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Abstract

We explore the creation of cooperative behavioral trends in a groagerits, within the framework
of an artificial physics simulation. Local interaction rules, that have ‘®€linterpretations, were specif-
ically designed to engender cooperative behavior. Although we comd¢hat it is necessary to further
refine our specific set of interaction rules, our results support thethiatit is indeed possible to simulate
sophisticated cooperative behavior via a set of selfish local interactions

1 Introduction

Imagine a blue, open sea, where a pack of orcas (“killer véfiplgenses a school of fish at a distance.
The orcas move closer and closer to the school, encircliwitita pincer movement (a highly cooperative
maneuver), and continue circling until the school compredato a tight mass of fish. All this maneu-
vering requires a great deal of communication and teamwordng the orcas. In this paper, we explore
whether this kind of highly cooperative behavior can be $atmd by local interactions, that have selfish
interpretations.

There have been many previous examinations of similar gatipe behavior in the field of multia-
gent systems (e.g., [3, 4, 8, 6]), including some older p@earey experiments (using an evolutionary
model [5], designed rules [7], and other approaches [2]), @ren including predator-prey experiments
with self-motivated agents (e.g., [9]). The current workads in the sophistication of the coordination and
difficulty of the hunting task, as well as in the model usedrigender ostensibly cooperative behavior.

Local interactions are well-simulated by physical systefrtharged particles [10, 11]; for example, [12]
discusses a simulated world with artificial rules of physicahich a complex regular structure was formed
by particles, using only particle-centered local rulesntéiaction. In fact, this appears to be very similar to
what happens within a school of fish, and inspired the use whies technique in our simulation.

We extended the physicomimetic simulation of [12], andespnted fish and orcas by different types of
artificial particles. Hunting requires coordination amahg orcas; each individual should act in correlation
with the others, and react to the actions of others. Our sitimn of this activity was based only on physical,
local rules of interaction.

There were three rules governing action: greed, envy, andice. These are seemingly in direct
opposition to cooperative teamwork. Our results show, wewehat they can successfully simulate sophis-
ticated cooperative behavior, in particular the kind ekbibin the complex hunting pattern of orcas. While
the interaction rules could be interpreted in other, ndfisbeways, it is still interesting that self-interested
behavior — local to individual agents -€euld give rise to the appearance of such complex, meaningful co-
ordination. Although our experiments did not achieve thmplete efficiency or elegance of orca hunting,
they successfully demonstrated that externally obsergegerative behavior might have selfish origins.

2 Atrtificial Physics

In [12] by Spears et al., a simulation tool is described tisastArtificial Physics to create an environment of
agents responding to local interaction rules. Spears’Isitiom uses physical forces to drive a set of agents
to a desired configuration or state. The parameters of thelaiion (physical forces) are tuned so that the



desired configuration will be achieved when the system getsdtable state that minimizes the potential
energy of the overall system.

Spears’ system works according to basic Newtonian formaflasotion, and simulates particles subject
to different fields that affect them. This is done on a disckattual time scale; after each time lapse/f,
the locations of the particles in the system are recaladlaEach particle is modeled with mass, position,
velocity and acceleration. Positional change is calcdlagAx = vAt, wherev denotes the last recorded
speed of the particle. In turn, the new velocity is formedHtwy formulav = %At, wherem is the mass of
the particle and is the force that affects it.

The force that affects any particle is computed based orefhéve position of the particle within fields
created by other particles. The basic formula usef is- T% whereG is a parameter of the field, and
r is the distance between the affected particle and the fethiat produced the affecting field. However,
the simulation needs the force to be reasonable, and thits linto some maximal valuel;,,,... It also
considers the field to reverse its effect at some raRige from an attractive force, it becomes a repulsive
one.G, R, andF,,,, form the parameter set of the pseudo-physical fields in Spsanulation.

To make the particle motion reasonable, Spears also intesviscosity type friction, sensor limitation
(the maximal distance at which a force would hawy effect), andV;,,..., a limit on a particle’s speed.

One of Spears’ results was the ability to place any numbegefis in random locations on the screen,
and (in reaction to local interactions) have the agentsteedly be set in a symmetric network of triangles.

To create this effect, that simulation created a well-tufield among the agents, making them react to
one another in the appropriate fashion. As mentioned alibeenodel of inter-agent force established an
attraction among the agents if they were far from one anp#ret became repulsive when they get closer.
[13] formally proved that the system stabilized at the staith least potential energy, and this state is a
regular mesh.

The resulting “net of triangles” was reminiscent of a schafdish, and inspired our use of an artificial
physics approach as a theoretical basis for the simulafifishoand orca pack behavior. We have also made
use of theoretical and numerical conclusions made in [13].

3 Model of the World of Orcas and Fish

The National Geographic Society [1] describes the follgyieculiar behavior of orca whale®¥rcas in

the northern part of the Atlantic have developed a highlyaniged predation technique that has rarely been
seen by human eyes. A large school of fish are ‘corralled’ antmll. Perimeters of the ball are guarded
by the orca pack members. .. Soon the massive ball is cldsseréghtly, the fish’s escape response breaks
down. Oxygen levels in the ball drop and the fish become cedfust that point orcas use their powerful
tails to knock out fish at the edges of the ‘fish-ball’, and baht one by one”

During this impressive act, orcas exhibit very high cooperaskills. They communicate to improve
their synchronization and positioning, take turns at fegdind guarding the ball, and the “corralling” itself
includes such maneuvers as “pincers”.

These orca behaviors, unlike maintenance of the structarésh school, do not seem to stem from local
interactions, but rather from some high-level cooperadivategy. This is confirmed by the fact that older
members of the pack seem to repeatedly demonstrate to yoarggs what to do, creating the impression
that a complex skill is being taught and learned.

In this research however, we would like to consider orcakab@r from a different angle, and investigate
whether their complex hunting strategy can be created oulabed by simple selfish local interactions
among orcas. It may be the case that this was the originadmethat the joint behavior appeared, and that it
was only later transformed into a regular (“conscious”)cpice.

For example, the very fact that orcas keep at a regular distiiom one another during their school
encirclement could appear as a result of mutual dislike @yrameas, or even fear armbwardice But
assuming the dislike, the only reason that they do not splitmove away from each other is that they
are hunting a school of fish — in other words, thgieed keeps them together near the fish. The constant
circling could also be a result @nvy; once an orca gets close to a fish, another one begins to eand it
moves in closer to the fish in question. However, since thaydae another and the fish itself is not keen to
stay close to orcas, a circling motion results.

The question then becomes whether three selfish local attena such as greed, envy, and cowardice
can result in a behavior similar to the cooperative huntimayes of orcas. Note that in a sense it places
orcas into a model similar to that of fish, which seem to forgirtechools based on local interaction rules.



As an example, a school of fish could be modeled as being fobypédo kinds of fear: fear of separation,
and fear of conflict. Fear of separation stems from the “gafebtumbers” survival strategy — a fish would
not want to be too far from other fish around it (a local properEear of conflict stems from the fact that
fish fear one another because they compete over basic respauch as food and oxygen.

Composition of these basic qualities of fish and orcas aremely similar to interactions among phys-
ical particles within a field. This abetted the creation ofrawgation using artificial physics tools, including
such features as the screening of internal members of thedislol by the outer boundary.

4 Simulation

4.1 Technical description

The basic ideas of the tool we have created are similar toatbieirt [12]. We used Newtonian formulas
to calculate velocities and particle position variatiotiee simulation enabled us to define various kinds of
particles. Each particle has two constant properties: & naasl a volume. The mass is used to calculate the
acceleration and velocity of particles:= %At (justasin[12]). However, our simulation extends the notio
of friction, and simulates its effects independently foemyvparticle based on its volumé?,;. = —puw,
wherep is the volume of the particlgy is the constant friction coefficient, ands the particle’s speed.

We have also generalized the notion of fields — we do not usisftbit flip their effect (from repulsion
to attraction) midway. The field has constant effect, eititeactive or repulsive. However, any particle can
emit or be affected by any customized set of fields. The fieldsnaw parameterized by strength sign
(attraction or repulsion), maximal feasible force credtgdhe field F,,,..., and the fading-away distance
after which the force is considered to be ineffecti¥g,,...

Our simulation also introduced the notion of interferenddese forces do not influence particles di-
rectly, instead modifying the effects of other fields withihre system. Such fields have an additional
coefficient¢ (IC in our data tables), that dictates the degree of interfee created by the field. The ba-
sic interference diagram can be seen in Figure 1; the imarée effect is computed using the formula
Finter = F (1 + &cos(a))”, whereF;,,;., is the force after the interference applicatidnjs the original
force created by the field between the affecting and affegéeticles £ is the interference coefficient,is
the sign of the interference, andis the angle between the lines of sight from the effectedgaro the
interfering one and the effecting one.
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Figure 1: Field Interference Diagram

As in [12], we also limit the maximal particle speed, thugaducing theV,,,, parameter; however,
in our simulation particles can have different speed litiotes. Other calculations are performed just as
in [12], based on the laws of Newtonian motion.

4.2 Implementing Desired Behavior in the Simulation

As was mentioned in Section 3, the cooperative behaviorshiohwwe are interested are to be engendered
by local interaction rules.



The first task is to translate the fish school formation rutés the language of artificial physics. It is
obvious that fear of separation can be modeled by an atteafiéild, and fear of conflict can be modeled
by a repulsive field. In fact, this is exactly what happenslig] [and in our simulation, which results in a
school of fish that keeps a regular triangular mesh-like &drom. We introduce two fields: FishPullFish and
FishPushFish, with their respective parameters compw&eittated by [13].

However, a school is not an ordinary triangular mesh. Wethice an interference field, FishMaskFish,
that masks the interior of the fish school. The field affecteBlishMaskFish is the first field that affects orca
pack behavior: FishPullOrca. This field comes to magtekdas was discussed in Section 3. We introduced
OrcaPushOrca (to modebwardicd, and the OrcaEnvyOrca interference field (to mazgtaly. Finally, the
obvious effect of fish moving away from orcas is modeled bypalsve field, OrcaPushFish.

While FishMaskFish is a negative interference field that weakthe effects of FishPullOrca, the Or-
caEnvyOrca is a positive interference field that incredse®ffects of the FishPullOrca field.

Note that all these fields and effects could not have beereimghted in the original artificial physics
work [12]. In addition, although the initial values for theskPullFish and FishPushFish fields (responsible
for fish school creation and maintenance) were calculateedan [13], the rest of the fields were uncharted
territory, and were fitted using multiple experimentatietss

5 Finding Parameter Values

Our first goal was to build a stable school of fish, similar te&s’ net of particles described in Section 2,
i.e., finding the right parameter values for FishPushFisth RishPullFish. Initially, we considered the
parameters of Spears, and tried to use them in our simulaBpaars used one force between the particles
with the following values: F,,.., = 1, G = 0.12. In our simulation, this had to be replaced by two
counteracting forces, as seen in Table 1.

[ Force vs. Parameter|| Fiae | Rmae | G |

Attractive force 1 0.5 | 0.12
Repulsive force 3 0.3 | 0.24

Table 1: Values for forces of fish among themselves

With these values, we got results similar to those of Spegngn the particles are far from each other
(more thar0.3), they only pull each other closer together, since at thagedhe repulsive force FishPushFish
is not activated. When they pass the distance 6f0.3, both forces are activated, and as the repulsive force
coefficientG is double the pulling force coefficient, we get a repulsiothef same value that Spears’ field
version had. However, the division of forces in our simaatallows for greater flexibility; for instance, the
F,... value in the repulsive force can vary independently, andirtbee it is increased, the more regular and
uniform the school becomes.

After establishing a stable school of fish, we turned to thergaal of finding the correct values of the
set of fields described in Section 4.2, the fields that invoieas. This was done based on the following
initial assumptions:

e Orcas should sense the fish pulling force from very far, lBunifpact should be rather limited.

e When any orca is getting close to a fish, other orcas begin tp ignthat is, the pulling field of that
fish is enhanced.

e Forthe school to have a group sensory response to orcagfabtive radius of the orca fish-repulsive
field should be larger than the basic distance between fistinnhie school. However, this radius has
to remain small enough to simulate limited fish sensory range

With these assumptions, and after performing a large nuoftetperiments with different field param-
eter settings, we arrived at the basic value set that resuli@ success rate of approximately 80% — in 80%
of the trials, the orcas encircled the fish and compressesktineol.

The basic values we used as field parameters are describedblim 2. Other parameters were set as
follows: the friction coefficient was set th5, the mass and volume of the orcas was sdt tnd theirV,,, ..
wasl1.5.



[ Fieldname | Frae | RBimaz | G [ IC ]

OrcaPushOrcg 1.5 2.2 0.3

Fish PullOrca | 0.4 6 1

Orca Push Fish| 0.8 0.8 | 0.19
Fish Mask Fish 0.8 2
Orca Envy Orcal 0.8 2

Table 2: Basic values used as field parameters

It is important to note the initial geometric configuratiohomr experiments. Orcas and fish were ran-
domly placed in two non-intersecting rectangular aread the group of fish and orcas were initially sepa-
rated by a distance significant with respect to the maxinad ey range of orcas.

There were two main problems we encountered with respehetdésired orca behavior:

e Occasionally, the school of fish was divided into two parts. tHese cases, sometimes the orcas
encircled the larger part, but sometimes they did not stickie goal, and did not succeed in ‘catching’
either of the fish schools.

e Even when the orcas succeeded in encircling the fish, in sdree dests orcas passed through the
school, while the fish stayed in a school configurafion.

To try and solve these problems, we performed further expais, modifying various field parameter
values. Our general strategy was to start by experimentingne parameter each time, making a small
change in its value. If the change improved the performaweetried a few more values for the same pa-
rameter. We then created more complex experiment sets,inmglthe changes that showed improvement,
taking for each parameter the value that gave the most ssfatessults.

A summary of experiment sets and their respective resultdesseen in Table 3. For each experiment
the table shows the number of trials; success (percentagy@lsfin which the orcas encircled the fish),
division (percentage of trials in which the orcas divided $ichool of fish), cut through (percentage of trials
in which the orcas passed through the school of fish and thethsked in a schooP).Since our visualization
tool had a limited perception range, in some trials the fidftostand orca formation moved out of the
observable area; this is the reason for two numbers in thebaumf trials column in Table 3, and also
the reason for the range of success rate values. The mininalue vf the range was obtained with the
unobserved trials treated as complete failures, while theimmum value of the range was obtained with the
unobserved trials discarded from the experiment set.

5.1 Solving the Division Problem

The first experiment set was created in order to solve theodctidision problem. In this set, we reduced
the influence of the FishMaskFish interference field. Thiklfieasks the interior of the fish school, and
we initially assumed that this made orcas rather insemsitithe school as a whole, which in turn caused
the division problem. Therefore, reducing the impact of itesking interference field might remedy the
problem. However, this experiment set did not yield any iovement: the number of divisions did not
decrease, and furthermore, the number of orcas cuttingghrthe school got very high (see Table 3).
Trying another approach in the next experiment set, we &s@eé the attraction between the fish (Fish-
PullFish field), in order to improve the school integrity pesties. This change led to a great improvement:
when the orcas came close to the fish, the fish school stucth&rgend roughly maintained its form, mov-
ing as an integral unit — much like this happens in nature. dreas could not penetrate into the school of
fish, and the school hardly ever divided. Note that this m#kedish school parameterization and behavior
differ from the original Spears’ value setting and particktwork. In fact, since in our simulation we had
the ability to separate between the forces, we could makeggsaonly in the attractive force and leave the
repulsive force as is, gaining further flexibility in forngrihe school’s behavior. With the change we made,

1Although this type of behavior may be typical for dogs herdshgep, or wolves hunting, we were simulating orca behavnat, a
considered this something of a problem. This issue is alsaisksd below.

2Experiments of this last kind thahdedwith the desired goal are treated as a success, and will tambin the ‘success percent-
age’.



| Set#][ Experiment

Trials # (visible) [ Success %] Division % | Cut through %

|

| Base| Basic Values \ 40(37) | 775-83.78] 1622 | 45.96 |
[ | Reduce influence of Fish Mask Fish | 40(40) \ 78 \ 225 | 52.5 |
2a | Increase attraction between figsh 40(37) 90-97.3 2.7 43.24
(0.12-0.145)
Increase attraction between figh 20(16) 75-93.75 6.25 12.5
(0.12-0.135)
[ | Reduce influence of Orca Envy Orcal 40(36) | 725-80.6 [ 19.44 | 11.11 |
4a | Increase Orca Volume {45) 40(30) 65-86.7 13.33 10
Increase Orca Volume {44.5) 40(29) 55-75.86 24.13 13.79
Combination: change fish attractign 40(35) 87.5-100 0 5.71
(0.12—0.145), increase orcas volume
(4—5)
6a | Combination: change fish attractign 40(25) 60-96 4 4
(0.12-0.145), orcas volume (45),
and orcad/,,.. (1.5—-1.2)
Combination: change fish attractign 20(17) 85-100 0 5.88
(0.12-0.145), Orca volume (45),
and OrcadV/, ., (1.5—1.35)
Combination: change fish attractign 20(17) 85-100 0 11.76
(0.12-0.145), Orca volume (45),
and OrcdV/,,q, (1.5—1.4)

Table 3: Summary of Experiment Variations

the fish school remained stable, but performed better witheet to the outer influences and restrictions of
our simulation targets.

As seen in Table 3, this experiment had a very high percendfgaccess, but in many of the trials
the orcas succeeded in encircling the fish while still cgttimough the school — as seen in the table, the
percentage of ‘cutting through’ is high. So the first probliersolved in most cases by the experiment sets
2a and 2b, where there is hardly any division, but the secooblgm of ‘cutting through’ persisted, and
became the center of attention in the following experimeig.s

5.2 Solving the Cut-Through Problem

As described in Section 3, during their hunting, orcas etethe school of fish, but at no stage do orcas cut
through the fish school. One question we considered was whttis phenomena is actually a problem —
as long as the the same final result is reached. After allptlg@omenon can be observed in other real-world
examples, such as dogs herding sheep, or wolves huntindnese tcases, dogs (or wolves) use the exact
same technique; one pack member passes through the heedaithén side, while the rest of the pack keeps
the herd from disintegrating. Some shepherd dog breedalbctun on the backs of the sheep to complete
the encircling. However, as the original goal was to sineiaspecific activity in nature and be faithful to
the processes at work, we considered this a problem for anctirty patterns, and experimented with ways
to reduce ‘cutting through’ behavior.

Observing the trials, it seemed that cutting through th@skthf fish resulted from situations in which
orcas accumulated too much acceleration and got to higltitiele. We tested two different approaches to
improve performance. In experiment set 3 (see Table 3), weced the influence of the OrcaEnvyOrca
interference field, as envy was one of the reasons for thes'onggh acceleration. This experiment value
setting did indeed reduce the percentage of trials in whichscut through the school, but unfortunately
the success ratio also dropped relative to the basic fielhpeter settings. On the other hand, the following
two experiment sets (4a and 4b), in which we increased thenwelof an orca, reduced the percentage of
cutting through even more than in experiment set 3, and asloahhigher success ratio compared to the
basic set (see Table 3). Since orca velocities directly nig@a their volume, increasing volume had the



desired effect.

Having reduced both of the initial problems, we attemptedn&rge the most successful parameter
settings among the observed experiment sets. We designedexperiment sets in which we increased
fish attraction together with increasing orca volume. Tiisegiment set (set 5 in Table 3) had a very high
percentage of success, and quite a low percentage of cthtimggh.

Encouraged by the success of increasing orca volume, wedidsgided to test whether a direct speed
limitation could have similar (or better) effects and reelube cutting through percentage even further.
To this end we formed a few experiment sets (6a-6¢) with patara taken from the former combined
experiment set 5, and augmented it with different valuedjfgt,. These experiments showed that direct
reduction ofV,,,.,. can indeed improve the percentage of cutting through, haretrs a trade-off with the
percentage of success. That is, redudifig, too much also resulted in the reduction of the success ratio.

Another effect that could be seen when both increasing tbe wolume and decreasing théi, ... is
that the encirclement task takes the orca pack much more tifhe orcas move slower and have more
difficulty in reaching their goal, in comparison to the expent sets where they could just cut through the
fish school, get to the other side of the school, and comghetencirclement with ease.

All the above experiment sets were done with and withoutena@iled to the system. The results did not
show significant differences with noise added, and are rawslin Table 3.

5.3 School Shrinking as the Effect of Orca Activity

As described in Section 1, after successfully encirclinlg, fiscas in nature shrink the school to a tighter fish
formation. Viewing the simulation runs in the above expenits, it looked like the schools of fish indeed

got smaller and crowded together after being encircled bgsorWe decided to verify this fact numerically,

and measured the school volume in two ways.

First, we measured the maximum distance between the fishinvitib school at each time step in a
few of the above experiment sets. We also measured the clis{anthe absence of orcas) of a school of
fish, to have a base value for comparison. As seen in Figune thei experiments with orcas around the
fish, the maximum distance between the fish stabilizes at 4 ower value than when the school of fish
stabilizes without outside interference (seen in the giapthe line of ‘only fishes’ and the line of ‘only
fishes fitting fish attraction’, which is the school of fish withr change to the attractive force). The graphs
were measured only on successful results, as measuringmaladistance among fish in trials with a divided
school would not yield a meaningful numerical value.

The second way of measuring fish school volume was to meakaraverage distance between fish
within the school. For this average distance, we saw resittdar to those using the maximal distance
measure (see Figure 3).

5.4 Geometry of the Initial Position

In addition to the experiment sets of Table 3, we also expanted with different geometries of the initial
fish and orca positions, leaving the field parameter settifigped to the basic values of Table 2. We tried,
in these experiments, to create two separated subgroupsas imstead of one group. In the first geometric
experiment set, the orca subgroups were placed roughlyeosaime side of the fish school, one beside the
other, but separated. This initial situation eased theionidsr the orcas, as they had the ‘pincer maneuver
half completed. Another geometric experiment set begalm twib groups of orcas on opposite sides of the
school. This had a potential hidden danger that the fish $etmdd break in two, snapped by the two orca
groups. In fact, this did not happen; the job was even easig¢hé orcas, and almost all trials succeeded.

6 Summary and Conclusions

Our initial goal was to recreate in a simulation a specificoaative behavior that occurs in nature: the orca
hunting pattern. The simulation was based on local rulestefaction among the participating agents; the
rules have “selfish” interpretations. As seen in the expenits, orca behavior could be reproduced, although
we did not reach 100% success.

Observing the simulation (Figure 4), one does get a sensenglex cooperation among the orcas. For
example, when one orca gets close to the fish and initialleefitint, other orcas hurry to come and ‘help’
— this despite the fact that within the simulation this beébris motivated by ‘envy’. While of course the
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same local interaction rule could also be interpreted m, @n altruistic way, it is still interesting that self-
interested behavior — local to individual agentsceuld give rise to the appearance of such sophisticated
overall coordination among them.

After finding the basic values for our simulation parametensst of the trials succeeded in various
experiments, i.e., simulated orcas successfully enogdi school of fish. The problems we still had were
seen only in a small fragment of the trials, and in naturdyigiess like the one we considered also do not
always succeed. Modifications of simulation parametersangd overall performance.

6.1 Future Work

There is still room for improvement. We believe that furtbgperimentation with different parameter values
would lead to even better results, as there are still manyemossible experiment variations that have
potential benefit. For example, one might make changes tédleFishPullOrca (we tried changing both
its interfering forces OrcaEnvyOrca and FishMaskFish,rmitthe field itself), combined with a modified
coefficient of friction (we had a fixed coefficient throughdlue experiments).

It is still not clear whether the failures we saw come onlynfrincorrect parameter values, or whether
they stem from a more basic issue, a problem in the definitidheophysical interactions in the simulation,
or even the fact that cooperative behavior of the kind weidensd cannot be completely simulated by local
interactions of this type.

There are several other directions in which to expand th&kw@mne promising possibility is to use
automated processes to fine-tune the simulation paramétstead of manual experimentation, we could,
for example, use genetic algorithms or other mathematicds$ for complex function minimization, which
in turn can be guided by a formal physical analysis of the pseg artificial fields (as in [13]).

In addition, there are ways to improve and change the siioualébol itself. Our tool is designed only
for 2 dimensions, but it could be expanded to work also vidth R, R™. The forces in the simulation are
calculated by a simple polynomial formula — a force is inedygroportional to the distance. But other
formulas may be used, for example, an exponential decaycteaistic of diffusion.
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