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Abstract

The contour alignment problem, considered in this papetp isompute the minimal distance in
a least squares sense, between two explicitly represent@durs, specified by corresponding points,
after arbitrary rotation, scaling, and translation of oridh@ contours. This is a constrained nonlinear
optimization problem with respect to the translation, tiota and scaling parameters, however, it is
transformed into an equivalent linear least squares pmoblea nonlinear change of variables. Therefore,
a global solution of the contour alignment problem can be pated efficiently. It is shown that a
normalized minimum value of the cost function is invariantdrdering and affine transformation of
the contours and can be used as a measure for the distanceebetine contours. A solution is also

proposed to the problem of finding a point correspondencedmat the contours.

Index Terms

Contour alignment, image registration, translation, trota scaling, affine invariance, least squares.

EDICS category: IMD-PATT, IMD-ANAL

|. PROBLEM FORMULATION
Consider two contourg; and %, in R?, specified byN corresponding points
plecricR? — qleswbcR?  i=1,... N

geeey

In what follows, we associate the contofs and %> with the given pointgpV, ..., ptV)) and

(q®,...,qNV), respectively, so that with some abuse of notation we let

Gi=[p® . pN| and  Gi=[q® . qM)].
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(A:=B andB =: A mean thatA is by definition equal tdB.) Let Zy be the operator that rotates

by 6 € [—m, ) rad (positive angle corresponding to anticlockwise rotgti i.e.,

%e(p) — [cos@ —sine] p

sin6 cosd
and let.e7, g s be the operator that rotates by an@le [—rm, ) rad, scales by factos > 0, and
translates by vectoa € R?, i.e.,

a,0.5(P) = %6(P) +a

Acting on the contoufs, 7 g s transforms each poirml!) of %1. The “size” of the contoufs;

is measured by the Frobenius nofi#||r := /3N, [ p]|3.

The considered least squares contour alignment problerefised as
minimize overacR? s>0, 8 [~ ) |61~ Faes(62)lF (1)

Because of inequality constraints @hs and nonlinear dependence of; g 5(-) on the opti-
mization variablesd ands, (1) is a constrained nonlinear least squares optimizgtrotlem.
Similar problems, specified in terms of implicit represéiotas of the contours, are approached
in the literature by local optimization methods, see, €2),,[4]. Local optimization methods,
however, require initial approximation and do not give gudee that a globally optimal solution
is computed. In addition, they may have convergence prabbemd be computationally expensive.

The main contribution of this paper, presented in Sectipis k (nonlinear) change of variables
that transforms problem (1) to a linear least squares pmobfeglobal minimum point of (1) is
therefore computable by standard numerical linear algetathods. Moreover, the computational
complexity of the resulting method is linear with respectiie number of point®N. These are
major advantages of the proposed contour alignment metrertioe ones of [2], [4]. In addition,
as a by product of the solution of problem (1), we define in i®adtl an affine invariant distance
measure between contours. (In comparison, a distance meedsfined in [4] is translation and
scale invariant and requires a data preprocessing step.)

The main disadvantage of using problem (1) in practical asepvision problems is that it
requires corresponding points from the contours to be 8pdciSuch points may not be available
in practice. In order to address this issue, in Section IV wsppse an extension of the method
for finding point correspondence. The extended method regjsiolution of a sequence of least
squares alignment problems and has quadratic computhtonaplexity in N. As shown in

Section V,0(N?) computationally complexity is still feasible for realistiegistration problems.
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I[l. MAIN RESULT

Theorem 1. Problem (1) is equivalent to the following least squares fgob

P10 Y gy |
a
o [o1d) o
L . S : a
MINIMIZ€ 5, 4, b, by)cR N I EEE : Nk 2)
1
R I U
_p(ZN)_ _0 1 q(zN) q(lN)_ - ,

where the relation between the parameteisbb in (2) and the parameters d,s in (1) is

by s cosf and 6| sin~*(by/4 /b2 + b3) )
by| |sinG s| /0% + b2 '

Proof: Consider a point| € R? and define the rotated point

given b

qr :%er(q)‘

Any angle 6, € (—m,m), 6 # 0 can be used, however, the change of variables is partigular

simple for 6, = +11/2. The key observation is that

b1
o7}

+a,

a0,5(0) = [q q] [

whereby,b, and 8, s are in a one-to-one relation that is derived by solving theaéiqn

[ ] by s cosf@ —sinB q 4
4G (o) sin@ cos6@
for by and by, givens and 6, and for 6 ands, givenb; andb,. In the case o, = 11/2, the

solution of (4), i.e., the relation between the original darahsformed parameters is (3).

In terms of the parametees, ay, by, by, (1) is reduced to a linear least squares problem

o’ | {10 aY oY _ |

pgl) 01 q(21) qgl) a

N . .o . ) a
mlnlmlze(al,az,bl,bz)G]RA' . I . . b . (5)

1

P |t o d” oV

] o1 e o™ T,

In the case oB; = /2, (5) simplifies to (2). n
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Example2. We illustrate Theorem 1 on the academic example in Fig. 1.“Cbeect” solution

is obvious by eye inspection and matches the computed aojJuthown in Fig. 2.

Fig. 1. Contours¢; and % with 6 corresponding pointp" — qi).

Fig. 2. Left: optimal alignment o> to ¢1; Right: optimal alignment ofs1 to %5%.

Example3. In order to illustrate the computational efficiency of themwsed contour alignment
algorithm, we show in Fig. 3 the computation time (for an iexpentation in MATLAB 7.3, run
on a PC with 2.13GHz CPU) as a function of the number of pdwt®r randomly generated

data. E.g., a problem with one million points is solved in atblealf a seconds.
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Fig. 3. Computation time for solving problem (2) with randomly generatdd.da

[11. DISTANCE BETWEEN CONTOURS

It is tempting to think of the minimum value of (1)

d(61,62):= min 61— Faps(62)||F
el

as a distance measure between the contebr@nd %1 modulo rotation, scaling, and translation.
In general, however,'(61,%>) # d (42,%1), so that dis not a proper distance measure. In
addition, d(¢1,%>) is not invariant to simultaneous affine transformation o tontoursé;
and %2, which is an undesirable feature in most computer visioniegumon.

In [4] a related distance measure (for implicitly representontours) is made translation
and scale invariant by centering and normalization of onéhefcontours. The centering and
normalization operations can be viewed as a preprocesgpg [Sor the least squares alignment

problem in this paper the following result holds.

Proposition 4. If the contours#; and %, are centered, i.e., withy :=col(1,...,1) € RN
11N = 621N =0, (6)

then d(%1,%>) is rotation-invariant, i.e.,

d/(cgl,%z) =d (%9(%1),%9(%2)), for any 6 € [—mm). (7)
If, in addition, 1 and %, are normalized, i.e., with%1||r := /3N, |Ip"]3,
[61l[F = [1C2llF = 1, (8)
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then
d’(%, ©2) = d’(%, ©1). (9)

Proof: The proof is given in the appendix.

Example5. Consider again the contoui and %> from Example 2. Now, we preprocess the
points pi) andq", so that the resulting contours, sdy . andé>, are centered. As a numerical

verification of (7), we have
d (€1c, 6o c) = d (Zo3(1c), Zo3(Coc)) =0.2626

Let, in addition, preprocess the poings) and g, so that the resulting contours, s& cn

and %> cn, are normalized, according to (6) and (8). As a numericalfication of (9), we have
d/(%l,cna G2.cn) = d/(%z,cn,%l,cn) =0.083

Our next result shows that a small modification df—shormalization by the size of the
centered contous;—is affine invariant and independent of the ordering of theteors (without
preprocessing). An alternative view of the result is tha gneprocessing step is built in the

definition of the new distance measure.

Definition 6 (2-norm distance betwee# and %> modulo affine transformation)

1
d(61,6>) = min C1— g 9(C 10
(61,%2) H(fl—l/N‘gllNlmh: acR?, s>0 I aos(@2)llr (10)

Oc[—m,m)

Note thatéy ¢ :=%1—1/ N%lNlﬂ is the centered contow’.
Theorem 7. d(%1,%>) is symmetric and affine invariant, i.e.,
d(€1, 62) = d(62,%1) = d(Ha0,5(%1), Ha0.s(%2)),
forallacR%, 0 c[—mm), and s>0. (11)

Proof: The proof of Theorem 7 uses the same technique as the one rusked proof of
Proposition 4 and is skipped.
Note that d(41,%>2) is equal to theabsolute sizeof the difference®; — <% ¢ 5(42), while

d(¢1,%62) is equal to the size of the differengelative to the size of¢yc. In particular, for

September 5, 2008 DRAFT



d'(%1,%2) # 0, it is not possible to decide how “far” &1 from %>, while 100x d(%1,%>) can

be interpreted as a “percentage difference”.

Example 8. For the contourséy and %> in Example 2, we have'(61,%>) = 0.2626 and
d(%>,%1) = 0.1265, while d%1,%2) = d(%2,%1) = 0.083, i.e., the difference o¥7 from %>
is approximately 8% of the size o} (or, alternatively, the difference o&> from ¢ is

approximately 8% of the size &f7).

V. FINDING POINT CORRESPONDENCE BETWEEN CONTOURS

A limitation of problem (1) for application in computer vis1 is the assumption that the
given pointsp() andq(") are corresponding points. Using standard segmentatianigims, it
is more realistic to obtaisequentiabut not necessarily corresponding points from the contours
Corresponding points can, however, be found from given sg@eoints from%i; and %2 by
solving N (the number of points representing the contours) leastreguaoblems and selecting
the minimum of theN least squares residuals norms. The procedure is based ftingskie
points on one of the contours, s&y, and computing the distance modulo rotation, scaling, and

translation from the shifted points 6f; to given points ofé>. Let

shiftc (|p® p@ ... pM]):=[pl plet) . pN) B p@ . pk).
Then the proposed procedure of finding corresponding pasnts

minimize overk=1,2,...,N d(shift(%1),%2). (12)

V. NUMERICAL EXAMPLE

In order to illustrate how (12) can be applied to find pointrespondence in a practical

problem, we take two images from the example in [2, page 1Rf, .

<gl (52 fQ{a,S,Q ((52)

Fig. 4. %7 is image 1 and an@? is image 10 from [2, page 139, Fig. 1]
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First, the edges of the binary images are detected usinggmadstection algorithm in order to
obtain a binary edge map. We used Canny’s edge detectiorithalgdb] for this purpose. Second,
an edge follower starting from an arbitrary point on the edgd finding the nearest neighbor
to the current point is applied to the binary edge map to s&ttplly store the coordinates of
the edge points. Finally, a cubic spline interpolation isdugo down/up sample the contours to
the same number of points (in this example, 300 points).

As a result of the segmentation step, we obtain contoursggand %>, which are specified
by 300 sequential but not necessarily corresponding poliiten, we solve (12) foz1 and %>
in order to find the optimal shift. The plot of(dhiﬁd(%l),%) as a function ok is shown in
the left plot of Fig. 5. It takes less thanl0seconds in MATLAB version 7.3, run on a PC
with 2.13GHz CPU to evaluate the cost function of (12) 300 firfiee., to solve 300 times least
squares problems for the computation of the distance wititssh=1,2,...,300).

The optimal shift is found to b&" = 283 with a corresponding cost function valuD49
(indicated in the left plot of Fig. 5 byX). The two given contours and the best matching contour
g 0+ s (€2) (corresponding to the shik = k*) are shown in the right plot of Fig. 5. Thés
indicate the first points on the contours.

cost function of (12)
o o o
> o o

o
w

o
(N

0 50 100 150 200 250 300
k

Fig. 5. Left: plot of dshift,(41),%>) as a function ok, X is the optimal point;
Right: €1 (circles, €> (dots), ande:- ¢- s (%2) (crosse} the X's are the first corresponding points

MATLAB files reproducing the results presented in the paperavailable from:

http://users. ecs.soton.ac. uk/imdist.tgz
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VI. CONCLUSIONS

We have shown that by using a nonlinear change of variables, ldast squares contour
alignment problem (1) is solved by the linear least squarethad. The implication of this
result is that the problem can be solved globally and effitieAs a by product of the alignment
problem solution, we obtain a distance measure betweemwanimodulo rotation, scaling, and
translation that is affine invariant and independent froe @hdering of the contours. We also
presented a solution to the problem of finding a point comadpnce between contours with
sequential points. The numerical example shows that theosexl method is an effective solution

to the image registration problem and the computationadrétgn is robust and efficient.

APPENDIX

Let veq-) be the column-wise matrix vectorization operator anthe Kronecker product, e.g.,

_p(ll)_ g
oSV s 01
vedé1)=| : | =p and 0 1 QIn=|: | =1
pg_N) HT/-/ 1
2
Ly 0 4

Similarly, letq :=ved%2), qr := Vec(Zn/2(%2)), andpy := vec(Zy/,(%1)). With this notation,

d'(61,%2) = mlan [I q qr}tzz\/pTMq(MqTMq)—quTp
——

XcR4
Mgq

and

d’(%z,%1)=£2]g€QHOI— [| D pr} XH2: \/qTMp(MgM )M q.
T
It is easy to see that

11y =0 <~ pTI =0.

Similarly, from €11y = 0, see (6), it follows thay"| = 0. From (6) and the definition ofy
andq, it follows that

p 1 =0 and g/l1=0.
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Finally, sincep, and g, are obtained fron¥7 and %>, respectively, by rotation byr/2rad, it

follows thatp, 'p =g, "q = 0. Using the above identities and (8), we have

NI, 0 0 0
MgMg=MgMp=|0 1 0| and Mgp=Mja= |q'p
0 01 0

This proves (9).

In order to prove (7), define

p'i=vec(Ze(61)),  Pri=Vvec(Zein2(¢1))

and similarlyq’ and g;. With this notation,

d (%e(1), e (62)) = g@th/_ [I q qd XHz - \/D’TM&(MQM@*M&TP'
N———
Mg
Now, using
d't=p'1=0, q'p=q'p,
(the second identity follows from the property of the multgption by a rotation matrix to

preserve the inner product) and the above identities, libvie that

NI, O 0 0
MgMg=Mg'Mg=| 0 [ql3 © and  Mgp=Mg'p'=|qTp
0 0 |ql3 0
This proves (7).
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