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Abstract

The contour alignment problem, considered in this paper, isto compute the minimal distance in

a least squares sense, between two explicitly represented contours, specified by corresponding points,

after arbitrary rotation, scaling, and translation of one of the contours. This is a constrained nonlinear

optimization problem with respect to the translation, rotation and scaling parameters, however, it is

transformed into an equivalent linear least squares problem by a nonlinear change of variables. Therefore,

a global solution of the contour alignment problem can be computed efficiently. It is shown that a

normalized minimum value of the cost function is invariant to ordering and affine transformation of

the contours and can be used as a measure for the distance between the contours. A solution is also

proposed to the problem of finding a point correspondence between the contours.

Index Terms

Contour alignment, image registration, translation, rotation, scaling, affine invariance, least squares.

EDICS category: IMD-PATT, IMD-ANAL

I. PROBLEM FORMULATION

Consider two contoursC1 andC2 in R
2, specified byN corresponding points

p(i) ∈ C1 ⊂ R
2 ↔ q(i) ∈ C2 ⊂ R

2, i = 1, . . . ,N.

In what follows, we associate the contoursC1 andC2 with the given points(p(1), . . . , p(N)) and

(q(1), . . . ,q(N)), respectively, so that with some abuse of notation we let

C1 :=
[

p(1) · · · p(N)
]

and C2 :=
[

q(1) · · · q(N)
]

.
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(A := B andB=: A mean thatA is by definition equal toB.) Let Rθ be the operator that rotates

by θ ∈ [−π,π) rad (positive angle corresponding to anticlockwise rotation), i.e.,

Rθ (p) :=
[

cosθ −sinθ
sinθ cosθ

]
p

and letAa,θ ,s be the operator that rotates by angleθ ∈ [−π,π) rad, scales by factors> 0, and

translates by vectora∈ R
2, i.e.,

Aa,θ ,s(p) = sRθ (p)+a.

Acting on the contourC1, Aa,θ ,s transforms each pointp(i) of C1. The “size” of the contourC1

is measured by the Frobenius norm‖C1‖F :=
√

∑N
i=1‖p(i)‖2

2.

The considered least squares contour alignment problem is defined as

minimize overa∈ R
2, s> 0, θ ∈ [−π,π) ‖C1−Aa,θ ,s(C2)‖F. (1)

Because of inequality constraints onθ ,s and nonlinear dependence ofAa,θ ,s(·) on the opti-

mization variablesθ and s, (1) is a constrained nonlinear least squares optimizationproblem.

Similar problems, specified in terms of implicit representations of the contours, are approached

in the literature by local optimization methods, see, e.g.,[2], [4]. Local optimization methods,

however, require initial approximation and do not give guarantee that a globally optimal solution

is computed. In addition, they may have convergence problems and be computationally expensive.

The main contribution of this paper, presented in Section II, is a (nonlinear) change of variables

that transforms problem (1) to a linear least squares problem. A global minimum point of (1) is

therefore computable by standard numerical linear algebramethods. Moreover, the computational

complexity of the resulting method is linear with respect tothe number of pointsN. These are

major advantages of the proposed contour alignment method over the ones of [2], [4]. In addition,

as a by product of the solution of problem (1), we define in Section III an affine invariant distance

measure between contours. (In comparison, a distance measure defined in [4] is translation and

scale invariant and requires a data preprocessing step.)

The main disadvantage of using problem (1) in practical computer vision problems is that it

requires corresponding points from the contours to be specified. Such points may not be available

in practice. In order to address this issue, in Section IV we propose an extension of the method

for finding point correspondence. The extended method requires solution of a sequence of least

squares alignment problems and has quadratic computational complexity in N. As shown in

Section V,O(N2) computationally complexity is still feasible for realistic registration problems.

September 5, 2008 DRAFT



3

II. M AIN RESULT

Theorem 1. Problem (1) is equivalent to the following least squares problem

minimize(a1,a2,b1,b2)∈R4
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, (2)

where the relation between the parameters b1,b2 in (2) and the parameters ofθ ,s in (1) is

given by 


b1

b2



 = s




cosθ

sinθ



 and




θ

s



 =




sin−1(b2/

√

b2
1 +b2

2)
√

b2
1 +b2

2



 . (3)

Proof: Consider a pointq∈ R
2 and define the rotated point

qr := Rθr(q).

Any angle θr ∈ (−π,π), θr 6= 0 can be used, however, the change of variables is particularly

simple forθr = ±π/2. The key observation is that

Aa,θ ,s(q) =
[

q qr

]




b1

b2



+a,

whereb1,b2 andθ ,s are in a one-to-one relation that is derived by solving the equation

[

q qr

]




b1

b2



 = s




cosθ −sinθ

sinθ cosθ



q (4)

for b1 and b2, given s and θ , and for θ and s, given b1 and b2. In the case ofθr = π/2, the

solution of (4), i.e., the relation between the original andtransformed parameters is (3).

In terms of the parametersa1, a2, b1, b2, (1) is reduced to a linear least squares problem

minimize(a1,a2,b1,b2)∈R4
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2

. (5)

In the case ofθr = π/2, (5) simplifies to (2).
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Example2. We illustrate Theorem 1 on the academic example in Fig. 1. The“correct” solution

is obvious by eye inspection and matches the computed solution, shown in Fig. 2.
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Fig. 1. ContoursC1 andC2 with 6 corresponding pointsp(i) ↔ q(i).
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Fig. 2. Left: optimal alignment ofC2 to C1; Right: optimal alignment ofC1 to C2.

Example3. In order to illustrate the computational efficiency of the proposed contour alignment

algorithm, we show in Fig. 3 the computation time (for an implementation in MATLAB 7.3, run

on a PC with 2.13GHz CPU) as a function of the number of pointsN for randomly generated

data. E.g., a problem with one million points is solved in about half a seconds.
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Fig. 3. Computation time for solving problem (2) with randomly generated data.

III. D ISTANCE BETWEEN CONTOURS

It is tempting to think of the minimum value of (1)

d′(C1,C2) := min
a∈R

2, s>0
θ∈[−π,π)

‖C1−Aa,θ ,s(C2)‖F

as a distance measure between the contoursC2 andC1 modulo rotation, scaling, and translation.

In general, however, d′(C1,C2) 6= d′(C2,C1), so that d′ is not a proper distance measure. In

addition, d′(C1,C2) is not invariant to simultaneous affine transformation of the contoursC1

andC2, which is an undesirable feature in most computer vision application.

In [4] a related distance measure (for implicitly represented contours) is made translation

and scale invariant by centering and normalization of one ofthe contours. The centering and

normalization operations can be viewed as a preprocessing step. For the least squares alignment

problem in this paper the following result holds.

Proposition 4. If the contoursC1 and C2 are centered, i.e., with1N := col(1, . . . ,1) ∈ R
N

C11N = C21N = 0, (6)

then d′(C1,C2) is rotation-invariant, i.e.,

d′(C1,C2) = d′
(
Rθ (C1),Rθ (C2)

)
, for any θ ∈ [−π,π). (7)

If, in addition, C1 and C2 are normalized, i.e., with‖C1‖F :=
√

∑N
i=1‖p(i)‖2

2,

‖C1‖F = ‖C2‖F = 1, (8)
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then

d′(C1,C2) = d′(C2,C1). (9)

Proof: The proof is given in the appendix.

Example5. Consider again the contoursC1 and C2 from Example 2. Now, we preprocess the

pointsp(i) andq(i), so that the resulting contours, sayC1,c andC2,c, are centered. As a numerical

verification of (7), we have

d′(C1,c,C2,c) = d′
(
R0.3(C1,c),R0.3(C2,c)

)
= 0.2626.

Let, in addition, preprocess the pointsp(i) and q(i), so that the resulting contours, sayC1,cn

andC2,cn, are normalized, according to (6) and (8). As a numerical verification of (9), we have

d′(C1,cn,C2,cn) = d′(C2,cn,C1,cn) = 0.083.

Our next result shows that a small modification of d′—normalization by the size of the

centered contourC1—is affine invariant and independent of the ordering of the contours (without

preprocessing). An alternative view of the result is that the preprocessing step is built in the

definition of the new distance measure.

Definition 6 (2-norm distance betweenC1 andC2 modulo affine transformation).

d(C1,C2) :=
1

‖C1−1/NC11N1⊤N‖F
min

a∈R
2, s>0

θ∈[−π,π)

‖C1−Aa,θ ,s(C2)‖F (10)

Note thatC1,c := C1−1/NC11N1⊤N is the centered contourC .

Theorem 7. d(C1,C2) is symmetric and affine invariant, i.e.,

d(C1,C2) = d(C2,C1) = d
(
Aa,θ ,s(C1),Aa,θ ,s(C2)

)
,

for all a ∈ R
2, θ ∈ [−π,π), and s> 0. (11)

Proof: The proof of Theorem 7 uses the same technique as the one used in the proof of

Proposition 4 and is skipped.

Note that d′(C1,C2) is equal to theabsolute sizeof the differenceC1−Aa,θ ,s(C2), while

d(C1,C2) is equal to the size of the differencerelative to the size ofC1,c. In particular, for
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d′(C1,C2) 6= 0, it is not possible to decide how “far” isC1 from C2, while 100×d(C1,C2) can

be interpreted as a “percentage difference”.

Example 8. For the contoursC1 and C2 in Example 2, we have d′(C1,C2) = 0.2626 and

d(C2,C1) = 0.1265, while d(C1,C2) = d(C2,C1) = 0.083, i.e., the difference ofC1 from C2

is approximately 8% of the size ofC1,c (or, alternatively, the difference ofC2 from C1 is

approximately 8% of the size ofC2,c).

IV. F INDING POINT CORRESPONDENCE BETWEEN CONTOURS

A limitation of problem (1) for application in computer vision is the assumption that the

given pointsp(i) and q(i) are corresponding points. Using standard segmentation algorithms, it

is more realistic to obtainsequentialbut not necessarily corresponding points from the contours.

Corresponding points can, however, be found from given sequential points fromC1 andC2 by

solving N (the number of points representing the contours) least squares problems and selecting

the minimum of theN least squares residuals norms. The procedure is based on shifting the

points on one of the contours, sayC1, and computing the distance modulo rotation, scaling, and

translation from the shifted points ofC1 to given points ofC2. Let

shiftk
([

p(1) p(2) · · · p(N)
])

:=
[

p(k) p(k+1) · · · p(N) p(1) p(2) · · · p(k−1)
]

.

Then the proposed procedure of finding corresponding pointsis

minimize overk = 1,2, . . . ,N d
(

shiftk(C1),C2
)
. (12)

V. NUMERICAL EXAMPLE

In order to illustrate how (12) can be applied to find point correspondence in a practical

problem, we take two images from the example in [2, page 139, Fig. 1].

C1 C2 Aa,s,θ (C2)

Fig. 4. C1 is image 1 and andC2 is image 10 from [2, page 139, Fig. 1]
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First, the edges of the binary images are detected using an edge detection algorithm in order to

obtain a binary edge map. We used Canny’s edge detection algorithm [5] for this purpose. Second,

an edge follower starting from an arbitrary point on the edgeand finding the nearest neighbor

to the current point is applied to the binary edge map to sequentially store the coordinates of

the edge points. Finally, a cubic spline interpolation is used to down/up sample the contours to

the same number of points (in this example, 300 points).

As a result of the segmentation step, we obtain contours, sayC1 andC2, which are specified

by 300 sequential but not necessarily corresponding points. Then, we solve (12) forC1 andC2

in order to find the optimal shift. The plot of d
(

shiftd(C1),C2
)

as a function ofk is shown in

the left plot of Fig. 5. It takes less than 0.1 seconds in MATLAB version 7.3, run on a PC

with 2.13GHz CPU to evaluate the cost function of (12) 300 times (i.e., to solve 300 times least

squares problems for the computation of the distance with shifts k = 1,2, . . . ,300).

The optimal shift is found to bek∗ = 283 with a corresponding cost function value 0.2149

(indicated in the left plot of Fig. 5 byX). The two given contours and the best matching contour

Aa∗,θ∗,s∗(C2) (corresponding to the shiftk = k∗) are shown in the right plot of Fig. 5. TheXs

indicate the first points on the contours.

0 50 100 150 200 250 300
0.2

0.3

0.4

0.5

0.6

0.7

k

co
st

fu
nc

tio
n

of
(1

2)

Fig. 5. Left: plot of d
(

shiftk(C1),C2
)

as a function ofk, X is the optimal point;

Right: C1 (circles), C2 (dots), andAa∗,θ ∗,s∗(C2) (crosses); the X’s are the first corresponding points

MATLAB files reproducing the results presented in the paper are available from:

http://users.ecs.soton.ac.uk/im/dist.tgz
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VI. CONCLUSIONS

We have shown that by using a nonlinear change of variables, the least squares contour

alignment problem (1) is solved by the linear least squares method. The implication of this

result is that the problem can be solved globally and efficiently. As a by product of the alignment

problem solution, we obtain a distance measure between contours modulo rotation, scaling, and

translation that is affine invariant and independent from the ordering of the contours. We also

presented a solution to the problem of finding a point correspondence between contours with

sequential points. The numerical example shows that the proposed method is an effective solution

to the image registration problem and the computational algorithm is robust and efficient.

APPENDIX

Let vec(·) be the column-wise matrix vectorization operator and⊗ the Kronecker product, e.g.,

vec(C1) =
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1 0

0 1





︸ ︷︷ ︸

I2
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1 0

0 1
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1 0

0 1














=: I .

Similarly, let q := vec(C2), qr := vec
(
Rπ/2(C2)

)
, andpr := vec

(
Rπ/2(C1)

)
. With this notation,

d′(C1,C2) = min
x∈R4

∥
∥
∥p−

[

I q q r

]

︸ ︷︷ ︸

Mq

x
∥
∥
∥

2
=

√

p⊤Mq(M⊤
q Mq)−1M⊤

q p

and

d′(C2,C1) = min
x∈R4

∥
∥
∥q−

[

I p p r

]

︸ ︷︷ ︸

Mp

x
∥
∥
∥

2
=

√

q⊤Mp(M⊤
p Mp)−1M⊤

p q.

It is easy to see that

C11N = 0 ⇐⇒ p⊤I = 0.

Similarly, from C11N = 0, see (6), it follows thatq⊤I = 0. From (6) and the definition ofpr

andqr, it follows that

p⊤
r I = 0 and q⊤

r I = 0.
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Finally, sincepr and qr are obtained fromC1 and C2, respectively, by rotation byπ/2 rad, it

follows thatpr
⊤p = qr

⊤q = 0. Using the above identities and (8), we have

M⊤
q Mq = M⊤

p Mp =








NI2 0 0

0 1 0

0 0 1








and M⊤
q p = M⊤

p q =








0

q⊤p

0








.

This proves (9).

In order to prove (7), define

p′ := vec
(
Rθ (C1)

)
, p′

r := vec
(
Rθ+π/2(C1)

)

and similarlyq′ andq′
r. With this notation,

d′
(
Rθ (C1),Rθ (C2)

)
= min

x∈R4

∥
∥
∥p′−

[

I q ′ q′
r

]

︸ ︷︷ ︸

M′
q

x
∥
∥
∥

2
=

√

p′⊤M′
q(M′⊤

q M′
q)

−1M′⊤
q p.

Now, using

q′⊤I = p′⊤I = 0, q⊤p = q′⊤p′,

(the second identity follows from the property of the multiplication by a rotation matrix to

preserve the inner product) and the above identities, it follows that

M⊤
q Mq = M′⊤

q Mq =








NI2 0 0

0 ‖q‖2
2 0

0 0 ‖q‖2
2








and M⊤
q p = M′⊤

q p′ =








0

q⊤p

0








.

This proves (7).
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