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We thank the reviewers and the editors for their relevantumadul comments. In this document, we quotdaid
face statements from the reports. Our replies follow in ordinawint.

Answer to the editors

the notations of the paper may have caused problems for peaplto understand the contribution ... new nota-
tions keep popping up

In the revised version of the paper, we took special care eddawynnecessary notation and define in advance the
notation that is used. Subsection “Notation” of the newisactintroduction” collects all definitions used in the pape

. undefined notation, includingry in (2) ...

re fork=0,1,...,ndenote the coefficients of a polynomrak R[Z (of degreen). In the revised version of the paper,
we have added the missing definitiatiz) =ro+riz+--- +ry2".

... andRy and R, in step 1 of Algorithm 1

Indeed,R, andR; are not defined in Algorithm 1. (They are only defined in theopraf the theorem). In fact, the
steps of the algorithm can not be understand without reatiig derivation first. (See also the next comment.) In the
revised version of the paper, we give the derivation of tigerthm first (in the original version of the paper it was
in the proof of the theorem) and then the summary of the algori We believe this reversal in the exposition caused
the original confusion, which is now avoided.

| personally have had hard time to understand the equation inl of Algorithm 1 that does not follow easily from
the kernel representation and image representation in pag2. Some derivations are needed.

Yes, we agree. In fact, one page of derivations are needesl~dite given in the proof of the theorem. We revised
the paper by first giving the solution of the closed-loop d#igen simulation problem and then the summary of the
resulting algorithm. (See the previous comment.)

Answer to Reviewer 1

Whether this [data-driven simulation] is conducted in openor closed loop is inessential.

1. In data-driven simulation, a desired response is cordputen a response of the unknown system. In closed-
loop data-driven simulation, the closed-loop behaviooimiputed from a response of the unknown sysas



a representation of a controller. It is not clear a priori hewajectory of the plant and a representation of a
controller can be combined in a computation of the behavidh® closed-loop system plant—controller. The
way to do this involves ideas from the behavioral systemhp&RMMO5] and is a new result in this paper.

2. Another important difference between data-driven satioh and closed-loop data-driven simulation is that
in the former a single response is sought, while in the laitegeneral, a set of responses (the closed-loop
behavior) is computed.

Since the underlying system is LTI, the essential problem it solve a set of linear equations.

We agree. However, this fact does not imply that the probketrivial or unimportant. Certainly, solution of a set of
linear equations appears in many nontrivial probleeng, realization theory, which is without doubt a major resalt i
linear system theory from the 70’s and also boils down totgmiwf a system of linear equations. It is not necessary
to argue that solution of a set of linear equations also ictimputational tool for many (all?) practically important
problems. Therefore, the criticism of the reviewer to thespnted results in the paper does not imply that closed-loop
data-driven simulation is trivial or unimportant. In thesarer to the next comment and the introduction of the paper,
we argue that the problem is nontrivial and important indeed

| fail to see whether the paper has brought up anything new andgignificant, either conceptually or numerically.

We hope the reviewer agrees that the paper proposes ang saige/problem. As pointed out in the answer to the
first comment of the reviewer, the problem is not trivial asdaplained in the paper, it is motivated by an application
in unfalsified control, so we believe that it is practicalleful as well as theoretically interesting. We bring nevaile
of combing a trajectory of an unknown system with a repreg@nt of a control for that system. The results in the
paper lead to concrete computational algorithms that eviergan implement (or download the Matlab code from our
web page) and use.

Answer to Reviewer 2

It is assumed in this paper that the plant is linear time invariant and measured data are noise free. ... It seems
to me that the assumptions in this paper are too strong.

We agree that the exact data assumption is strong. Indeidalinost never satisfied in practice. This, however,

does not invalidate the results for the following reasontivéal modification of the algorithm—replace solution of

a linear system of equation by an approximate solutioreig, the least squares sense, rank test by a numerical
rank test, and computation of a basis of subspace by congutat an approximate basis, using the singular value

decomposition—Ileads to a practically useful algorithnt tizan cope with a moderate amount of noise on the data.

Note that a high level library for numerical linear algeboanputations will probably do these substitutions automat-
ically, so code designed for exact data may actually workavit modification with noisy data. This is the case for
Matlab code: Figure 1 shows the degradation of the algot#tip@rformance in the presence of noise. It is noteworthy
that the algorithm does not break in the presence of nosegitformance gradually degrades as the SNR decreases.

We would like to point out that in the class of the highly sws=fal subspace identification methods, historically the
first algorithms [Gop69, Bud71] are designed for exact ddta.the literature [VD96, Chapter 2] they are called
deterministic subspace identification methods.) Subs#tylesubspace identification was extended to the arguably
more useful stochastic and combined stochastic-detestinimproblems. The core computational steps (orthogonal
and oblique projections) in these newer variations, howee exactly the same as the ones in the original deter-
ministic algorithms. For special identification problemagiere additional prior knowledge is used, more efficient
algorithms were proposed, however the value of the brealgtr came from the deterministic subspace identification
methods. This fact is often overlooked.

We are aware of data-driven simulation algorithms spedifictesigned to deal with noisy data: our result from
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Figure 1: Empirical results for the performance of the Altjon 1 in case of noisy datay{ = Viue+ noise). The
simulation setup is the same as the one described in the. j&lpase note that the given data is only 10 samples long
noisy trajectory, which is extremely short for obtainingodcestimates. This is compensated by the relatively small
amount of noise. The presented results are averaged overdl®® repetitions. Main point: performance degrades
gracefully rather and we do not see a breakdown of the algoritue to the noisy data.

[MWRMO5], which is derived under the same assumptions asties in the present paper, was extended to the noisy
case in [RPRO08]. We envisage that the same will happen wétlelttsed-loop data-driven simulation problem.

A paragraph explaining these important points was addeukiintroduction:

A standing assumption throughout the paper is that the dajanierated by an LTI system of bounded
complexity. Admittedly, this assumption is practicallyrealistic, however, it is convenient for the the-
oretical study ¢f., deterministic subspace identification) and trivial magifions of the algorithm—
replace solution of a linear system of equation by an appraté solution, rank test by a numerical rank
test,etc—Ileads to practically useful algorithms that can cope witfse on the datac{,, stochastic sub-
space identification). We envisage that stochastic versditine results presented in this paper will appear
in near future.

Under these assumptions, there should not be a significantfitrence between normal LTI model and measured
input/output data.

We disagree—obviously the data may not be informative tai§pthe data generating system, so there is difference
between data and model. If the analysis is done properly,difference is significant. This nontrivial aspect of the
exact identification and data-driven simulation problenas wesolved in [WRMMO5].

The main contribution of this paper is limited.
Please refer to the answer of the third comment of Reviewer 1.
technical comments

1. The author should present certain advantages to study theroblem with “the behavioral language”. It seems
to me that this tool makes the problem to be more complicated.

We have added the following explanation in the introduction

The behavioural setting [Wil87] is especially suitable $otution of data-driven simulation and control
problems because it treats a dynamical system as a setaxttgs (rather than equations) thus making
explicit the relation between a trajectory and the systeaihdlenerates the trajectory.
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Also the current work steps on previous work done in the biehavsetting [WRMMO05, MWRMO05, MWVDO06],
which makes it natural to use the same philosophy and natatio

2. The notations regarding to the description of the systemre quite confused. For exampleRY and R™ in page
1 have different meaning but the author did not clarify it.

We took extra care to avoid unnecessary notation and to dafinetation that we use in advance. The meaning‘of
andR™ on page 1 is not different — these are real vector spacesnardiionw andm, respectively, as now defined
in subsection “Notation”.

3. The author stated in second line of Section 1 that a systers a set of function fromN to RY. And then in the
second equation of page 1, there isnv,, wr) € 4. It should be noticed thatw, is a function from 1,...,T to R".
Author should carefully present all notations in the paper.

The meaning ofw,, W) is concatenation of the trajectoriag andws. We have not explain this in the original version
of the paper, which is probably the reason for the confusidre revised version of the paper introduces all relevant
notation and, in particular, the meaning(of,, w).

4. The paper does not include sections for introduction andanclusion. It is very unusual.

“Introduction” and “Conclusion” sections are added.
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