dynamics-based de-
scriptions, as instantiated by our experiments in the Tag Game do-
main.

As enumerated in Section 4.2, EMT has a number of limita-
tions, such as difficulty in dealing with negative dynamic prefer-
ence. This prevents direct application of EMT to such problems
as Rendezvous-Evasion Games (e.g., [6]). However, DBC in gen-
eral has no such limitations, and readily enables the formulation
of evasion games. In future work, we intend to proceed with the
development of dynamics-based controllers for these problems.
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