Dynamics Based Control: An Introduction

Zinovi Rabinovich Jeffrey S. Rosenschein

School of Engineering and Computer Science
The Hebrew University of Jerusalem
Jerusalem, Israel

Abstract

In this paper we introduce a novel approach to continual planning anttotocalled Dynamics
Based ControlDBC). The approach is similar in spirit to the Actor-Critic [6] approach tarténg and
estimation-based differential regulators of classical control thed@}; [However, DBC is not a learning
algorithm, nor can it be subsumed within models of standard controlythéé provide a general frame-
work for applying DBC to discrete Markovian environments, and distiuskey differences between it
and a popular alternative for this type of environment — Partially Obséswdarkov Decision Processes
(POMDPs). We then show how a recently developed control schered basExtended Markov Tracking
(EMT) [9, 10] can be seen as a suboptimal algorithm within the DBC frasnewand discuss EMT’s
limitations relative to the general DBC approach.

1 Introduction

Consider NASA engineers who encounter a serious problem: spracecraft, while attempting to dock
in orbit, keep crashing or whirring out of control. At firstortrol schemes and sensors are blamed for
being inexact, and great efforts are invested in perfedtiegprecision of spacecraft positioning. Bizarrely,
as precision improves, the problem perseveres and becoraasore violent. A surprising solution is
proposed that finally solves the problem — reduce positppirecision. As long as orbits do not change
too much, docking can be done using a simple funnel-like meisim. This kind of problem, control of
change over time, or in other wordsentrol of system dynamicis what we describe in this paper.

The central idea behind Dynamics Based Control (DBC) isifiatvs governing changes in a system,
the system dynamics, are beneficial in some sense, thernsitlie estimation precision nor the state itself
matter as much. These system dynamics, like the funnel oftexyavill channel the system into the desired
configuration. The target of a DBC algorithm would be to sekttions in such a way as to create or
simulate the beneficial dynamics.

Recalling our spacecraft docking scenario, applying DyicarBased Control (DBC) would mean that
instead of attempting to set the orbit position directlye @hould ensure that it has the tendency to recover
from deviations from an ideal orbit. This tendency would be beneficial system dynamics, and it requires
much less effort than precise positioning of a spacecratinflar effect is observed while driving a car (the
“small corrections principle”); there is no attempt to psedy position the car in the middle of a car lane,
but rather it is directed to return there.

The “small corrections principle” has another interprietatthat of classical control theory [12]. Control
theory holds a concept aieighboring contral Should the system manifest itself in an ideal, noiseless wa
the control signal (actions selected) would be clear. Bat (mall) deviation irsystem stateccurs, the
control signal can be augmented by a small difference as ualllly proportional to the real or estimated
state-difference, as observed in literature on linearesyst[3, 12]. Though DBC uses terminology such as
system deviatigrthe focus is on the rules that govern the system, ratherdhdhe system state itself.

The main principle of action selection in DBC can be splibitwo phasesdynamics estimatioand
dynamics correction Estimation can be done in numerous ways, starting fromsystem identification
by a complete learning algorithm, and ending with lightacking algorithms, such as Extended Markov
Tracking (EMT) [9, 10]. Given the way estimation is done, @a@ devise actions so that future system
behavior will produce estimates similar to the ideal or liered system dynamics.

DBC-type action selection is actually quite widespread.nsiger, for example, color creation on a
computer screen. Color perception by humans (that is, fighuency estimation) is based on three distinct
receptors, each detecting a very specific frequency or hhes i3 used in color monitors, where most of
colors are not actually emitted by the screen. Insteadetboarrces of constant hue are tapped into, and a
mixture is created that simulates for the human eye the redjwolor. This scheme parallels the phases of
estimationandcorrectionas performed by DBC.

Similar dual structure can be found in learning algorithmshsas Actor-Critic algorithms [6]. A Critic
estimates the value function, a system performance eauahile an Actor uses the estimation to refine
its strategy. However, Actor-Critic algorithms are leaghalgorithms, and produce at the end a good value
function estimate and the corresponding, usually statiafegy. The DBC framework by itself is not a
learning algorithm, though it can be utilized in creating¢gee below).

The rest of the paper is organized as follows. In Section 2neige a formal introduction to Dynamics
Based Control, focusing especially on Markovian stochastivironments. This is followed in Section 3
by comparison to a classical control alternative for thesdrenments — Partially Observable Markov
Decision Processes (POMDPs). Section 4 demonstrates oamthe introduced EMT-based control fits
the DBC architecture under the Markovian assumption, asal @poses the limitations of the naive EMT-
based control, as opposed to the general DBC frameworkioGetprovides some concluding remarks and
directions for future developments of DBC.

2 Dynamics Based Control

Dynamics Based Control (DBC) specification can be brokea ihtee interacting levels: Environment
Design Level, User Level, and Agent Level.

e Environment Design Levelconcerns itself with the formal specification and modelifighe envi-
ronment. For example, this level would specify the laws ofgits within the system, and set its
parameters, such as the gravitation constant.

e User Levelin turn relies on the environment model produced by Envirennesign to specify the
ideal or beneficial system dynamics it wishes to observe.Uder Level also specifies the estimation
or learning procedure for system dynamics and the measutevidition. In our spacecraft docking
scenario these would correspond to specifications of sdiflstation at an optimal orbit, and angular
speed and radii difference evaluations.

e Agent Levelin turn combines the environment model from the Environnigesign level, and the
dynamics estimation and ideal dynamics specification froserlevel, to produce a sequence of
actions that create system dynamics as close as possilble iietal one with respect to the deviation
measure specified by the User Level.

As we are interested in the continual development of a stithaystem, such as happens in classical
control theory [12] and continual planning [5], the questlmecomes how the Agent Level is to treat the
deviation measurements over time. A classical approachdamrito use expectation, to average over all
possible system developments. However, we prefer to uselmbpility threshold alternative — that is, we
would like the Agent Level to maximize the probability thaetdeviation measure will remain below a
threshold.

Specific action selection would depend on system formatimatOne possibility would be to create a
mixture of available system trends, much like what happarBehavior-Based Robotic architectures [1].
The other alternative would be to rely on the estimation edace provided by the User Level, and utilizing
the Environment Design Level model of the environment taosigcactions so as to manipulate the dynamics
estimator to believe that a certain dynamics has been ahi®otice that this manipulation is not direct, but
via the environment. Thus, for strong enough estimatorrélyns, successful manipulation would mean
a successful (i.e., beyond discerning via the availabls@gnnput) simulation of the ideal or beneficial
system dynamics.

DBC levels can also have a back-flow of information (see Edyr For instance, the Agent Level could
provide data about ideal dynamics feasibility, allowing thser Level to modify the requirement, perhaps
focusing on attainable features of system behavior. Datddmvalso be available about the system response
to different actions performed; combined with a dynamidinestor defined by the User Level, this can
provide an important tool for the environment model caliltmraat the Environment Design Level.

Model Estimator

. Ideal Dynamics
Env. Design User y Agent
- -
Estimator Dynamics Feasibility
T System Response Data

Figure 1: Data flow of the DBC framework

Extending upon the idea of Actor-Critic algorithms [6], DBfata flow can provide a good basis for
the design of a learning algorithm. For example, the UseelLean operate as an exploratory device for a
learning algorithm, inferring an ideal dynamics targenfrtihe environment model at hand that would expose
and verify most critical features of system behavior. 113 ttase, feasibility and system response data from
the Agent Level would provide key information for an envinoent model update. In fact, the combination
of feasibility and response data can provide a basis forgpéaation of strong learning algorithms such as
EM[2, 8].

2.1 DBC for Markovian Environments

For a Partially Observable Markovian Environment, DBC carspecified in a more rigorous manner. In
this case, the phases or levels of DBC can be seen as follows:

e Environment Designlevel is to specify a tuplec S, A, T, O, 2, s >, where:

— Sis the set of all possible environment states;
— sp is the initial state of the environment (which can also beveié as a distribution oves);
— A s the set of all possible actions applicable in the envirenin

— T is the environment’s probabilistic transition functidh: S x A — II(S). That is,T(s'|a, s)
is the probability that the environment will move from stat® states’ under actioru;

— O is the set of all possible observations. This is what theareingput would look like for an
outside observer;

— Qs the observation probability functiof2 : S x A x S — II(O). Thatis,Q(o|s’, a, s) is the
probability that one will observe given that the environment has moved from state states’
under actioru.

e User Level in the case of a Markovian environment, operates on thef sgstem dynamics described
by a family of conditional probabilitie§ = {7 : S x A — II(S)}. Thus ideal or beneficial dynamics
can be described by € F, and the learning or tracking algorithm can be represerteal fanction
L:0 x (Ax0)* — F,thatis, it maps sequences of observations and actionsrpefl so far into
an estimate- € F of system dynamics.

There are many possible variations available at the Useglltevdefine divergence between system
dynamics; several of them are:

— Trace distancer L, distance between two distributiopsindq defined by
1
D(p(-).a()) = 5 > Ip(x) — q(a)]

— Fidelity measure of distance

— Kullback-Leibler divergence

~—

Dicr(p()lla(-) =Y plx) 10%22;

Notice that the latter two are not actually metrics over thace of possible distributions, but nev-
ertheless have meaningful and important interpretatiéios.instance, Kullback-Leibler divergence
is an important tool of information theory [4] that allowseoto measure the “price” of encoding an
information source governed lgy while assuming that it is governed by

The User Level also defines the threshold of dynamics dewigtiobabilitys.

e Agent Levelis then faced with a problem of selecting a control signatfiom «* to satisfy a mini-
mization problem as follows:
a” = argmin Pr(d(r,,q) > 6)
a

whered(r,, ¢) is a random variable describing deviation of the dynamitsnese r,, created byl
under control signak, from the ideal dynamicsg. Implicit in this minimization problem is that

is manipulated via the environment, based on the environmedel produced by the Environment
Design Level.

3 DBCvs. POMDPs

The comparison of the DBC approach to classical control @ddne via the comparison of DBC to Par-
tially Observable Markov Decision Processes (POMDPs)c&SPOMDPSs are a classical representative of
the control theory of stochastic systems, and DBC has afagtied formalization over Markovian envi-
ronments, comparison between them will help illuminatekiefeatures of the DBC approach.
Structurally, POMDPs can also be fitted into the three lewélthe Environment Design Level, User
Level, and Agent Level. Furthermore, one can assume tha¥idr&ovian environment model produced
by the Environment Design Levels of both approaches corlyleiverlap (see Table 1 for a structural
comparison). However, the User and Agent Levels differificantly. At User Level, instead of idealized
system dynamics, the POMDP approach defines a reward fancti§ x A x S — R to express preferences
over different system transitions. POMDP at User Level disfines an optimality criterion, determining
how the reward should be treated over time, e.g., discoumtedmulated optimality dictates that reward is
additively collected with every next step being less proféeby a discount factor. Agent Level then faces
the problem of finding an action selection policy so as to méze the expected optimum reward. For
instance, in the case of discounted accumulated optinthigywould ber* = arg mng [Z yiri] , Where

r; denotes the reward obtained at time slieender the policyr, and0 < ~ < 1 is a discount factor.

In some cases the POMDP approach also defines a reward funetimdeling procedurg(n*) — r,
that transforms the reward function according to some featof the resulting action selection behavior.
This way the POMDP approach achieves reward function coitiposhat results in a system behavior with
specific features. Contrast this with DBC, which specifiesitiealized system behavior directly.

Environment Design User Agent
< S, AT 0,0 > M|r:SxAxS—R
S - set of states D | F(r*) —r T = arg max E -yt
A - set of actions P | r-reward function
T:5 x A— TII(S) - transition F - reward remodeling
O - observation set q:SxA—T(S5)
Q:8%xAxS—T(0) D | L(o1,...,01) = T T = argmgnProb(d(THq) > 0)
B | g - ideal dynamics
C | L -dynamics estimator
6 - threshold

Table 1: Structure of POMDP vs. Dynamics-Based Control

Available complexity results for POMDPs, such as [7], rengk@ny optimality criteria infeasible, and
limit the choice to discounted accumulated optimality, evhive assume for the rest of our discussion.
The following two subsections discuss properties of POMDE BBC induced policies in the light of
features such as user preference interpretation and sigita controller mechanisms. The summary of
this discussion is available in Table 2, with numbers in ptreses denoting the subsection in which specific
issues are discussed.

3.1 Properties of POMDP-Induced Policy

Even within its framework, POMDP-induced policy has one amant technical limitation — its optimiza-
tion is expectatiororiented, and is applied as is for all possible system deveémts. Computed off-line,
POMDP-induced policy is, in a sense, an open-loop contrahaeism.

3.1.1 Optimality Concept

POMDP policy selection dictates that a policy with a maximexpectecutility be taken as optimal. Let
us concentrate on this notion ekpectation Consider two policies; andw, applied to the same POMDP,
and distributions of the (accumulated) value under thesepwlicies D; and D, respectively, as shown
in Figure 2. POMDP optimization dictates that the poligyshould be selected and applied at all times.
However, the variance of the value underis high, which means that if a critical value exists below ethi
the gain is forbidden to drop (as denoteddoin Figure 2) —m; may not be suitable.

2

Probability

Value

Figure 2: Value distribution under POMDP policies

The expectation problem can be discussed from another pbiview, that of system development.
POMDP policies can be seen as a solution set for a Sequertiasidbn Making (SDM) problem. Each pol-
icy creates a distribution over system developments (stetien sequences), and one has to choose among
different policies based on a comparison of distributiokis.SDM problem defines a preference order over
system development, in a sense, determining an ideal syl#eetopment and a measure of divergence be-
tween development sequences. The POMDP concept of sokdimbines policy-induced distribution and
SDM-induced preference over the state-action sequencassigning real values to sequences and optimiz-
ing over the value expectation. Returning to our previoggiaent, we see that POMDP-optimal policy
can have a very high probability of large deviations fromaeei system development sequence, a property
unintended by, and not desired by, the SDM formulation.

3.1.2 Controller Similarity

Although POMDP policies can be history dependent, desoripength feasibility argues that a policy will
have only finite (and rather small) variability in responséifferent system developments that actually take
place. This, together with off-line computation and opfityebased on average performance, underscores

] Issue I POMDPs(see3.1) | DBC (see 3.2) \
Action Selector Off-line computed policy On-line action selection
Controller Similarity Open-loop (3.1.2) Closed-loop (3.2.1)
User preference interpretatign State value oriented (3.1.3) Transition frequency oriented (3.2.2
Optimality concept Expectation oriented (3.1.1) Context dependent, situated (3.2.3)
Complexity PSpace Unknown for DBC

Table 2: Features of POMDP and DBC induced policies

POMDP policies’ inability to adapt and change for a specijstem development that actually occurs, and
which deviates from thexpectedlevelopment under application of the policy.

3.1.3 User Preference Interpretation

POMDP solutions also exhibit a form of user-preferenceoditn. By formal definition, reward/cost is
obtained based on specific transitions exhibited by thesgystHowever, a POMDP’s induced policy is
computed with respect to a Value Function, which is a staented, rather than transition-oriented, concept.
This may potentially cause distortion of User preferenceemexpressed by the reward structure.

3.2 Properties of DBC-Induced Policy

Dynamics Based Control (DBC) is a closed-loop control saleand action selection is bound to a system
development that actually occurs at run-time. DBC is alsedtly tied to system-transition preference,
expressed as the ideal system dynamics.

3.2.1 Controller Similarity

DBC is a situated, context-dependent scheme because itansestimation algorithni that is used to
identify the system development that actually takes placematime. In fact, DBC (and EMT-based control
as a representative of a DBC scheme) takes this to an extiethat it viewsL as the “actual” system, and
selects actions in a way that leafi$o a required estimate.

Itis important to note thak is not influenced directly; otherwise, its estimate and DB@Goa-selection
make no sense. Rathef, is influenced only through the environment that it estimat&sis mode of
operation is most similar to a closed-loop differential tolter, and is explicitly on-line.

Note, also, that DBC formally is not a learning, tracking,estimation algorithm by itself, although it
has a tracking (estimator) component utilized with its ctice.

3.2.2 User Preference Interpretation

The DBC discussion and POMDP discussion above can be unifiéaking the point of view of distribu-
tions over different system development sequences. URIBBIDP, the DBC framework attempts a direct
comparison between distributions over system developsemiences. This is done by considering “induc-
tor” stochastic functions, that represent different sémtit behaviors and thus different distributions over
system development sequences. DBC assumes that the idahsyevelopment sequence and the measure
of deviation from it can be combined into such an “inductariétion,q — the ideal system dynamicthe
learning/tracking algorithni is then used to seek the same form of representation for thealaxystem
developmenty.

3.2.3 Optimality Concept

A DBC policy considerg andg, that is, the “estimated actual” and the “ideal” distriloumis over system
development sequences, and selects an action based oditeeircomparison. The DBC concept of op-
timality is based on a threshold probability, and an optipalicy is the one that is capable of keeping
deviation from the ideal system dynamics below the threshath highest probability.

4 EMT-based Control as a DBC

Recently, a control algorithm was introduced cal#dT-based Contrd9, 10], whose scheme fits perfectly
into the DBC framework. Although it presents an approxingteedy solution in the DBC sense, initial
experiments using EMT-based control have been encourddiitjg EMT-based control is based on the
Markovian environment definition, as in the case with POMO#Ra its User and Agent Levels are of the
DBC type.

e User Levelof EMT-based control defines a limited-case, idealizedesysdlynamics independent of
action: ggpr : S — TI(S). It then utilizes the Kullback-Leibler divergence meastoreompose a

momentary system dynamics estimator — the Extended Markaeking (EMT) algorithm. The al-
gorithm keeps a system dynamics estimdtg, that is capable of explaining recent change in an aux-
iliary Bayesian system state estimator frpm ; to p;, and updates it conservatively using Kullback-
Leibler divergence. Since,,, andp;_; ; are respectively the conditional and marginal probab#iti
over the system’s state space, “explanation” simply meaapt(s’') = > 75 ,7(s'|s)pe—1(s), and

the dynamics estimate update is performed by solving a nigaition pro%lem:

Tonr = Hpe, pe1, Thppp] = arg min Dy, (7 X PeallTharr X pio1)
s.t.

pi(s") = 22(7 x pra)(s', 5)

S

Pi-1(s) = 2(7 X pr1)(s', 8)

s/

e Agent Levelin EMT-based control is sub-optimal with respect to DBC (tgb remains within the
DBC framework),performing a greedy action selection basegrediction of EMT’s reaction. The
prediction is based on the environment model provided b¥théronment Design level, so that if we
denote byl’, the environment’s transition function limited to actierandp;_; the auxiliary Bayesian
system state estimator, then the EMT-based control cheidedcribed by

a® = arg EﬂEiEDKL(H[Ta X Pty Pty Toner) |l aEMT X Pi—1)

Note that this follows the DBC framework precisely; a dynesrestimator (EMT in this case) is manip-
ulated via action effects on the environment to produce imate close to the idealized system dynamics.
Yet naive EMT-based control is suboptimal in the DBC sensd,las several additional limitations that do
not exist in the general DBC framework.

4.1 EMT-based Control Limitations

EMT-based control is a sub-optimal (in the DBC sense) regmadive of the DBC structure. It limits the
User by forcing EMT to be its dynamic tracking algorithm, amgblaces Agent optimization by greedy
action selection. This kind of combination, however, is coom for on-line algorithms. Although further
development of EMT-based controllers is planned, evideockar suggests that even the simplest form of
the algorithm possesses a great deal of power, and trendséhaptimal (in the DBC sense of the word).

There are two further, EMT specific, limitations to EMT-bds®ntrol that are evident at this point. Both
already have partial solutions and are subjects for fuesearch.

The first limitation is the problem of negative preferenaetHe POMDP framework for example, this is
captured simply, through the appearance of values witbrmifft signs within the reward structure. For EMT-
based control, however, negative preference means thavould like toavoid a certain distribution over
system development sequences; EMT-based control, howenraentrates on getting albseas possible
to a distribution. Avoidance is thus unnatural in native EbBSed control.

The second limitation comes from the fact that standardrenmient modeling can creagpeire sensory
actions— actions that do not change the state of the world, and diffdy in the way observations are
received and the quality of observations received. Sineevthrld state does not change, EMT-based control
would not be able to differentiate between different seypsations.

Notice that both of these limitations of EMT-based contrel absent from the general DBC framework,
since it may have a tracking algorithm capable of considepure sensory actions and, unlike Kullback-
Leibler divergence, a distribution deviation measure thatapable of dealing with negative preference.
Furthermore, as was mentioned, EMT-based control itselhaumber of possible extensions that promise
to be less prone, or not at all prone, to the aforementiomeititiions.

5 Conclusions and Future Work

In this paper we have formally introduced a novel controffesvork —Dynamics Based ContrgDBC).
Unlike existing approaches to control and planning, DBCiigsdally involved with the rules that govern
change within the controlled system — system dynamicse&ubof limiting its attention to the quantitative

changes of system state and its estimation, DBC attemptstinate and vary the qualitative features of
system modulations. A Dynamics Based Controller can opaithher as a direct mixer of available sources
of system dynamics, or as a simulator with respect to a giyeamhics estimator.

The DBC framework, even limited to well-studied Markoviamvgonments, significantly differs in its
approach and the resulting control signal (action policgirf the classical control approach, as represented
(for example) by Partially Observable Markov Decision FRigses.

Although at this point a complete and exact solution of thedBamework is not available, a promising
beginning in this direction exists — control based on Exashillarkov Tracking (EMT) [9, 10]. EMT-based
control is computationally efficient, and in fact is polyniaiin environment description parameters. Initial
experiments using EMT-based control have been encourftyiig

EMT-based control does have limitations, the main two beiegative dynamics preference and pure
sensory actions. It seems, however, that extended statsepiations may resolve these problems, and this
direction is currently under investigation.

DBC also requires extensive feasibility and complexitydgs, paralleling those done for POMDPs, as
well as utilizing its potential for composition of learniadgorithms. The latter would be significant for the
field of robotics, providing flexible automated techniquesédnvironment model calibration simultaneous
with task performance. In this direction it would be intéieg to take a closer look at the application of
EMT combined with EM, as the latter can use Kullback-Leild@&ergence for its operation, thus directly
making use of information from an EMT-based controller.

6 Acknowledgment

This work was partially supported by grant #039-7582 fromlIgrael Science Foundation.

References

[1] Ronald C. Arkin.Behavior-Based Robotic$IT Press, 1998.

[2] Jeff A. Bilmes. A gentle tutorial of the EM algorithm ant$ iapplication to parameter estimation for
Gaussian mixture and Hidden Markov Models. Technical ReEpRr97-021, Department of Electrical
Engineering and Computer Science, University of Califaia Berkeley, 1998.

[3] Chi-Tsong ChenLinear System Theory and Desigdxford University Press, 1999.
[4] T. M. Cover and J. A. Thomag£lements of information theoryiley, 1991.

[5] Marie E. desJardins, Edmund H. Durfee, Charles L. Odizl Michael J. Wolverton. A survey of
research in distributed, continual plannirg.Magazine 4:13—-22, 1999.

[6] Vijay R. Konda and John N. Tsitsiklis. Actor-Critic algthms. SIAM Journal on Control and Opti-
mization 42(4):1143-1166, 2003.

[7] Omid Madani, Steve Hanks, and Anne Condon. On the undédity of probabilistic planning and
related stochastic optimization problemdstificial Intelligence Journal147(1-2):5-34, July 2003.

[8] Radford M. Neal and Geoffrey E. Hinton. A view of the EM alithm that justifies incremental,
sparse, and other variants. In M. I. Jordan, edit@arning in Graphical Modelspages 355-368.
Kluwer Academic Publishers, 1998.

[9] zinovi Rabinovich and Jeffrey S. Rosenschein. Extentsdkov Tracking with an application to
control. InThe Workshop on Agent Tracking: Modeling Other Agents frdree®vations, at the Third
International Joint Conference on Autonomous Agents antlidgient Systemgages 95-100, New-
York, July 2004.

[10] Zinovi Rabinovich and Jeffrey S. Rosenschein. Mukiagcoordination by Extended Markov Track-
ing. In The Fourth International Joint Conference on Autonomousmg and Multiagent Systems
pages 431-438, Utrecht, The Netherlands, July 2005.

[11] Zinovi Rabinovich and Jeffrey S. Rosenschein. Rolmttml based on Extended Markov Tracking:
Initial experiments. IMThe Eighth Biennial Israeli Symposium on the Foundation&rtficial Intelli-
gence Haifa, Israel, June 2005.

[12] Robert F. StengelOptimal Control and EstimatianDover Publications, 1994.

