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Abstract

Closed-loop data-driven simulation refers to the probldrfinaling the set of all responses of a closed-loop
system to a given reference signal directly from an inpdapottrajectory of the plant and a representation of the
controller. Conditions under which the problem has a sotugire given and an algorithm for computing the solution
is presented. The problem formulation and its solution at@eé spirit of the deterministic subspace identification
algorithms,i.e., in the theoretical analysis of the method, the data is asdusract (noise free). The results have
applications in data-driven contra@,g, testing controller's performance directly from closed data of the plant

in feedback with possibly different controller.

Keywords: System identification; Subspace methods; Persistencyaifagion; Data-driven simulation and

control.

1 Introduction

The data-driven simulation problem is defined as followsegia trajectory of an unknown system, find the response
of that system to a different input signal (under specifigtiainconditions). Of course, data-driven simulation can
be reduced to classical model-based simulatioidewntifyingthe unknown system from the given trajectory. In the
case of linear time-invariant (LTI) systems, however, thebfem can be solvedithout identifyinga representation
of the system in an intermediate step [MWRMO05a, MWRMO5b]e Tésulting algorithm involves solution of a linear
system of equations in which the left hand side is a Hanketirebnstructed from the given trajectory and the right
hand side is the desired trajectory. Despite the compuiatisimplicity of the basic idea, the theoretical analysis
and computational details are not trivial due to the neechsue that the given data is sufficiently informative, the
need to organize the computations recursively and to dehltheé initial conditions. Indeed, a data-driven simulatio
problem may not be solvable. The main assumptions for sitityahre controllability of the system and persistency
of excitation of the input that has generated the givendtajg.

The concept of data-driven simulation and the resulting matational algorithms have applications in system

identification, e.g, computation of the impulse response from input/outpué d&ia special data-driven simulation
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problem. Another application of data-driven simulationViW'DO06] is to give a system theoretic interpretation of
the orthogonal and oblique projections, which appear irsthespace identification methods [VD96, VD92]. Finally,
as shown in [MR0O7, MR08], data-driven simulation is the miaiiding block of data-driven control methods.,
methods that derive the control signal directly from a ttjey of the plant without identifying a model of the plant.

This paper further develops the concept of data-driven lsition to closed-loop data-driven simulation, defined as
follows: given an input/output trajectory of an unknowntgys and a representation of a controller, find all responses
of that closed-loop system to a given reference signal. Qativation for studying the closed-loop data-driven sim-
ulation problem comes from unfalsified control [ST97]. Usited control is an switching adaptive control method
that selects in real-time a controller satisfying the penfance specification from a set of candidate controllerg Th
main step in unfalsified control is testing the performanta candidate controller without applying it on the plant.
The performance of the candidate controller is evalualiesttly from data collected of the plant (possibly operat-
ing in closed-loop with another controller). Data-drivémslation allows us to evaluate the controller performance
by computing the closed-loop behavior of the plant with theig controller. The standard performance test in the
unfalsified control setting makes no assumptions about lduet gtherefore it is applicable for a general nonlinear
time-varying system), however, it computes a single ttajgoof the closed-loop system, so that the performance test
can be conservative. In contrast, closed-loop data-dideetrol uses an LTI assumption about the plant but computes
the full behaviors of the closed-loop system, so that it is-oonservative in the LTI case.

A standing assumption throughout the paper is that the dafarierated by an LTI system of bounded complexity.
Admittedly, this assumption is practically unrealistigwever, it is convenient for the theoretical study.,(deter-
ministic subspace identification) and trivial modificasoof the algorithm—replace solution of a linear system of
equation by an approximate solution, rank test by a numeadcek test,etc—leads to practically useful algorithms
that can cope with noise on the datd.,(stochastic subspace identification). We envisage thahastic version of

the results presented in this paper will appear in neardutur

Notation

We use the following standard notatioR: is the set of real number¥{ is the set of natural numbers, aRd is the

w-dimensional real vector spac@” )" denotes the set of functions frato R¥, i.e., w € (R")Y is the time series

w= (W(1),w(2),...,w(t),...),  where w(t)€R".

w= (W(1),w(2),...,w(t),...,w(T)),  where w(t)eR",

however, with some abuse of notation, we will viewz (R¥)T also as arT-dimensional column vector. The concate-
nation of the finite sequenaeg, with the (possibly infinite) sequeneg is denoted bywp, w). AT is the pseudo-inverse

of the matrixA and coldin{A) is the number of columns .
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The behavioural setting [Wil87] is especially suitable $otution of data-driven simulation and control problems
because it treats a dynamical system as a set of trajec{oaiber than equations) thus making explicit the relation
between a trajectory and the system that generates thettngjeln the behavioural setting, a discrete-time dynainic
system# with w manifest variables (inputs and outputs) is a subset of teasispacgR")Y. In this paper, we

assume that the manifest variablefiave agiveninput/output partition

b

whereu € (R™)N is an input and/ € (RP)Y is an output. Theestriction Z|1 of the behavior to the interval[1, T]
is defined as

Bl = {wp € (R")T | there isws € (R¥)" such thatiwp,w) € Z},

i.e., there is an extensiom; of a finite trajectoryf, € 4|t of the system, to an infinite trajectovy= (w,,w) € Z.

The feedback interconnection of the pla#&tC (R¥)Y and a controllefs’ C (R**¥)N is given by

u

r—m" ¢

B y

Figure 1: Feedback interconnection.

By = BexiNE, 1)
where
r
PBext = { { } e (RN | we #}.
w

We consider linear, time-invariant, and finite dimensigulahts and controllers. A kernel representatRi)w = 0,
wereg is the backwards shift operator

ow(t) :=w(t+1),

is parameterized by the polynomial matRxand an image representation= M(0')g is parameterized by the poly-
nomial matrixM.

The Hankel matrix with block rows, composed of the finite signake (R¥)" is denoted by

W) w2 o WT—t+1)]
w2 w3 - W(T-t+2)

JEW) = w3 w4 - wT-t+3)]. 2
_W(t) w(t+1) - w(T) |




The signalu = (u(1),...,u(T)) is calledpersistently excitingf orderL if the Hankel matrix# (u) is of full row

rank. The banded upper-triangular Toeplitz matrix vtithlock-columns, related to the polynomial
r(z) =ro+riz+---+rp2"

is denoted by

rp ri. -~ r, 0 -~ O
0 ro r1 - In "o
F() = | " - (3)
. '.' ... '.' '.. 0
o ... 0 ro rp -+ In

2 Closed-loop data-driven simulation

Problem 1 (Closed-loop data-driven simulationfsiven

e trajectorywq = (Wg(1),...,wq(T)) € (R¥)T of a linear time-invariant system c (R¥)", with an input/output

partitionw = [y] € %, u € (R*)N input,y € (RP)Y output;

e linear time-invariant controlle®” C (R**P*®)N with an input/output partitiony,] € €, r € (R*)N, y € (RP)N

inputs,u € (R™)N output; and
o reference signal = (r(1),....r:(Tr)) € (RF)™

find the set of respons&g of the closed-loop syste® to the reference signaj.

Solution and computational algorithm

A closed-loop data-driven simulation algorithm aims to pone for givenwgy, ¢, andr,, the signalsw,, such that

re W, € At
S ,%7<5|Tr — { ; (4)
Wr [w] € €,

Assuming that the syste# is controllable, it admits a minimal image representation
B={w=M(0)l |l e RN}
Consider a minimal kernel representation of the controller

r
¢ ={ |R(o)r+Ry(0)w=0}.

w

In terms of the image and kernel representations of the plaghicontroller, (4) becomes

{ there isg, such thatv, = M(0o)g
R (o)rr+Ry(o)w; = 0.

(5)
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We can and do assume that the controtéiis specified by a kernel representation, however, the pléng only
implicitly specified by the trajectorywy and we aim to avoid using a representatiorzhf The crucial step for doing

this is to replace the image representation in (5) by thetamua
Wr = %_r (Wd)g (6)

The vectorg is related to the input and initial conditions of the systéwat tgenerate the trajectony. However, the
mapping fromg to the system’s input and initial conditions is not injeeti{Note that a solutiog of (6) need not be
unique.)

The equivalence ofy, = M(o)g and (6) holds under the following assumptions
1. the system? is controllable,

2. the input componenty of wy is persistently exciting of ordel; plus the order of%,

and is proved in [WRMMO05, Theorem 1], see also [MWVDO06, Sati8.4]. Therefore, under assumptions 1 and 2,

the set of solutionsy; of the linear system of equations
Wy = %_r (Wd)g

c?rr(RW)Wr - _%r(Rr)rr'

is equal to the set of trajectori@g solving the closed-loop data-driven simulation problem.

(7)

Note2 (Multi-output systems)In (7), we have replaced the difference oper&@w) by the structured matrigr (R).
In the multi-output case, the structure &f is more complicated than the one shown in (3). In order to Biynihe

presentation and abstract from technical details, we asshat the system is single-output.

Substitutingw; = .77 (Wg)g into the second equation of (7) gives the following systeragfations

<7:|—r(|:\)\’\/)‘}ﬁrr(Wd) g = —%F(Rr)rr
A b

The matrixA is of dimensionT, x (r +w)T;, so that the systerAg= b is underdetermined. Lej, be a particular
solution,e.g, the least-norm solutiogy = A'b and letN be a matrix whose columns span the null spac&.dfhe set
of solution of (7) forgis
4 :={go+Nz| ze REOIdMN) 1
Then the set of responses of the closed-loop syste® to the reference signal is
Wi = 5. (Wa)¥ = { 4 (W) Qo+, (Wg)Nz| ze REIIMN) Y
W o
It is characterized by the particular respomgg and a subspace—the column span of the mat#fx(wq)N. Algo-
rithm 1 summarizes the necessary steps for data-driven wtatign of’#; from wy, R, andr,.
We proved that under the assumptions on the datand the plant?, specified in the derivation of the algorithm,

Algorithm 1 solves Problem 1.



Algorithm 1 Closed-loop data-driven simulation.

Input: trajectorywy € (R¥)T of an LTI system, parameter[R, RW} of a minimal kernel representation of the
controller¢’, and reference signal € (R*)™.

1. Compute the least-norm solutigg of the system of equations

T (Ru) 3, (Wa)9 = — Z3.(R)rr.

2: Letw, g := J7%. (Wq)Qo.
3: Compute a matri®N which columns form a basis for the column spanZaf(Ry) 7. (Wq).
4: Let Ny, be a basis for the column span.gfr. (wg)N.
Output: # = { W o+ Nyz | z€ RIIMN) 1 the set ofT, samples long responses of the closed-loop sys#m

to the reference signa).

Theorem 3. Under the following assumptions:

1. the systen# is controllable,

2. the input componentywf wy is persistently exciting of order, plus the order of,

the set

Wi = {Wr o+ Nyz | ze REIMNG) 1

computed by Algorithm 1 is equal to the set,a§dmples long responses of the closed-loop systeno the reference

signal r, i.e.,

w\ Ty v
W ={we (R")"| € By
w

T}

Simulation example

The datang = [yd], used for the closed-loop data driven simulation, is the fisssamples from the step response of
a randomly generated first order systefrinterconnected with the controlléf; := { [{;] |lu=r—y}. Theaimisto
compute the firsT, = 10 samples of the step response#f,, where®, := { m | u=r+y}. For this purpose we
use Algorithm 1j.e., we do not compute explicitly a representationéf Note that either of the systenigy,, %,
can be unstable.

In order to ensure that assumption 2 is satisfied, we augrhergiven trajectory—the step response%f,—
with T, zeros. This takes into account the zero initial conditiohthe given trajectory and ensures that the initial
conditions of the computed responseof %, are also zeroife., Ny = 0). The results for a particular syste#
are shown in Figure 2. We verify that up to numerical erngrenatches the step responsef %,, obtained by

model-based simulation. A Matlab file reproducing the satiah result is available from:

http://users. ecs.soton.ac.uk/inftest _cdds. m
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Figure 2: Step responses @, (left) and Ay, (right).

3 Application to data-driven control

Data-driven control methods determine a control signal coraroller representation without using a model of the
plant. The model is replaced by the observed data and pramthgsis about the plant. Among the existing approaches
for data-driven control, a particularly attractive onehis tinfalsified control of Safonov and coworkers. As formedat

in [ST97, SCO1], unfalsified control usas prior hypothesis on the plaaipart from the observed data.

The unfalsified control is based on the observation that léyaof a candidate controller to meet desired per-
formance specification can be tested using a trajectoryeopléint without having a model of the plant or applying
the controller on the plant. The controllers that (accaydim the test) fail to achieve the desired performance spec-
ification are discarded (falsified) and one of the remainungfdlsified) controllers is used until it is falsified by the
past measurements and replaced by a new unfalsified centapitl so on. This leads to a switching adaptive control
scheme. In this technical note, we do not consider a comptegdsified switching adaptive control method but focus
instead on its core ingredient—the test of a potential allet's performance directly from data of the closed-loop
system, operating with a (possibly) different controller.

The standard test of the controller performance that usigstioa data from the plant is based on what is called
“fictitious reference” — a reference signal that togethethvihe observed plant’s output, could result (by proper
choice of the controller’s initial conditions) into an outpf the controller that is equal to the observed plant'sitnp
Therefore, according to the observed data of the plant,ested controller driven by the fictitious reference (under
suitable initial conditions) could have been in closedsl@ath the plant. Consequently, the controller performance
is verified againsthis closed-loop behavior. The controller is falsified on theiba$ the observed data of the plant
if the performance test (using the fictitious referencdfaDtherwise, the controller is unfalsified by the data. The
controller falsification procedure, based on a fictitiodsmence signal, is reviewed in Appendix A.

The fictitious reference test is conservative because @érc#ise of a static controller)single trajectory of the
closed-loop system is computed. Consequently, the pediocm of the controller is verified against this trajectory

only. Using the LTI hypothesis, we can augment the compulesed-loop trajectory with all time shifts and sub-



sequently with all linear combinations of the resulting aetrajectory. This construction is done systematically by
the closed-loop data-driven simulation procedure. Mogeaaccording to Theorem 3, under assumptions 1 aad 2,
trajectories of the closed-loop system are constructedignvay. Therefore, under these assumptions a test of the

controller performance, based on the proposed closeddatgdriven simulation procedurerien conservative.

4 Conclusions

We defined a new data-driven simulation problem, in whichdbsed-loop behavior of the unknown plant, in feed-

back with a given controller, is computed from a given tregeg of the plant and a representation of the controller.
The proposed algorithm involves a solution of a linear sysbé equations and is, therefore, computationally fast and
easy to implement. Future work will investigate modificaaf the algorithm for recursive computation and noisy

data, as well as application of closed-loop data-driverukition in unfalsified and model predictive control.

A Controller falsification based on fictitious reference

In [ST97], the unfalsified control is definkdor the feedback system of Figure 1. In a trajectarg %, w =: (u,y),
ue (R™)Nis an input ang € (RP)N is an output. Similarity, ir(r,u,y) € ¢, r € (R*)" andy € (RP)Y are inputs and
u e (R™)Nis an output. The closed-loop system, obtained by interectimg % and¥%’, is denotedZ, and is given
by (1).

The control specification can be formulated as a desire@diizop behavioBges C (R*++P)N, A controller#

is said to achieve the desired behavges (on the plant®) if By, C HByes i.€.,
¢ achieveZyes(ON %) < By C PBles (8)

Verification of (8) obviously requires knowledge of the glamehavior%. The aim of unfalsified control is to check
if the controller fails to achieve the specification usindycm observed trajectonyy of %.

Let wg = (Ug,Yd) € # be a given trajectory of8 and let#4ex be the set of all possible extensionsvef to a
trajectory of%Beyy, i.€.,

Waext ' ={(W4) € Bext}- 9)

By construction#q ext C Pext, SO that#yextN ¢’ C Ayesis a necessary condition faf to achieveZqes (see (8)). It

follows that a sufficient condition fo¥” to fail to achieveZyesis
7/ci7extm ¢ §Z %des (10)

The test (10) allows a controller to be falsified on the basithe data alone withoutiny assumption on the plant.

Therefore, the test (10) is not only data-driven but alsomaggions free.

1The presentation in [ST97] is restricted to the SISO case.



The test (10) has a simple interpretatiof ex: N ¢ is the problem of finding the set of reference signls(wy)

that are consistent with the datg and the controllef, i.e.,

R (Wg) = {r € (RHN| (r,wq) € € }.

The signalsr € Z4(wWy) that satisfy (9) are called in [ST97] “fictitious referendgrels”. Of course, for given

¢ andwy, Z4(Wg) may be an empty set (in which case the dagais not sufficient to falsify the controlle¥).

ComputingZ« (Wgq) for a general nonlinear controll&f is a hard problem. For LTI controller, however, the problem

is linear — % (Wy) is either an empty set or an affine space. Concrete algoritbrmmputingZ, (Wq) are given

in [ST97]. Applied in real-time, these algorithms lead tcaaaptive switching control strategy, see [WPSS05]. In this

note, we do not consider the switching strategy and itstieed-implementation but focus on its core ingredient—the

fictitious reference test—in the case of an LTI plant.
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