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Abstract

Closed-loop data-driven simulation refers to the problem of finding the set of all responses of a closed-loop

system to a given reference signal directly from an input/output trajectory of the plant and a representation of the

controller. Conditions under which the problem has a solution are given and an algorithm for computing the solution

is presented. The problem formulation and its solution are in the spirit of the deterministic subspace identification

algorithms,i.e., in the theoretical analysis of the method, the data is assumed exact (noise free). The results have

applications in data-driven control,e.g., testing controller’s performance directly from closed-loop data of the plant

in feedback with possibly different controller.

Keywords: System identification; Subspace methods; Persistency of excitation; Data-driven simulation and

control.

1 Introduction

The data-driven simulation problem is defined as follows: given a trajectory of an unknown system, find the response

of that system to a different input signal (under specified initial conditions). Of course, data-driven simulation can

be reduced to classical model-based simulation byidentifying the unknown system from the given trajectory. In the

case of linear time-invariant (LTI) systems, however, the problem can be solvedwithout identifyinga representation

of the system in an intermediate step [MWRM05a, MWRM05b]. The resulting algorithm involves solution of a linear

system of equations in which the left hand side is a Hankel matrix constructed from the given trajectory and the right

hand side is the desired trajectory. Despite the computational simplicity of the basic idea, the theoretical analysis

and computational details are not trivial due to the need to ensure that the given data is sufficiently informative, the

need to organize the computations recursively and to deal with the initial conditions. Indeed, a data-driven simulation

problem may not be solvable. The main assumptions for solvability are controllability of the system and persistency

of excitation of the input that has generated the given trajectory.

The concept of data-driven simulation and the resulting computational algorithms have applications in system

identification,e.g., computation of the impulse response from input/output data is a special data-driven simulation
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problem. Another application of data-driven simulation [MWVD06] is to give a system theoretic interpretation of

the orthogonal and oblique projections, which appear in thesubspace identification methods [VD96, VD92]. Finally,

as shown in [MR07, MR08], data-driven simulation is the mainbuilding block of data-driven control methods,i.e.,

methods that derive the control signal directly from a trajectory of the plant without identifying a model of the plant.

This paper further develops the concept of data-driven simulation to closed-loop data-driven simulation, defined as

follows: given an input/output trajectory of an unknown system and a representation of a controller, find all responses

of that closed-loop system to a given reference signal. Our motivation for studying the closed-loop data-driven sim-

ulation problem comes from unfalsified control [ST97]. Unfalsified control is an switching adaptive control method

that selects in real-time a controller satisfying the performance specification from a set of candidate controllers. The

main step in unfalsified control is testing the performance of a candidate controller without applying it on the plant.

The performance of the candidate controller is evaluateddirectly from data collected of the plant (possibly operat-

ing in closed-loop with another controller). Data-driven simulation allows us to evaluate the controller performance

by computing the closed-loop behavior of the plant with the given controller. The standard performance test in the

unfalsified control setting makes no assumptions about the plant (therefore it is applicable for a general nonlinear

time-varying system), however, it computes a single trajectory of the closed-loop system, so that the performance test

can be conservative. In contrast, closed-loop data-drivencontrol uses an LTI assumption about the plant but computes

the full behaviors of the closed-loop system, so that it is non-conservative in the LTI case.

A standing assumption throughout the paper is that the data is generated by an LTI system of bounded complexity.

Admittedly, this assumption is practically unrealistic, however, it is convenient for the theoretical study (cf., deter-

ministic subspace identification) and trivial modifications of the algorithm—replace solution of a linear system of

equation by an approximate solution, rank test by a numerical rank test,etc.—leads to practically useful algorithms

that can cope with noise on the data (cf., stochastic subspace identification). We envisage that stochastic version of

the results presented in this paper will appear in near future.

Notation

We use the following standard notation:R is the set of real numbers,N is the set of natural numbers, andR
w is the

w-dimensional real vector space.(Rw)N denotes the set of functions fromN to R
w, i.e., w∈ (Rw)N is the time series

w =
(
w(1),w(2), . . . ,w(t), . . .

)
, where w(t) ∈ R

w
.

w∈ (Rw)T is the finite sequence

w =
(
w(1),w(2), . . . ,w(t), . . . ,w(T)

)
, where w(t) ∈ R

w
,

however, with some abuse of notation, we will vieww∈ (Rw)T also as awT-dimensional vector. The concatenation

of the finite sequencewp with the (possibly infinite) sequencewf is denoted by(wp,wf). A† is the pseudo-inverse of

the matrixA and coldim(A) is the number of columns ofA.
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The behavioural setting [Wil87] is especially suitable forsolution of data-driven simulation and control problems

because it treats a dynamical system as a set of trajectories(rather than equations) thus making explicit the relation

between a trajectory and the system that generates the trajectory. In the behavioural setting, a discrete-time dynamical

systemB with w manifest variables (inputs and outputs) is a subset of the signal space(Rw)N. In this paper, we

assume that the manifest variablesw have agiveninput/output partition

w =




u

y




,

whereu∈ (Rm)N is an input andy∈ (Rp)N is an output. TherestrictionB|T of the behaviorB to the interval[1,T]

is defined as

B|T := {wp ∈ (Rw)T | there iswf ∈ (Rw)N such that(wp,wf) ∈ B },

i.e., there is an extensionwf of a finite trajectoryfp ∈ B|T of the system, to an infinite trajectoryw = (wp,wf) ∈ B.

The feedback interconnection of the plantB ⊆ (Rw)N and a controllerC ⊆ (Rr+w)N

r u
yBC

is given by

BC = Bext∩C ,

where

Bext := {




r

w



 ∈ (Rr+w)N | w∈ B }.

We consider linear, time-invariant, and finite dimensionalplants and controllers. A kernel representationR(σ)w = 0,

wereσ is the backwards shift operator

σw(t) := w(t +1),

is parameterized by the polynomial matrixR, and an image representationw = M(σ)g is parameterized by the poly-

nomial matrixM.

The Hankel matrix witht block rows, composed of the finite signalw∈ (Rw)T is denoted by

Ht(w) :=















w(1) w(2) · · · w(T − t +1)

w(2) w(3) · · · w(T − t +2)

w(3) w(4) · · · w(T − t +3)

.

.

.

.

.

.

.

.

.

w(t) w(t +1) · · · w(T)















. (1)

The signalu =
(
u(1), . . . ,u(T)

)
is calledpersistently excitingof orderL if the Hankel matrixHL(u) is of full row

rank. The banded upper-triangular Toeplitz matrix witht block-columns, related to the polynomial

r(z) = r0 + r1z+ · · ·+ rnzn
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is denoted by

Tt(r) :=












r0 r1 · · · rn 0 · · · 0

0 r0 r1 · · · rn
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0

0 · · · 0 r0 r1 · · · rn












. (2)

2 Closed-loop data-driven simulation

Problem 1 (Closed-loop data-driven simulation). Given

• trajectorywd =
(
wd(1), . . . ,wd(T)

)
∈ (Rw)T of a linear time-invariant systemB ⊂ (Rw)N, with an input/output

partitionw = [u
y ] ∈ B, u∈ (Rm)N input,y∈ (Rp)N output;

• linear time-invariant controllerC ⊂ (Rr+p+m)N, with an input/output partition[ r
w] ∈ C , r ∈ (Rr)N, y∈ (Rp)N

inputs,u∈ (Rm)N output; and

• reference signalrr =
(
rr(1), . . . , rr(Tr)

)
∈ (Rr)Tr

find the set of responseswr of the closed-loop systemBC to the reference signalrr.

Solution and computational algorithm

A closed-loop data-driven simulation algorithm aims to compute for givenwd, C , andrr, the signalswr, such that



rr

wr



 ∈ BC |Tr ⇐⇒

{
wr ∈ B|Tr

[ rr
wr ] ∈ C |Tr

(3)

Assuming that the systemB is controllable, it admits a minimal image representation

B = {w = M(σ)l | l ∈ (Rm)N }.

Consider a minimal kernel representation of the controller

C =
{




r

w



 | Rr(σ)r +Rw(σ)w = 0
}
.

In terms of the image and kernel representations of the plantand controller, (3) becomes

{
there isg, such thatwr = M(σ)g

Rr(σ)rr +Rw(σ)wr = 0.

(4)

We can and do assume that the controllerC is specified by a kernel representation, however, the plantB is only

implicitly specified by the trajectorywd and we aim to avoid using a representation ofB. The crucial step for doing

this is to replace the image representation in (4) by the equation

wr = HTr(wd)g, (5)

which depends only on the datawd. The equivalence ofwr = M(σ)g and (5) holds under the following assumptions
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1. the systemB is controllable,

2. the input componentud of wd is persistently exciting of orderTr plus the order ofB,

and is proved in [WRMM05, Theorem 1], see also [MWVD06, Section 8.4]. Therefore, under assumptions 1 and 2,

the set of solutionswr of the linear system of equations

wr = HTr(wd)g

TTr(Rw)wr = −TTr(Rr)rr.

(6)

is equal to the set of trajectorieswr solving the closed-loop data-driven simulation problem.

Note2 (Multi-output systems). In (6), we have replaced the difference operatorR(σ) by the structured matrixTTr(R).

In the multi-output case, the structure ofT is more complicated than the one shown in (2). In order to simplify the

presentation and abstract from technical details, we assume that the system is single-output.

Substitutingwr = HTr(wd)g into the second equation of (6) gives the following system ofequations

TTr(Rw)HTr(wd)
︸ ︷︷ ︸

A

g = −TTr(Rr)rr
︸ ︷︷ ︸

b

The matrixA is of dimensionTr × (r+ w)Tr, so that the systemAg= b is underdetermined. Letg0 be a particular

solution,e.g., the least-norm solutiong0 = A†b and letN be a matrix whose columns span the null space ofA. The set

of solution of (6) forg is

G := {g0 +Nz| z∈ R
coldim(N) }.

Then the set of responseswr of the closed-loop systemBC to the reference signalrr is

Wr = HTr(wd)G = {HTr(wd)g0
︸ ︷︷ ︸

wr,0

+HTr(wd)Nz| z∈ R
coldim(N) }.

It is characterized by the particular responsewr,0 and a subspace—the column span of the matrixHTr(wd)N. Algo-

rithm 1 summarizes the necessary steps for data-driven computation ofWr from wd, R, andrr.

We proved that under the assumptions on the datawd and the plantB, specified in the derivation of the algorithm,

Algorithm 1 solves Problem 1.

Theorem 3. Under the following assumptions:

1. the systemB is controllable,

2. the input component ud of wd is persistently exciting of order Tr plus the order ofB,

the set

Wr := {wr,0 +Nwz | z∈ R
coldim(Nw) },

computed by Algorithm 1 is equal to the set of Tr samples long responses of the closed-loop systemBC to the reference

signal rr, i.e.,

Wr = {w∈ (Rw)Tr |




rr

w



 ∈ BC |Tr }.
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Algorithm 1 Closed-loop data-driven simulation.

Input: trajectorywd ∈ (Rw)T of an LTI systemB, parameter
[

Rr Rw

]

of a minimal kernel representation of the

controllerC , and reference signalrr ∈ (Rr)Tr .

1: Compute the least-norm solutiong0 of the system of equations

TTr(Rw)HTr(wd)g = −TTr(Rr)rr.

2: Let wr,0 := HTr(wd)g0.

3: Compute a matrixN which columns form a basis for the column span ofTTr(Rw)HTr(wd).

4: Let Nw be a basis for the column span ofHTr(wd)N.

Output: Wr := {wr,0 +Nwz | z∈ R
coldim(Nw) } — the set ofTr samples long responses of the closed-loop systemBC

to the reference signalrr.

Simulation example

The datawd = [ud
yd ], used for the closed-loop data driven simulation, is the first 10 samples from the step response of

a randomly generated first order systemB interconnected with the controllerC1 := {
[ r

u
y

]

| u = r −y}. The aim is to

compute the firstTr = 10 samples of the step response ofBC2, whereC2 := {
[ r

u
y

]

| u = r +y}. For this purpose we

use Algorithm 1,i.e., we do not compute explicitly a representation ofB. Note that either of the systemsBC1, BC2

can be unstable.

In order to ensure that assumption 2 is satisfied, we augment the given trajectory—the step response ofBC1—

with Tr zeros. This takes into account the zero initial conditions of the given trajectory and ensures that the initial

conditions of the computed responserr of BC1 are also zero (i.e., Nw = 0). The results for a particular systemB

are shown in Figure 1. We verify that up to numerical errorsrr matches the step responses of BC2, obtained by

model-based simulation. A Matlab file reproducing the simulation result is available from:

http://users.ecs.soton.ac.uk/im/test_cdds.m

3 Conclusions

We defined a new data-driven simulation problem, in which theclosed-loop behavior of the unknown plant, in feed-

back with a given controller, is computed from a given trajectory of the plant and a representation of the controller.

The proposed algorithm involves a solution of a linear system of equations and is, therefore, computationally fast and

easy to implement. Future work will investigate modifications of the algorithm for recursive computation and noisy

data, as well as application of closed-loop data-driven simulation in unfalsified and model predictive control.

6



−5 0 5 10
−20

−15

−10

−5

0

 

 

t

rd

yd

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

 

 

t

rr

yr

s

Figure 1: Step responses ofBC1 (left) andBC2 (right).
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