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Abstract

Closed-loop data-driven simulation refers to the probldrfinaling the set of all responses of a closed-loop
system to a given reference signal directly from an inpdapottrajectory of the plant and a representation of the
controller. Conditions under which the problem has a sotusire given and an algorithm for computing the solution
is presented. The problem formulation and its solution at@é spirit of the deterministic subspace identification
algorithms,i.e., in the theoretical analysis of the method, the data is asdusract (noise free). The results have
applications in data-driven contra,g, testing controller's performance directly from closed data of the plant

in feedback with possibly different controller.

Keywords: System identification; Subspace methods; Persistencyaifa¢ion; Data-driven simulation and

control.

1 Introduction

The data-driven simulation problem is defined as followsegia trajectory of an unknown system, find the response
of that system to a different input signal (under specifigtiainconditions). Of course, data-driven simulation can
be reduced to classical model-based simulatioidentifyingthe unknown system from the given trajectory. In the
case of linear time-invariant (LTI) systems, however, thebfem can be solvedithout identifyinga representation
of the system in an intermediate step [MWRMO05a, MWRMO5b]e Tésulting algorithm involves solution of a linear
system of equations in which the left hand side is a Hanketirebnstructed from the given trajectory and the right
hand side is the desired trajectory. Despite the compuiatisimplicity of the basic idea, the theoretical analysis
and computational details are not trivial due to the neechsue that the given data is sufficiently informative, the
need to organize the computations recursively and to dehltheé initial conditions. Indeed, a data-driven simulatio
problem may not be solvable. The main assumptions for siityahre controllability of the system and persistency
of excitation of the input that has generated the givendtajg.

The concept of data-driven simulation and the resulting matational algorithms have applications in system

identification, e.g, computation of the impulse response from input/outpué d&ia special data-driven simulation
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problem. Another application of data-driven simulationViW'DO06] is to give a system theoretic interpretation of
the orthogonal and oblique projections, which appear irsthespace identification methods [VD96, VD92]. Finally,
as shown in [MR0O7, MR08], data-driven simulation is the miaiiding block of data-driven control methods.,
methods that derive the control signal directly from a ttjey of the plant without identifying a model of the plant.

This paper further develops the concept of data-driven lsition to closed-loop data-driven simulation, defined as
follows: given an input/output trajectory of an unknowntgys and a representation of a controller, find all responses
of that closed-loop system to a given reference signal. Qativation for studying the closed-loop data-driven sim-
ulation problem comes from unfalsified control [ST97]. Usited control is an switching adaptive control method
that selects in real-time a controller satisfying the penfance specification from a set of candidate controllerg Th
main step in unfalsified control is testing the performanta candidate controller without applying it on the plant.
The performance of the candidate controller is evalualiesttly from data collected of the plant (possibly operat-
ing in closed-loop with another controller). Data-drivémslation allows us to evaluate the controller performance
by computing the closed-loop behavior of the plant with theig controller. The standard performance test in the
unfalsified control setting makes no assumptions about lduet gtherefore it is applicable for a general nonlinear
time-varying system), however, it computes a single ttajgoof the closed-loop system, so that the performance test
can be conservative. In contrast, closed-loop data-dideetrol uses an LTI assumption about the plant but computes
the full behaviors of the closed-loop system, so that it is-oonservative in the LTI case.

A standing assumption throughout the paper is that the dafarierated by an LTI system of bounded complexity.
Admittedly, this assumption is practically unrealistigwever, it is convenient for the theoretical study.,(deter-
ministic subspace identification) and trivial modificasoof the algorithm—replace solution of a linear system of
equation by an approximate solution, rank test by a numeadcek test,etc—leads to practically useful algorithms
that can cope with noise on the datd.,(stochastic subspace identification). We envisage thahastic version of

the results presented in this paper will appear in neardutur

Notation

We use the following standard notatioR: is the set of real number¥{ is the set of natural numbers, aRd is the

w-dimensional real vector spac@®” )" denotes the set of functions frato R¥, i.e., w € (R")Y is the time series

w= (W(1),w(2),...,w(t),...),  where w(t)€R".

w= (W(1),w(2),...,w(t),...,w(T)),  where w(t)eR",

however, with some abuse of notation, we will views (R¥)" also as arT-dimensional vector. The concatenation
of the finite sequencey, with the (possibly infinite) sequenag is denoted bywp, w). AT is the pseudo-inverse of

the matrixA and coldin{A) is the number of columns @
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The behavioural setting [Wil87] is especially suitable $otution of data-driven simulation and control problems
because it treats a dynamical system as a set of trajec{oaiber than equations) thus making explicit the relation
between a trajectory and the system that generates thettngjeln the behavioural setting, a discrete-time dynainic
systemZ with w manifest variables (inputs and outputs) is a subset of teasispacgR")Y. In this paper, we

assume that the manifest variablefiave agiveninput/output partition

-

whereu € (R™)N is an input and/ € (RP)Y is an output. Theestriction Z|1 of the behavior to the interval[1, T]
is defined as

Bl = {wp € (R")T | there isws € (R¥)" such thatiwp,w) € Z},
i.e., there is an extension; of a finite trajectoryf, € 4|t of the system, to an infinite trajectory= (w,, W) € Z.

The feedback interconnection of the plastC (R¥)Y and a controllefs” C (R%)N

T % - B j—> y
is given by
By = PBextNC,
where
PBext = { {r e R*™N | we #}.
w

We consider linear, time-invariant, and finite dimensigulahts and controllers. A kernel representatRiw)w = 0,
wereo is the backwards shift operator

ow(t) :=w(t+1),

is parameterized by the polynomial matRxand an image representation= M(0')g is parameterized by the poly-
nomial matrixM.

The Hankel matrix with block rows, composed of the finite signake (R¥)" is denoted by

W) w2 o WT—t+1)]
w2 w@ - wWT-t+2)

JAW) = w3 w4 - wT-t+3)]. 1)
_W(t) w(t+1) --- w(T) |

The signalu = (u(1),...,u(T)) is calledpersistently excitingf orderL if the Hankel matrix{ (u) is of full row

rank. The banded upper-triangular Toeplitz matrix witlock-columns, related to the polynomial
r(z) =ro+riz+---+rp2"

3



is denoted by

rp ri. -~ r, 0 -~ O
0 rog rp - rn o
F() = | " - 2)
. T o T T 0
o ... 0 o ri -+ rInp

2 Closed-loop data-driven simulation

Problem 1 (Closed-loop data-driven simulation{siven
e trajectorywg = (Wg(1),...,wqy(T)) € (R¥)" of alinear time-invariant syste® C (R¥)", with an input/output
partitionw = [y] € %, u < (R®)N input,y € (RP)Y output;
e linear time-invariant controlle’ c (R**P*™)N with an input/output partitiony,] € €, r € (R*)N, y € (RP)N
inputs,u € (R™)N output; and
o reference signal = (ri(1),...,r(Ty)) € (R*)"

find the set of respons&g of the closed-loop syste® to the reference signaj.

Solution and computational algorithm

A closed-loop data-driven simulation algorithm aims to pone for givenwy, %', andr,, the signalsw;, such that

re Wy € At
€ Felr { : 3)
W [wi] € ¢l

Assuming that the syste# is controllable, it admits a minimal image representation
B={w=M(0)l |l e (RN}
Consider a minimal kernel representation of the controller

r

¢ ={ |R(0)r+Ry(0)w=0}.

w

In terms of the image and kernel representations of the plaghicontroller, (3) becomes

{ there isg, such thatv, = M(o)g %
R(o)rr+Ry(o)w, =0.

We can and do assume that the controtélis specified by a kernel representation, however, the plans only
implicitly specified by the trajectorywy and we aim to avoid using a representatiorzhf The crucial step for doing

this is to replace the image representation in (4) by theteamua
Wr = %ﬁ (Wd)ga (5)

which depends only on the datg. The equivalence of, = M(o)g and (5) holds under the following assumptions
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1. the system? is controllable,

2. the input componenty of wy is persistently exciting of ordel; plus the order of%,

and is proved in [WRMMO05, Theorem 1], see also [MWVDO06, Sati8.4]. Therefore, under assumptions 1 and 2,
the set of solutionsy; of the linear system of equations
Wr = e%érr (Wd)g

<7:|—r(|:\)W)Wr = —%AR;)H.
is equal to the set of trajectori@g solving the closed-loop data-driven simulation problem.

(6)

Note2 (Multi-output systems)In (6), we have replaced the difference oper&@w) by the structured matri¥s (R).
In the multi-output case, the structure &f is more complicated than the one shown in (2). In order to Biynihe

presentation and abstract from technical details, we asshat the system is single-output.
Substitutingw; = .77, (Wg)g into the second equation of (6) gives the following systeragfations
%r(RW)%}(Wd) g= _%r(Rr)rr

A b
The matrixA is of dimensionT, x (r +w)T;, so that the systerAg= b is underdetermined. Lej, be a particular

solution,e.g, the least-norm solutiogy = A'b and letN be a matrix whose columns span the null spac&.dfhe set
of solution of (6) forg is

4 :={go+Nz| ze REOIIMN) 1
Then the set of responses of the closed-loop syste®, to the reference signal is

Wi = A5, (Wo)G = { S5, (Wa) Qo +75, (Wa)N Z | z € REIAMN) 3.
N——o—
Wr,0

It is characterized by the particular respomgg and a subspace—the column span of the mat#§x(wq)N. Algo-
rithm 1 summarizes the necessary steps for data-driven wtatigm of’#; from wy, R, andr,.
We proved that under the assumptions on the datand the plant?, specified in the derivation of the algorithm,

Algorithm 1 solves Problem 1.
Theorem 3. Under the following assumptions:

1. the systen# is controllable,

2. the input componentywf wy is persistently exciting of order, plus the order of,

the set

Wi = {Wr 0+ Nyz | ze REIMNG) 1

computed by Algorithm 1 is equal to the set,a§@mples long responses of the closed-loop sygfeno the reference
signal r, i.e,,

w\ Ty v
W ={we [R")"| € Pyln }-

w



Algorithm 1 Closed-loop data-driven simulation.

Input: trajectorywy € (R¥)T of an LTI system, parameter[R, RW} of a minimal kernel representation of the
controller¢’, and reference signal € (R*)™.

1. Compute the least-norm solutigg of the system of equations

T (Ru) 3, (Wa)9 = — Z3.(R)rr.

2: Letw, g := J7%. (Wq)Qo.
3: Compute a matri®N which columns form a basis for the column spanZaf(Ry) 7. (Wq).
4: Let Ny, be a basis for the column span.gfr. (wg)N.
Output: # = {W o+ Nyz | z€ RIIMN) 1 the set ofT, samples long responses of the closed-loop sys#m

to the reference signa).

Simulation example

The datawg = [yd], used for the closed-loop data driven simulation, is the filssamples from the step response of
a randomly generated first order systeéfrinterconnected with the controlléf; := { [9] |lu=r—y}. Theaimisto
compute the firsT, = 10 samples of the step response%f,, where%, := { m | u=r+y}. For this purpose we
use Algorithm 1,.e., we do not compute explicitly a representationZf Note that either of the systenig,,, %,
can be unstable.

In order to ensure that assumption 2 is satisfied, we augrnergiven trajectory—the step responsesf,—
with T, zeros. This takes into account the zero initial conditiohthe given trajectory and ensures that the initial
conditions of the computed responseof %y, are also zeroif. N, = 0). The results for a particular systes
are shown in Figure 1. We verify that up to numerical erngrenatches the step responsef %,, obtained by

model-based simulation. A Matlab file reproducing the satiah result is available from:

http://users. ecs.soton. ac. uk/inftest_cdds. m

3 Conclusions

We defined a new data-driven simulation problem, in whichdbsed-loop behavior of the unknown plant, in feed-

back with a given controller, is computed from a given trageg of the plant and a representation of the controller.
The proposed algorithm involves a solution of a linear systé equations and is, therefore, computationally fast and
easy to implement. Future work will investigate modificamf the algorithm for recursive computation and noisy

data, as well as application of closed-loop data-driverukition in unfalsified and model predictive control.
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Figure 1: Step responses @, (left) and Ay, (right).
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