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Abstract: Smooth boundary topology optimisation in conjunction with the continuum design sensitivity analysis
avoids many of the problems encountered by conventional cell-based systems coupled with material
homogenisation or the density method. Shape optimisation becomes part of topology optimisation. The
effectiveness of the proposed method is demonstrated through the design of an electrostatic MEMS actuator

to generate maximum torque for a predefined maximum size (area).

1 Introduction

Over the past decade, there has been a growing interest in
systems that provide a form of topology optimisation for
low-frequency electromagnetic ~ devices. Unlike pure
boundary, or shape, optimisation systems — which have
received considerable attention in the literature — topology
optimisation provides the possibility of developing new
geometries to meet design specifications. The approach is
closely related to the work on design sensitivity analysis
and, indeed, this is a fundamental requirement for efficient
topological design. Much of the published research to date
has used discrete design sensitivity analysis as the basis for
this formulation and the topological variations have been
achieved through modifying the material properties in a
mesh of rectangular cells [1, 2]. Sensitivity analysis is used
to identify how to change the material properties of each
cell in order to achieve the desired performance. However,
this approach has two problems. The first is that the results
are inherently very ‘granular’ since the design space is
divided into rectangular cells and, thus, the ‘smoothness’ of
the final boundary — or rather the lack of it — is related
directly to the original subdivision. This problem may be
rectified by simply reducing the size of the cells, thus
increasing their number, but this will inevitably lead to a
dramatic increase of required computing times. The second
problem is that the intermediate states between two real
materials are present. Hence penalisation methods are

additionally needed in order to retrieve a realistic material,
and these are apt to lead to a local optimum solution in
practical problems. Recently, an alternate approach has
been proposed which uses a continuum version of design
sensitivity analysis (CDSA) and, rather than working with
rectangular cells, grows areas having smooth boundaries
and particular material properties (smooth boundary
topology optimisation, SBTO) [3, 4]. It is the intention of
this paper to extend the work in SBTO previously reported
to a real application of an electrostatic actuator (a MEMS
device) and compare the results with those described in an

earlier paper using the cell approach [5].

2 Smooth boundary topology
optimisation

The boundary shape of an object is described in terms of a
B-Spline curve; the SBTO modifies this and introduces
new and disjoint boundary structures such that a cost
function is optimised. The CDSA is used to determine a
topological gradient (T'G) for boundary and geometry
changes. Depending on the TG and a selection criterion
(SC) in [3, 4], a small region containing either air (if the
main region contains material) or material (if the main
region contains air) is introduced and can grow and change
shape as the optimisation proceeds. Several regions can be
created simultaneously and may coalesce into single objects.
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2.1 Topological gradient

At any point during optimisation, the device may benefit
from the introduction of a small, circular material-filled
region (B(r,d) with radius d, centred at ) in the design
domain €. The ‘TG, G(r), provides a measure of
improvement of the objective function

W i (Q\B(r, 4))
8((2)

- ‘I}obj (Q) (1)

o0 =lm

where W,y is the objective function, Q\B(r, 4) the domain ()
with the material region B(r, 4) and 8(()) the area difference
after and before the small region occurs [3, 4]. As seen in (1),
the definition of the TG is quite different from that of the
material sensitivity used commonly in electromagnetic
topology optimisation, where the derivative of the objective
function with respect to the infinitesimal change of
material properties is sought out [1, 2].

2.2 Link with the classical shape
optimisation

The TG and classical shape sensitivity can be shown to be
linked and the derivation is given in [3]. In brief, a scalar
function, J, expressed with W, and  is considered

J(d) =V ,;(O\B(r, 4)) )

obj
It is assumed that a small perturbation is introduced in
Fig. 1, which keeps the outer boundary y of the domain
invariant (design velocity ¥'=0 on ) but increases the
radius 4 of the hole (V= —n on 7,. In this case, the
classical shape sensitivity of (2), that is ', can be expressed
in terms of the electric and adjoint fields based on the
shape gradient information [6]

L(¢y, Ay)dy

Ya

J(d) = —J
3)
Ly, M) = (e — 82>[81 Adpn) + q(¢1)q()\1)]

25}

where p = 8/9n, ¢ = 8/0¢, ¢ is the electrical potential, &1 and
g, refer to either side of the material boundary, whereas A
denotes the adjoint variable. Using a local expansion of ¢ and
A along the circumference of B(r, 4), (3) is approximated at
the centre of the circular material-filled region as

J(d) = —4mdL(¢;(r), A(7)) + o(d) (4)
Finally, the difference of the objective function after and

before inserting the small material-filled region is obtained as
given below

d
J(d) —J(0) = JO J(0)dp

= 2md’L(¢y (1), M, () + o(d®)  (5)

Comparing (5) with (1), the TG gives G(r) = 2L(¢p1(r), A1(7)),
whereas the natural extension of the shape sensitivity is L(¢(7),
A1(7)). Hence, the topological and the shape gradients differ by a
factor 2.

2.3 Introducing a smooth boundary
and a material merging process

The proposed method expresses the boundary of the initial
design domain as a B-Spline curve in Fig. 24 and relocates
control points, P;, of the curve based on the shape
sensitivity information at each iterative design stage [7].
Thus, the smooth boundary of the domain can be kept
during the overall design process. In the meantime, the
topology inside the domain may change by creating a small
and circular material-filled region in the domain depending
upon the SC. Then, the boundary shape of the inserted
material region is defined by a new B-Spline curve as
shown in Fig. 24 and is also optimised along with the
outer boundary of the domain.

According to the proposed scheme, it may happen that
more than two material-filled regions are introduced inside
the domain and they intersect each other as the area of
each material region grows. In this case, the material

Q, = Q\B(r,d)

Figure 1 Design domain after cutting a small hole

a Domain Q\B(r, d)
b Enlarged circular material
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Figure 2 Smooth boundaries of SBTO

a Initial domain
a Topological change

regions should be merged into one in order to avoid
geometrical modelling errors that might be produced in
commercial EM software packages. Fig. 3 illustrates a
material merging process where a new boundary is created
by a B-Spline curve with the non-overlapping control
points of the two material-filled regions.

2.4 Selection criterion

To demonstrate the concept of the SC, it is assumed that the
design domain is divided into finite elements. Under the area
constraint, first the SC for the boundary control point, P;, of
the domain or created material-filled regions is defined as

Figure 3 /llustration of a material merging process

a Before merging process
b After merging process

control point moves or the small and circular material-filled
region appears, respectively. Thus, for minimisation
problems, the smaller the SC value, the bigger is the
contribution to reduce the objective function with respect
to the change of the constraint function.

To decide whether the material generation is more
beneficial than mere shape optimisation at each iteration,
the comparison of the minimum SC values in the two
cases is required

, shape = s‘hape F .
Scjhape _ ‘Ijobj ©) SCrrtlin min (SC;™, i=1,...,/) (8)
Weonst SC = min (SC°F°, m=1, ..., n) ©)

const denote shape sensitivity values of the
objective and constraint functions. Similarly, the SC based

where Wi and W,

where 7 and 7 are the total number of control points and finite
elements in the domain, respectively. Therefore only if scere

on the TG wvalues for the mth element inside the ha min
. pe . . _ . .
discretised domain is also calculated as is smaller than SC_; ™, a circular material-filled reglogp(l)s

G
,\I,/

const

SCoPe —

(7)

Equations (6) and (7) give the sensitivity of the objective
function to the change of the constraint function when the

introduced at the element centre corresponding to SC_; .
This results in generating a new topology and increasing
the number of design variables (control points) at the next
iteration. If the area constraint is not considered, the
constraint function W, in (6) and (7) is then set to be a
constant value.
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It should be noted that the description above refers to an
implementation of the scheme using a finite element field
computation software. It must be stressed, however, that
the method itself is applicable to any analysis method and
does not rely on having any particular type or shape of
elements or grids of the numerical technique used or any
other method-dependent characteristics of the field solution
employed. It has been argued before, but will be repeated
here, that the fact that the CDSA approach is not tied up
to any particular field modelling formulation constitutes a
great strength of the method.

3  Numerical implementation

The proposed method basically optimises the boundary
shapes of the whole domain, including additionally created
material regions, whereas the topology is changed by
adding new and circular material-filled regions during
design iterations, if necessary. This new methodology was
easily combined with a commercial software by utilising an
optimisation technique based on CDSA, the prime
objective of which is to solve the dual solution system
consisting of the primary and adjoint systems [8, 9].

The iterative design process for SBTO, shown in Fig. 4,

involves the following steps.

Step 1: Specify the initial design domain with a B-Spline

curve and its control points.
Step 2: Set design variables and impose side/area constraints.

Step 3: Analyse the primary and adjoint systems.

Specify domain

Initial design domain

.

2)| Set design variables, side/area constraints }

Step 4: Compute the shape and the TG values and then
execute shape optimisation.

Step 5: Compute SC values and insert a small and circular
material-filled region if necessary.

Step 6: Merge two material regions into one region if they
intersect.

Step 7: Check convergence and go to step 3 if unsatisfactory.

Step 8 Check side/area constraints and go to step 2 if
unsatisfactory.

4 Results

An electrostatic actuator [5] with 16 electrodes is shown in
Fig. 5 where the radius of the electrode is 100 wm and the
width of the air gap is 5 pm. The actuator is driven by
activating each anode—cathode pair (the electrodes).

The design goal is to create a dielectric rotor producing as
large a torque as possible. The outline of the maximum size of
the rotor is restricted to a 95 wm radius, as depicted in Fig. 5,
but this architecture would, of course, generate no torque if
the design domain were to be fully occupied by dielectric.
The design goal is achieved by minimising the following
objective function under the area constraint condition given

Vot = (W = +(Wp — WBg)Z

W) (10)

Vo=, —A4) <5 (11)

const
where positions 4 and B activating each electrode pair are
22.5° apart, W, is the energy when the initial design space
is fully occupied by air, Wp, refers to the energy when the
area is completely filled with dielectric, 4, is the area
occupied by dielectric material, A, is the target area and 6
denotes a constant value corresponding to the area
difference of 45%. A side constraint is additionally imposed
on the B-Spline curve forming the boundaries of the

3
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Figure 4 Convergence of the objective function against
iterations

V, 9°

Figure 5 Actuator layout and design domain
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dielectric regions not to exceed the maximum radius of
95 pm.

The optimisation starts with an initial shape and topology
where the design domain has a circular dielectric region with
a radius of 20 wm and a relative permittivity value of 10
(Fig. 6a). To compute the shape and TG values, there is
no need to analyse the adjoint system in this problem
because the objective function is expressed in terms of the
system stored energy [10, 11]. At each iteration, the system
decides whether a new material region should be created or
whether just a change to the boundary shape will be
sufficient. This information is derived from the comparison
of the SC values shown in Fig. 4. The evolution of the
rotor is shown in Fig. 6 as the design iterations proceed.
The boundary shape of the dielectric varies and also new

a d
b e
c f

Figure 6 Insertion and evolution of material regions while
minimising the objective function

a 0 iteration
b 5 iterations
c 8 iterations
d 10 iterations
e 15 iterations
f 29 iterations

www.ietdl.org

dielectric regions are created during five iterations as shown
Fig. 64. The adjacent dielectric regions are merged into one
region in Figs. 6¢ and 64 when they intersect each other.
After 29 iterations, the final shape and topology satisfying
the area constraint are obtained (Fig. 6/).

Fig. 7 compares the final optimised shapes of the rotor,
achieved using SBTO and the density method [5]. The

c

Figure 7 Comparison of optimised rotors between two
methods

a After 29 iterations using SBTO with dielectric area constraint
b After 17 iterations using SBTO without dielectric area constraint
c After 100 iterations using the density method of [5] without
dielectric area constraint
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1.00E-014 1 method has implications in the area of robust design and it
9.00E-:015 e R is, perhaps, worth commenting on this briefly. Robust
1 _ — design is usually associated with creating a design which
et /- performs to a required specification within the accepted
S 7.00E-015 e bounds of manufacturing errors, that is, variations in
§ PO /_._/./-"' e -~ material properties and component dimensions. It could be
g =g argued that the method proposed in this paper partly
§ swe0154_— 3 Initial rotor addresses this issue since the topology optimisation is
i S— = — Optimized totor without area constraint implemented based on constraints on the physical
1 7 Optimized totor with area constraint dimensions and the properties of the provided material.
3-00E-015 1 The TG constitutes, by itself, a measure of robustness of
2.00E-015 ; . ; : the solution; if the gradient is too large, then the material

0 5 10 15 20

Rotation angle (degree)

Figure 8 Energy profile before and after optimisation

shapes appear to be quite similar but the density method
produces the ‘staircase’ effect on the boundary which the
SBTO does not. Moreover, it was reported in [5] that the
final topology depends strongly on the element size used
and the initial material values imposed, which lead to
possible local minima traps (different topologies). However,
this defect of the density method has not been identified as
a problem in SBTO. In addition, it was revealed that fewer
iterations, typically less than 30, were needed to achieve
convergence in SBTO when compared with the density
method which required more than 100 iterations for an
optimum solution.

The comparisons of the energy variations and the torque
profiles of the optimised designs is presented in Figs. 8 and
9. It is worth highlighting that the maximum torque
produced by the proposed method is more than 20% larger
than that achieved in [5].

5 Robust design and topology
optimisation

In this paper, the method described is intended to optimise
the topology of a device, rather than just the shape. This

properties in the region considered should be changed. By
using the value of the TG, the sensitivity of the design
solution to variations in both a material property and a
physical dimension can be determined. Thresholding this
value can then provide some information on the robustness

of the design.

6 Conclusions
From the results, it has been revealed that the SBTO shows

fast convergence with respect to the objective function given
and also is relatively free from possible local minima traps.
Moreover, the method avoids the ‘staircase’ effects that are
encountered in the conventional cell-based systems coupled
with material homogenisation or the density method. The
topology finally generated compares very favourably with
that developed in [5], while offering improved performance.
The relationship between robustness and topological
sensitivity is intended to be further investigated in future
work.
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