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Abstract. In many systems, agents must rely on their peers to achieve their goals. How-
ever, when trusted to perform an action, an agent may betray that trust by not behav-
ing as required. Agents must therefore estimate the behaviour of their peers, so that they
may identify reliable interaction partners. To this end, we present a Bayesian trust model
(HABIT) for assessing trust based on direct experience and (potentially unreliable) rep-
utation. Although existing approaches claim to achieve this, most rely on heuristics with
little theoretical foundation. In contrast, HABIT is based on principled statistical tech-
niques; can be used with any representation of behaviour; and can assess trust based on
observed similarities between groups of agents. In this paper, we describe the theoretical
aspects of the model and present experimental results in which HABIT was shown to be
up to twice as accurate at predicting trustee performance as an existing state-of-the-art
trust model.

1 Introduction
Trust constitutes an important facet of multi-agent systems research since it provides a form
of distributed social control within highly dynamic and open systems whereby agents form
opinions about others based on their own past interactions, as well as from the reports of other
agents (1). Now, in many dynamic open systems, such as e-marketplaces, the Grid, and peer-
to-peer networks, agents have to interact with one another to achieve their goals—for example
by purchasing services or information from each other. Here, agents may be self-interested, and
when trusted to perform an action for (or provide information to) another, may betray that trust
by not performing the action as required. In addition, due to the size of such systems, agents
will often have to interact with agents with which they have little or no past experience. There
is thus a need for models of trust that will ensure good interactions among software agents in
large scale open systems.

To this end, a number of trust models and strategies have been proposed (see (1; 2) for a
full review) to deal with distinct aspects of the interactions between agents [e.g. to model the
context of interaction (3), to explore the trustworthiness of unknown agents (4), and to deal
with innaccurate information (5; 6)]. However, existing approaches suffer from at least one of
the following three limitations. First, they may rely on heuristics that lack a strong theoretical
foundation, which makes it difficult to characterise how they should perform under different
conditions or to define what their optimal performance should be. Second, they may only be able
to make predictions about an agent if its behaviour is represented in a specific way. For example,
trust models [including (5) and (6)] typically require an agent’s behaviour to be represented by
a small discrete set of labels, such as {cooperate,defect} or {good,medium,bad}.



Third, they may only make predictions about an agent based on previous observations of its
own behaviour. In general, these observations may be made directly by the truster, or they
may be reports of third party experience, commonly known as the trustee’s reputation. The
problem with this is that a truster can only assess a trustee if it has access to a sufficient number
of observations of the trustee’s past behaviour. However, when a trustee enters a system for
the first time, such information may not be available because it has not yet interacted with any
other agent. This is a problem, particularly in systems susceptible to whitewashing (7), in which
agents can adopt a new identity to avoid a previously obtained bad reputation.

In this paper, we address these limitations by introducing the Hierarchical And Bayesian
Inferred Trust Model (HABIT), which applies Bayesian analysis to assess trustee behaviour
without the need for heuristics. Unlike previous (statistically principled) trust models, HABIT
does not restrict how agent behaviour is represented, and so can be easily adapted to make
predictions about any number of discrete and continuous aspects of behaviour. For example, a
car insurance policy might be judged on price, represented by a continuous real number, and
whether or not it offers roadside repair, represented by a discrete (binary) variable. Moreover,
HABIT provides a pragmatic solution to the whitewashing problem by allowing a truster to
assess agents for which there is little or no previous experience. To do so, it searches for cor-
relations in the behaviour of groups of known agents, and uses this to predict the behaviour of
other agents with similar attributes. Earlier solutions to this problem, such as proposed by (7),
typically suggest treating unknown agents as completely unreliable. However, this unfairly pe-
nalises potentially trustworthy agents that are yet to gain a good reputation. In contrast, HABIT
can learn the reliability of newcomers in general, and so can adapt its decisions to account for
the reliability of newcomers found in practice.

In the following sections, we elaborate on these claims and detail the theoretical basis for
HABIT. Specifically, the rest of this paper is structured as follows: Section 2 introduces the
basic notation used throughout the paper; Section 3 presents the HABIT model; Section 4 dis-
cusses how this general model can be applied to different application domains; Section 5 details
a Monte Carlo sampling algorithm, which can be used to perform practical inference in a large
number of possible instances of the HABIT model; Section 6 presents experimental results in
which HABIT was shown to be up to twice as accurate at predicting trustee performance as an
existing state-of-the-art trust model; and finally, Section 7 summarises the main properties of
the model and discusses future work.

2 Basic Notation
Before introducing our trust model, it is necessary to define some basic notation. Specifically,
in a MAS consisting of n agents, we denote the set of all agents as {1, 2, ..., n} = A. Over
time, interactions take place between distinct pairs of agents from A, during which one of these
agents is obliged to provide a service to the other. In each case, the agent receiving the service
is the truster, denoted tr, and the agent providing the service is the trustee, denoted te.

With an aim to assess trustee performance, a truster records the outcome of each interaction
as it perceives it, which is denoted as Otr→te. This is the outcome of interacting with te from
the perspective of tr. From this interpretation, bilateral interactions in which both parties have
obligations to each other can be seen as two separate interactions in which each agent plays the
role of truster and trustee in turn. If such an event occurs between agents 1 and 2, then this will
result in two recorded outcomes, denoted O1→2 and O2→1. However, it is important to note



that O1→2 and O2→1 are not necessarily equal, as each agent may represent the outcome only
in terms that are relevant to it. For example, if 1 sells high quality apples to 2, for which 2 does
not pay, then from 2’s perspective the interaction results in the possession of some high quality
apples, while from 1’s perspective, goods are lost without payment.

With this in mind, it is useful to define a number of outcome instances, and sets involving
them. First, we define the set of all possible outcomes in a particular context, C, as OC . Here,
a context specifies both the type of interaction from which outcomes are derived and the way
it is recorded. For instance, in the example given above, we could have O2→1 ∈ Oapples and
O1→2 ∈ Omoney , where each context is defined in terms of the services received by the respec-
tive truster. Building on this, we divide time into discrete steps starting from time 0, and denote
the outcome of an interaction that occurred between tr and te at time t as Ot

tr→te. In general,
we wish to allow any number of interactions to occur between any agents at any time. However,
to simplify our discussion, we will assume that at most one interaction can occur between a
given truster and trustee in a given time step, and that each interaction is complete by the end
of the time step in which it is said to occur. Furthermore, we denote the current time as t′, and
the set of all outcomes between tr and te from time t to t + r as Ot:t+r

tr→te. Thus, the history of
all interactions between tr and te is given by O0:t′

tr→te.

3 The HABIT Model
Now that we have a formal language for discussing interactions between agents, we can inves-
tigate how, in general terms, a truster can assess the value of interacting with a trustee, so that
it may choose between a number of competing trustees, or perhaps choose a different course
of action altogether. Intuitively, a truster’s aim is to choose actions that are likely to result in
outcomes that it prefers, such as receiving a high quality of service from a reliable service
provider. To achieve this in a principled way, we turn to decision theory (8), which states that a
rational agent should always act to maximise its expected utility (EU). Assuming that Otr→te

has a continuous domain, this is calculated as follows:

EU =
∫
OC

U(Otr→te)p(Otr→te) dOtr→te (1)

Here, p(Otr→te) is the probability distribution of Otr→te, and U : OC → R is a utility func-
tion — for which higher values indicate more preferred outcomes. Although the utility func-
tion depends entirely on the truster’s domain specific goals and preferences, the calculation of
p(Otr→te) can be addressed in more general terms. To achieve this, HABIT comprises two
types of component: a reputation model, which accounts for group behaviour and reputation
by representing the relationships that exist between the behaviour and observations of differ-
ent agents; and multiple confidence models, one for each truster-trustee pair, which account
for direct experience by representing how a trustee’s behaviour is perceived by each truster.
Together, these two component types form a two-layer hierarchy, in which the confidence mod-
els form the lower layer, which deals with individual agent behaviour, and the reputation model
forms the higher layer, which models the connections between the behaviour of different agents
(trustees and observers). These components form a Bayesian network, as illustrated in Figure 1,
comprising the random variables described below.

More specifically, for each truster, tr, and trustee, te, the role of the confidence model is
to represent the probability distribution, p(Otr→te|θtr→te), of all observations Otr→te, where
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Fig. 1. Bayesian Network Inference with Correlated Behaviour Distributions

θtr→te is a parameter vector3 that specifies the distribution. From tr’s perspective, this param-
eter vector is of primary interest because it characterises how te is likely to behave during an
interaction and, consequently, what utility tr can expect to receive. For example, suppose that
te is a search engine from which tr requests information, and Otr→te is a real number speci-
fying the time taken to respond to a request. If, over multiple requests, Otr→te is assumed to
follow a Gaussian distribution, then θtr→te could comprise the mean, µ, and variance, σ2, of the
distribution. Small values of µ would imply that, on average, te is quick to respond to a request,
while small values of σ2 would imply that it does so consistently. Similarly, large values for µ
and σ2 would result in long average response times that vary greatly from order to order. The
effect of these values on an agent’s expected utility would depend on the precise definition of
its utility function. Intuitively, however, a truster is likely to derive greater expected utility by
interacting with a trustee that delivers low mean and variance than by interacting with an agent
with high mean and variance.

Moreover, it is not necessary that every truster represents trustee behaviour using the same
parameter model. For instance, while one truster may represent behaviour only in terms of re-
sponse time (which would be reasonable if its utility function only depended on this factor),
another truster may also have preferences involving the number of relevant hits. In this case,
the joint distribution of these two aspects of behaviour would need to modelled, possibly us-
ing a multivariate Gaussian distribution, or some more appropriate combination of conditional
distributions. Unfortunately, an agent is unlikely to know the true values of these parameters in
practice, and so must perform inference given the evidence available. From a Bayesian perspec-
tive, this is achieved by treating the parameters themselves as random variables, and modelling
their distributions based on an agent’s beliefs and observations. In the case of a truster assess-
ing a trustee in a single context using only its direct experience with the trustee in that context,
this process is straightforward and can be achieved using standard techniques (9). The diffi-

3 In this paper, we define HABIT in terms of parameter vectors, rather than sets, so that all equations
involving parameters have their intended interpretation according to linear algebra. However, in some
cases, we also use set notation to define new parameter vectors in terms of others.



cultly arises when a truster has little or no direct experience of a trustee’s behaviour in a given
context, and so must rely on observations of other agents, or third party observations.

In these cases, it is difficult to determine how much (if any) information such experience
can give about an agent. For example, third party observations of a search engine may be unre-
liable if the source of those observations is lying, if it assesses trustee behaviour according to
different criteria, or if the search engine delivers varying quality of service to different users.
Likewise, there is no guarantee that any search engines will offer similar quality of service, and
so an agent’s experience of one service may not provide useful information about the likely
behaviour of another. Nevertheless, some search engines may provide a similar quality of ser-
vice (for example, if they employ similar technology) and most probably offer similar quality
of service to different users. The key challenge — and the main contribution of this paper —
is to determine precisely what these relationships are, so that an agent can make valid gen-
eralisations to assess an agent based on all available observations from different (but related)
sources and contexts. This is achieved automatically, based on the data observed in any given
context, by applying the reputation model illustrated in Figure 1. Here, each θ·→j is a vector
of all parameters used to model trustee j by all known observers. That is, θ·→j is formed by
concatenating all parameter vectors, θi→j , where i ∈ A (see Table 1). In Figure 1, for example,
θ·→te1 therefore contains θtr1→te1 and θtr2→te1 , hence they are dependent as represented by
the connecting vertices. As described above, the figure also shows that, for each i and j, an
interaction outcome Oi→j depends on the corresponding parameter vector, θi→j . However, we
now introduce an additional vector, φ, that specifies the joint distribution of all parameter vec-
tors for each pair of agents, where each θ·→j is independent and identically distributed (i.i.d.)
according to φ. Intuitively, this means that φ characterises the relationship that exists between
the distributions of observations made by different sources of different trustees. This allows a
truster to perform inference about a specific trustee, given observations of any trustee from any
source (direct or third party). However, just as an agent is unlikely to know the precise value
of any of the parameter vectors, θi→j , it is also unlikely to know the value of φ. Nevertheless,
it is possible for a truster to learn about φ using Bayesian techniques, just as it can learn about
θtr→te through repeated interaction with te. Moreover, it can then apply its knowledge of φ to
make more informed inferences about te based on all available evidence.

Vector Set Definition
θ {θi→j |i ∈ A, j ∈ A}
θi→· {θi→j |j ∈ A}
θ·→j {θi→j |i ∈ A}
Φ θ ∪ {φ}
Φ·→j θ·→j ∪ {φ}

Table 1. Parameter vectors defined in terms of the sets of parameters they comprise.

4 Applying the HABIT Model to Specific Domains
So far, we have discussed the theoretical aspects of HABIT in general terms, independent of any
particular scenario. However, since each application places its own unique requirements on how
trust should be modelled, the parameters and probability distributions that define HABIT must
be instantiated to best suit the target scenario. Therefore, in this section, we outline the steps
required to apply HABIT to a given domain, and discuss the issues that should be considered



when fulfilling these steps and how they can be addressed. As described in the previous section,
the aim of HABIT is to enable a truster to estimate the expected utility of interacting with a
trustee in a specific context (see Equation 1). To achieve this, a truster can make use of its own
personal observations O0:t′

tr→te, and all observations O0:t′

i→j reported by an arbitrary observer, i,
about an arbitrary trustee, j. More precisely, if R is the set of all pairs (i, j), including (tr, te),
such that O0:t′

i→j is known to tr, then the goal is to estimate:

EU |E =
∫
OC

U(Otr→te)p(Otr→te|E) dOtr→te (2)

where E =
⋃

(i,j)∈R O0:t′

i→j . Here, the predictive distribution, p(Otr→te|E), is defined in terms
of the hidden parameter variables, Φ, and their relationship to the observed outcomes. However,
precisely how these parameters are defined and how they affect the observed outcomes is do-
main dependent, and so is not stipulated by the generic HABIT model. Instead, these must be
instantiated to suit the specific requirements of the target domain.

In particular, these requirements may comprise constraints on the computational resources
available to perform inference with the model, the level of accuracy required in estimating ex-
pected utilities and the aspects of trustee behaviour that affect a truster’s utility. In any case,
to fully instantiate the model, four sets of probability distributions must be defined along with
their associated domains, probability density functions (p.d.f.s) and parameters: (1) for each
confidence model (i.e. each truster-trustee pair), the conditional distribution of interaction out-
comes, Oi→j , given a chosen parameter vector, θi→j ; (2) the prior distribution (that is, without
knowledge of any observed outcomes) of each parameter vector θi→j ; (3) the conditional dis-
tribution of all joint parameter vectors, θ·→j , given the hyperparameter vector φ; and (4) the
prior distribution of the hyperparameter vector, φ. Although having this number of unspecified
components may seems like a weakness of the model, this is the minimum required to al-
low HABIT the flexibility to be adapted to any domain in an unconstrained way. Furthermore,
choosing these distributions is a straightforward matter, which can be achieved by matching the
specific requirements of an application to the well known properties of standard distributions.
Moreover, from these four sets of distributions, all other necessary conditional and marginal
distributions can be derived by applying the standard rules of Bayesian analysis. In particular,
the following aspects should be considered when instantiating the distributions above:

Model Sophistication and Time Complexity: HABIT can be instantiated by combining a num-
ber of existing parameter models, ranging from discrete distributions (which are efficient,
but can only make simple predictions), to infinite mixture models (10) (which require more
computational resources, but can make more sophisticated predictions). Thus, the choice
of model depends on the requirements and resources of the target domain.

Dynamic Behaviour: In most situations, it is reasonable to expect agent behaviour to change
over time. In HABIT this can be modelled by instantiating the confidence model parame-
ters with any off-the-shelf model of time-dependent phenomena, including hidden Markov
models (11) and Gaussian processes (12). The reputation model need not be affected be-
cause it only needs to refer to current agent behaviour.

Whitewashers and Group Behaviour: HABIT’s ability to assess group behaviour can be ap-
plied in various ways. For example, it can maintain a single reputation model for all agents
it encounters, thereby enabling predictions about relatively unknown agents by generalising
from the observed behaviour of all other trustees. However, a more significant possibility



Algorithm 1 General Monte Carlo Algorithm for Expected Utility Estimation.
Require: n > 0 {Larger values of n result in more accurate expected utility estimates.}
1: EU ⇐ 0
2: for k = 1 to n do
3: for all (i, j) ∈ (θ/θtr→te)× (θ/θtr→te) do
4: θi→j ⇐ sample from p(θi→j |O0:t′

i→j)
5: end for
6: φ ⇐ sample from p(φ|θ/θtr→te)

7: θtr→te ⇐ sample from p(θtr→te|θ·→te/θtr→te, φ, O0:t′
tr→te)

8: Otr→te ⇐ sample from p(Otr→te|θtr→te)
9: EU ⇐ EU + U(Otr→te)/n

10: end for{EU is now an estimate of tr’s expected utility for interacting with te.}

is to first cluster agents into non-overlapping groups and maintain a separate reputation
model for each group. For example, to deal with whitewashing, agents can be grouped
based on the length of time they have been in a system. Thus, if whitewashing is an issue,
groups containing new agents will be less reliable, and so could be treated appropriately.

5 Performing Inference with the HABIT Model
As with most nontrivial Bayesian models, performing all inference analytically with HABIT is
unfeasible in general.4 Instead, tractable algorithms must be sought that can approximate the
optimal Bayesian solution within a reasonable amount of time. In this section, we propose one
such algorithm that, through the application of Monte Carlo Sampling, can be applied to any
instance of the general model. In line with the previous section, the aim of this algorithm is to
estimate the expected utility for interacting with a trustee, given a truster’s own personal obser-
vations and reported reputation (Equation 2). This is usually intractable to evaluate analytically
because the calculation of the predictive distribution, p(Otr→te|E), involves integration over all
the parameters in the model. Despite this, it is typically possible to draw a set of n samples,
{O1, . . . , On}, from the predictive distribution, such that EU |E ≈

∑n
i=1 U(Oi) with the ac-

curacy of the estimate increasing as n becomes large (13). To achieve this, we take advantage
of the conditional independence relations in HABIT to decompose the task of sampling from
p(Otr→te|E) into a number of simpler sampling problems. This is achieved in three steps. First,
from the standard properties of random variables, we know that sampling from p(Otr→te|E) is
equivalent to sampling from the joint distribution p(Otr→te, Φ|E) (see Table 1); the generated
values for Φ are simply discarded because they are not required. Second, we express this joint
distribution in terms of simpler conditional distributions as follows:

p(Otr→te, Φ|E) = p(Otr→te|Φ, E)p(Φ|E) (3)

= p(Otr→te|θtr→te)p(θtr→te|Φ·→te/θtr→te, O
0:t′

tr→te)p(φ|θ/θtr→te)p(θ/θtr→te|E)

= p(Otr→te|θtr→te)p(θtr→te|Φ·→te/θtr→te, O
0:t′

tr→te)p(φ|θ/θtr→te)
∏

θi→j∈
θ/θtr→te

p(θi→j |O0:t′

i→j)

4 However, under certain circumstances, analytical solutions for this model are possible; for example,
see Section 6.



Finally, according to standard theory, sampling from the full joint distribution can be achieved
by sampling from each of the component distributions shown in Equation 3, and using the
generated samples from the rightmost p.d.f.s in the equation to satisfy the conditional variables
for the p.d.f.s to the left. This process is summarised in Algorithm 1.5 At this level of detail,
the algorithm is completely general, and can be applied (without modification) to any choice
of parameter models that allows sampling from the distributions referred to in Algorithm 1. Of
these, p(Otr→te|θtr→te) can be chosen directly to suit the target application,6 while the other
three distributions should be derived according to Bayes rule, with suitable prior distributions
chosen from φ and each θi→j . Ideally, each of these distributions will have forms that allow
independent sampling. That is, it is desirable to draw samples from these distributions that are
independent of each other and identically distributed according to the desired distribution. If
this is possible, the number of samples required to accurately estimate the expected utility can
be very low7, and it is straightforward to calculate the estimation error (w.r.t. the utility) using
the standard deviation of the generated samples.

In most cases, this can be achieved by choosing conjugate prior distributions, which lead
to simple analytical formulas for the posterior parameter distributions given the evidence (14).
However, efficient i.i.d. sampling is unlikely to be possible for p(θtr→te|Φ·→te/θtr→te, O

0:t′

tr→te)
because, apart from the trivial case where O0:t′

tr→te = ∅ (i.e. a truster has no direct experience
with a trustee), it is difficult to ensure that p(θtr→te|Φ·→te/θtr→te) is conjugate with respect
to O0:t′

tr→te. In such cases, there are two existing types of solution to choose from: (1) Markov
Chain Monte Carlo MCMC methods, which are a class of algorithms for generating a sequence
of samples, where each sample depends on the previous sample in the sequence (13); and varia-
tional methods, which are used to estimate complicated probability distributions using one of a
number of simpler types of distribution (13). Where they exist, both types of solution can read-
ily be integrated into our sampling algorithm without modification. In the case of variational
methods, these can be used to approximate the problematic distribution(s), and subsequently,
the approximate distributions can be used to generate i.i.d. samples in the normal way. For
MCMC methods, the situation is similar; for example, suppose that an MCMC algorithm is
used to simulate p(φ|θ/θtr→te) by generating a sequence of values labelled φ1, . . . , φk, such
that, for each i > 1, φi ∼ p(φi|θ/θtr→te, φi−1). It is perfectly fine to use these in Algorithm 1,
in place of independent samples from p(φ|θ/θtr→te), with each φi being generated using dif-
ferent samples for θ/θtr→te: convergence will still be guaranteed, albeit more slowly in terms
of the total number of samples (13).

6 Empirical Evaluation
In principle, the innumerable ways in which HABIT can be instantiated allow for a wide range
of properties to suit a variety of different applications. As such, we do not advocate any spe-
cific instantiation, but it is nevertheless useful to evaluate the general properties of HABIT by
analysing its empirical performance in some specific cases. To this end, we now present exper-
imental results that measure the performance of three instances of the generic HABIT model,

5 In these equations, the symbol ‘/’ is the set difference operator. Thus, x/y should be interpreted as a
parameter vector consisting of all elements in x except for those in y.

6 For example, if Otr→te is the number of relevant hits returned by a search engine, then
p(Otr→te|θtr→te) could be modelled as a Poisson distribution (14) with unknown mean θtr→te = λ.

7 Typically, 30 to 100 (i.i.d.) samples will be sufficient for most applications (13).



labelled DP, GD-Improper, and GD-Conjugate. For evaluation purposes, all three adopt a dis-
crete representation of trustee behaviour, which enables objective comparison between HABIT
and existing trust models that are limited to such representations. Most notably, these include
BLADE (6), which we use here as a benchmark because it is representative of the state-of-the-
art among statistically principled trust models.

With regard to direct experience, all three instances model trust in the same way, by instan-
tiating their confidence models such that each Otr→te ∈ {Oi}k

i=1 is a discrete random variable,
where p(Oi) = θ

(i)
tr→te, θtr→te = 〈θ(1)

tr→te, . . . , θ
k
tr→te〉, and θtr→te is assigned a conjugate

Dirichlet prior. In this respect, all three instances are not only equivalent to each other, but are
also equivalent to many existing models of trust, including BLADE. Thus, in the special case
where a truster has only its direct experience with which to assess a trustee, its beliefs will be
identical if it uses any of these existing models, or one of the instances of HABIT described
here. However, where the three instances differ (both from each other and existing models of
trust) is in how they achieve the more complex task of assessing trust based on reputation and
group behaviour. For this purpose, each instance uses a different reputation model:

– In DP, reputation is modelled by assuming that, for each trustee, θ·→te is drawn from a
Dirichlet Process (15) (which plays the role of φ). Significantly, this allows the predictive
distribution (see Section 4) to be calculated efficiently and analytically without the need for
Monte Carlo sampling. However, using this approach, if the number of observations of each
trustee is high, relative to the number of encountered trustees, then a trustee’s reputation
may have little impact on inference, even if it provides useful information.

– In GD-Improper, reputation is modelled by assuming that, for each trustee, θ·→te is drawn
from a multivariate Gaussian distribution with unknown mean and covariance represented
by φ, which in turn is assigned an improper prior distribution.

– GD-Conjugate is equivalent to GD-Improper, except that it places a conjugate prior dis-
tribution on φ, representing the prior belief that reputation provides no useful information
about a trustee’s behaviour.

In the following subsections, we outline the methodology used in our experiments (see Sec-
tion 6.1) and discuss the performance of the models when used to perform inference based
on group behaviour (see Section 6.2) and reputation (see Sections 6.3 and 6.4). In all of these
experiments, the effect of direct experience and issues such as dynamic behaviour are not ad-
dressed because these are largely determined by the choice of parameter models. For most
parameter models, these properties are already well understood, so we choose to focus on the
issues directly related to the general HABIT model.

6.1 Experimental Design

To determine performance, all experiments were conducted in a simulated environment in
which five trusters were asked to estimate their expected utility for interacting with a single
test trustee based on group behaviour and reputation. Each truster represented one of five in-
ference models: one for each instance of HABIT described above, one for BLADE, and one
labelled Prior, which ignored all available evidence and instead relied on the prior assumption
(shared by all agents) that all possible behaviours were equally likely.

To form their estimates, each of these trusters was presented with a variable number of direct
observations and reputation reports about a number of training trustees. This provided a basis



on which trusters could (potentially) learn the average behaviour of a group of agents and the
reliability of the single source from which reputation was obtained. Multiple reputation sources
were not considered because, assuming that reports from different sources are independent,
models that can extract more information form a single source will naturally do better with
information from multiple sources. Moreover, the same observations and reputation information
were always presented to all trustees to minimise excess variance in the results and, in particular,
no direct observations were ever available for the test trustee, forcing the trusters to rely on
reputation and group behaviour.

To measure performance, all experiments were run multiple times under fixed control condi-
tions (including fixed numbers of training trustees and observations), where each run was based
on a different randomly generated set of observations of a different set of randomly generated
trustees. More specifically, the true parameter vectors for each trustee were randomly sampled
in each run from a fixed Dirichlet distribution determined by the control conditions. Thus, any
sampling bias due to a particular set of trustees or observations was avoided. At the end of each
run, the absolute error in the expected utility estimate was recorded for each trustee in order to
calculate confidence bounds on the mean error for each model.

In the following subsections, all results are plotted with error bars representing 95% con-
fidence intervals on the mean absolute error. These are based on the standard assumption that
the sampling distribution of the mean is a t distribution with degrees of freedom determined by
the number of runs.8 In addition, all claims that are made in the text are statistically significant
(with p-values greater than 0.95) according to t-tests and analysis of variance (16).

6.2 Learning from Group Behaviour

To demonstrate the effect of group behaviour on performance, we ran a series of experiments
in which trusters had to assess the test trustee, based solely on their direct experience with a
number of training trustees. That is, in the absence of information pertaining directly to the
trustee, the trusters had to rely on the reasonable a priori assumption that the test trustee would
behave similarly to the training trustees, and so use any observed correlation between the be-
haviour of different training trustees to predict the behaviour of the test trustee. Here, there are
three control variables that can impact performance: (1) the number of observations per train-
ing trustee, which dictates how certain a truster can be about an individual’s behaviour; (2) the
number of training trustees from which to infer the distribution of behaviours exhibited by the
trustee population as a whole; and (3) the amount of similarity that exists between trustee be-
haviour, which determines how informative the behaviour of others is about a specific trustee.
During this set of experiments, we controlled the first two factors directly, keeping the number
of observations the same for each trustee in the interest of simplicity. To control the third, we
generated trustee behaviour parameters from Dirichlets, using the magnitude of the Dirichlet
hyperparameters as a proxy for the similarity between agents. More specifically, we allowed
the mean of the Dirichlet to vary randomly by choosing it from a uniform distribution9 at the
start of each run. This mean was then multiplied by a chosen factor to form the α vector used
to specify the distribution. Generally, high factor values (and thus higher values for α) would

8 The number of runs performed for each experiment varied according to the compute time available to
run the simulation, but typically ranged between 300 and 2000.

9 The uniform distribution used here was equivalent to a Dirichlet distribution with all hyperparameters
set to 1.
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Fig. 2. Group Behaviour

result in trustee parameters that deviate less from the mean. Therefore, by increasing the mag-
nitude, we increase the amount of information the training trustees provide about the unknown
test trustee.

The ability to decipher this information in demonstrated in Figure 2, which (for example)
shows the average error of each truster given varying numbers of observations per trustee, and
values of 7 or 20 for both

∑k
i=1 α and the number of trustees. What is important about these

results is that, as the evidence for behaviour correlation increases, all three instances of HABIT
are able to perform significantly better than the prior, while at the same time perform no worse
than the prior when no evidence for correlation exists. This follows as a direct result of the
application of Bayesian inference in HABIT: the behaviour of known trustees is only allowed
to influence predictions about other trustees to the extent supported by the evidence.

In addition to this, two other conclusions can be drawn from the figure. First, since BLADE
does not allow for possible dependencies between trustees’ behaviour, it performed no better
than the prior agent. Second, although there was little difference between the predictions made
by DP and GD-Improper, GD-Conjugate generally required more data to overcome its stronger
prior that trustees’ behaviour is generally dissimilar. However, as we shall see in the next sec-
tion, strong priors do not always have a negative effect on performance, but can instead be used
to provide a healthy scepticism in situations where inaccurate information is common.

6.3 Learning from Perfect Reputation Information

To compare the effect of reliable reputation on each truster’s performance, we performed a set
of experiments in which each truster received information from a perfect reputation source —
one that, unknown to the trusters, provided observations that were as informative and identically
distributed as each truster’s direct observations. As before, direct experience was only available
about the training trustees, forcing each truster to rely on external information to assess the test
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Fig. 3. Perfect Reputation

trustee. However, unlike the previous experiments, trustee behaviour parameters were always
drawn from a uniform distribution, so that group behaviour could not provide any useful infor-
mation over and above that provided by reputation. With these restrictions in place, the remain-
ing variables that could impact performance are: (1) the number of direct observations available
for each training trustee; (2) the number of observations reported by the reputation source about
each training trustee; (3) the number of reported observations about the test trustee; and (4) the
number of training trustees. Each of these variables was controlled directly with values for each
ranging between 1 and 250. Figure 3 shows some of the results obtained when the number of
direct and reported observations about each training trustee were kept equal at values of 7, 20,
54 and 148; the number of observations reported for the test trustee was 54; and the number of
trustees varied between 1 and 250.

Unsurprisingly, these and other results show that all four control variables have a positive
impact on performance as their values increase. However, although this is true for all the mod-
els evaluated, it is not true with equal measure. In particular, the same order observed in the
previous section is maintained here, with GD-Conjugate requiring more information to over-
come its prior than the other two instances of HABIT. However, the difference between DP and
GD-Improper, which was insignificant before, is now strengthened in GD-Improper’s favour.
This is due to the way in which the Dirichlet Process is applied in the reputation model, which
works best when significant numbers of trustees have been observed, relative to the number of
observations of each agent. More significantly, however, all three instances of HABIT always
perform at least as well as BLADE, and significantly outperform it as the amount of evidence
increases. This highlights a problem with the strategy, used in BLADE, of trying to directly
learn the correlation between a truster’s direct observations and those reported by each reputa-
tion source. More specifically, for each reputation source, j, this approach attempts to learn the
joint distribution of the observations Otr→te and Oj→te as if they refer to the same interaction.
However, only one of these can be observed for any particular interaction, because the under-
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Fig. 4. 50% Noisy Reputation

lying assumption is that an interaction takes place privately between the trustee and a single
observer, be that the truster itself or one of its reputation sources.

To overcome this, a truster must receive reports about multiple trustees. The mean be-
haviour of each trustee (direct and reported) then acts as a noisy observation of the joint value of
〈Otr→te, Oj→te〉. If a trustee’s behaviour is relatively consistent then this is almost as good as
directly observing both values together. However, if a trustee’s behaviour is relatively variable
then the added uncertainty masks the correlation between the hidden outcome values. For dis-
crete distributions, this problem reaches its peak for trustees that provide all possible outcomes
with equal likelihood. From BLADE’s perspective, this provides no information because it is
impossible to distinguish between variance intrinsic to a reputation source’s reports and the
variance in the trustee’s behaviour. HABIT takes a different approach: by looking for correla-
tions between the distributions of reported outcomes, rather than the outcomes themselves, a
report that accurately predicts a trustee’s behaviour to be erratic is just as informative as one
about a trustee that behaves consistently. This makes sense intuitively, and can explain the better
performance exhibited by HABIT in these experiments.

6.4 Learning from Unreliable Reputation Information

Although the previous set of experiments show that all models can elicit useful information
from good reputation, this benefit would be meaningless if they could not also deal with inac-
curate reputation. In fact, the ability to cope with varying degrees of accuracy in reputation is
precisely why we try to model its reliability in the first place. Thus, to evaluate this ability, we
ran experiments under the same conditions outlined in the previous section, except that the rep-
utation source reported independent random observations with a fixed probability. Specifically,
with probability p, an observation reported by the reputation source was drawn from a uni-
form Dirichlet (independent of the trustee’s behaviour), or with probability 1− p, it was drawn
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Fig. 5. Results when 148 observations were reported about the test trustee, all of which were independent
of trustee behaviour.

from the trustee’s behaviour distribution. In more detail, Figure 4 shows the results obtained,
under equivalent conditions to Figure 3, when 50% of reported observations were independent
of trustee behaviour. As one would expect, the performance of each model is similar to that
obtained for perfect reputation, except that more evidence is required to reach equivalent levels
of accuracy. Moreover, the lower bound on the average error is higher, due to the decrease in
information provided by the reputation source. In particular, under these conditions, BLADE
provides no significant gain over the prior. With respect to the evaluated instances of HABIT,
these experiments show that, under some circumstances, the DP model can outperform both of
the Gaussian based instances. This is due to the non-parametric nature of the Dirichlet Process,
which theoretically places fewer constraints on the shape of joint parameter distributions, and
so in some cases may be able to provide better results. However, more generally, this demon-
strates that there is no model that performs best in every circumstance, and so it is useful to
consider different models to meet the needs of specific applications.

In terms of reputation reliability, a more extreme case is illustrated in Figure 5. Here, all
observations reported by the reputation source were independent of trustee behaviour, the num-
ber of direct observations was 7 for each training trustee, the number of reputation observations
about the test trustee was 148, and the number of reported observations for the training trustees
was 7 (left) or 148 (right). This shows that when the amount of evidence concerning the re-
liability of a reputation source is low, but the number of reported observations — and hence
the reported confidence of the reputation source — is high, the GD-Improper model can be
led astray, expecting spurious correlations between the reputation and trustee behaviour. This
is because GD-Improper has no strong prior belief to suggest that a highly confident report is
inaccurate, and so (in the absence of any evidence to the contrary) takes the reputation source
on its word. As shown in the figure, this disadvantage disappears given more observations about
greater numbers of trustees. However, it demonstrates that the good performance of some prior
beliefs in some circumstances may come at a cost in others. In this case, the initially sceptical
prior used in the GD-Conjugate reputation model pays off, preventing it from performing worse
than the prior. Again, this reinforces the belief that no single trust model will perform best in
every circumstance, and the choice of model should be made by finding one that works well
in the variety of circumstances exhibited by the target domain. Nevertheless, some models are
more robust in a wider range of circumstances than others, and our results show that the DP
instance can exhibit surprisingly good performance in a range of circumstances, given that it
is analytically tractable and therefore efficient to compute precisely. However, the instances of



HABIT evaluated here are only examples of what is possible. The key advantage of HABIT is
that it provides a common framework for developing computationally feasible and statistically
principled models of trust, which have a number of performance advantages over the current
state-of-the-art. By using it as a basis for more sophisticated instances, HABIT provides the
potential to solve a wide range of trust and reputation problems with a high degree of accuracy.

7 Conclusions
In this paper, we have developed a generic Bayesian trust model, which facilitates decision
making by autonomous agents in service-oriented environments. Although several such mod-
els have previously been proposed, HABIT exhibits four key advantages, which together make
a significant contribution to the state-of-the-art: (1) It provides a statistically principled and
tractable framework, which can be adapted to assess trust in a wide range of scenarios with
different modelling requirements; (2) It can assess trust based on reputation, even if the agents
that supply this information use different representations of trust or provide inaccurate or in-
tentionally misleading; (3) Even when a truster has no previous experience or reputation with
which to assess a trustee, HABIT can still provide statistically principled predictions of the
trustee’s behaviour by considering the behaviour of other agents; (4) Through empirical evalua-
tion we have shown that, when applied to discrete representations of trustee behaviour, HABIT
outperforms BLADE, which represents the current state-of-the-art in statistical trust modelling.
Therefore, although HABIT is not limited to discrete representations, it performs favourably to
existing statistical trust models, which typically are limited to such representations.
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