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We thank the reviewers and the editors for their relevant anduseful comments. In this document, we quote inbold
facestatements from the reports. Our replies follow in ordinaryprint.

Answer to the editors

the notations of the paper may have caused problems for people to understand the contribution . . . new nota-
tions keep popping up

In the revised version of the paper, we took special care to avoid unnecessary notation and define in advance the
notation that is used. Subsection “Notation” of the new section “Introduction” collects all definitions used in the paper.

. . . undefined notation, includingrk in (2) . . .

rk for k = 0,1, . . . ,n denote the coefficients of a polynomialr ∈ R[z] (of degreen). In the revised version of the paper,
we have added the missing definition:r(z) = r0 + r1z+ · · ·+ rnzn.

. . . andRw and Rr in step 1 of Algorithm 1

Indeed,Rw andRr are not defined in Algorithm 1. (They are only defined in the proof of the theorem). In fact, the
steps of the algorithm can not be understand without readingtheir derivation first. (See also the next comment.) In the
revised version of the paper, we give the derivation of the algorithm first (in the original version of the paper it was
in the proof of the theorem) and then the summary of the algorithm. We believe this reversal in the exposition caused
the original confusion, which is now avoided.

I personally have had hard time to understand the equation in1 of Algorithm 1 that does not follow easily from
the kernel representation and image representation in page2. Some derivations are needed.

Yes, we agree. In fact, one page of derivations are needed—they are given in the proof of the theorem. We revised
the paper by first giving the solution of the closed-loop data-driven simulation problem and then the summary of the
resulting algorithm. (See the previous comment.)

Answer to Reviewer 1

Whether this [data-driven simulation] is conducted in openor closed loop is inessential.

1. In data-driven simulation, a desired response is computed from a response of the unknown system. In closed-
loop data-driven simulation, the closed-loop behavior is computed from a response of the unknown systemand
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a representation of a controller. It is not clear a priori howa trajectory of the plant and a representation of a
controller can be combined in a computation of the behavior of the closed-loop system plant–controller. The
way to do this involves ideas from the behavioral system theory [WRMM05] and is a new result in this paper.

2. Another important difference between data-driven simulation and closed-loop data-driven simulation is that
in the former a single response is sought, while in the latter, in general, a set of responses (the closed-loop
behavior) is computed.

Since the underlying system is LTI, the essential problem isto solve a set of linear equations.

We agree. However, this fact does not imply that the problem is trivial or unimportant. Certainly, solution of a set of
linear equations appears in many nontrivial problems,e.g., realization theory, which is without doubt a major result in
linear system theory from the 70’s and also boils down to solution of a system of linear equations. It is not necessary
to argue that solution of a set of linear equations also is thecomputational tool for many (all?) practically important
problems. Therefore, the criticism of the reviewer to the presented results in the paper does not imply that closed-loop
data-driven simulation is trivial or unimportant. In the answer to the next comment and the introduction of the paper,
we argue that the problem is nontrivial and important indeed.

I fail to see whether the paper has brought up anything new andsignificant, either conceptually or numerically.

We hope the reviewer agrees that the paper proposes and solves anewproblem. As pointed out in the answer to the
first comment of the reviewer, the problem is not trivial and as explained in the paper, it is motivated by an application
in unfalsified control, so we believe that it is practically useful as well as theoretically interesting. We bring new ideas
of combing a trajectory of an unknown system with a representation of a control for that system. The results in the
paper lead to concrete computational algorithms that everyone can implement (or download the Matlab code from our
web page) and use.

Answer to Reviewer 2

It is assumed in this paper that the plant is linear time invariant and measured data are noise free. . . . It seems
to me that the assumptions in this paper are too strong.

We agree that the exact data assumption is strong. Indeed, itis almost never satisfied in practice. This, however,
does not invalidate the results for the following reason: a trivial modification of the algorithm—replace solution of
a linear system of equation by an approximate solution in,e.g., the least squares sense, rank test by a numerical
rank test, and computation of a basis of subspace by computation of an approximate basis, using the singular value
decomposition—leads to a practically useful algorithm that can cope with a moderate amount of noise on the data.

Note that a high level library for numerical linear algebra computations will probably do these substitutions automat-
ically, so code designed for exact data may actually work without modification with noisy data. This is the case for
Matlab code: Figure 1 shows the degradation of the algorithm’s performance in the presence of noise. It is noteworthy
that the algorithm does not break in the presence of noise; its performance gradually degrades as the SNR decreases.

We would like to point out that in the class of the highly successful subspace identification methods, historically the
first algorithms [Gop69, Bud71] are designed for exact data.(In the literature [VD96, Chapter 2] they are called
deterministic subspace identification methods.) Subsequently, subspace identification was extended to the arguably
more useful stochastic and combined stochastic-deterministic problems. The core computational steps (orthogonal
and oblique projections) in these newer variations, however, are exactly the same as the ones in the original deter-
ministic algorithms. For special identification problems,where additional prior knowledge is used, more efficient
algorithms were proposed, however the value of the breakthrough came from the deterministic subspace identification
methods. This fact is often overlooked.

We are aware of data-driven simulation algorithms specifically designed to deal with noisy data: our result from
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Figure 1: Empirical results for the performance of the Algorithm 1 in case of noisy data (yd = ytrue+ noise). The
simulation setup is the same as the one described in the paper. Please note that the given data is only 10 samples long
noisy trajectory, which is extremely short for obtaining good estimates. This is compensated by the relatively small
amount of noise. The presented results are averaged over 100noise repetitions. Main point: performance degrades
gracefully rather and we do not see a breakdown of the algorithm due to the noisy data.

[MWRM05], which is derived under the same assumptions as theones in the present paper, was extended to the noisy
case in [RPR08]. We envisage that the same will happen with the closed-loop data-driven simulation problem.

A paragraph explaining these important points was added in the introduction:

A standing assumption throughout the paper is that the data is generated by an LTI system of bounded
complexity. Admittedly, this assumption is practically unrealistic, however, it is convenient for the the-
oretical study (cf., deterministic subspace identification) and trivial modifications of the algorithm—
replace solution of a linear system of equation by an approximate solution, rank test by a numerical rank
test,etc.—leads to practically useful algorithms that can cope withnoise on the data (cf., stochastic sub-
space identification). We envisage that stochastic versionof the results presented in this paper will appear
in near future.

Under these assumptions, there should not be a significant difference between normal LTI model and measured
input/output data.

We disagree—obviously the data may not be informative to specify the data generating system, so there is difference
between data and model. If the analysis is done properly, this difference is significant. This nontrivial aspect of the
exact identification and data-driven simulation problems was resolved in [WRMM05].

The main contribution of this paper is limited.

Please refer to the answer of the third comment of Reviewer 1.

technical comments

1. The author should present certain advantages to study theproblem with “the behavioral language”. It seems
to me that this tool makes the problem to be more complicated.

We have added the following explanation in the introduction:

The behavioural setting [Wil87] is especially suitable forsolution of data-driven simulation and control
problems because it treats a dynamical system as a set of trajectories (rather than equations) thus making
explicit the relation between a trajectory and the system that generates the trajectory.
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Also the current work steps on previous work done in the behavioral setting [WRMM05, MWRM05, MWVD06],
which makes it natural to use the same philosophy and notation.

2. The notations regarding to the description of the system are quite confused. For exampleRw and R
m in page

1 have different meaning but the author did not clarify it.

We took extra care to avoid unnecessary notation and to defineall notation that we use in advance. The meaning ofR
w

andR
m on page 1 is not different — these are real vector spaces, of dimensionw andm, respectively, as now defined

in subsection “Notation”.

3. The author stated in second line of Section 1 that a system is a set of function fromN to R
w. And then in the

second equation of page 1, there is(wp,wf) ∈ B. It should be noticed thatwp is a function from 1, . . . ,T to R
w.

Author should carefully present all notations in the paper.

The meaning of(wp,wf) is concatenation of the trajectorieswp andwf. We have not explain this in the original version
of the paper, which is probably the reason for the confusion.The revised version of the paper introduces all relevant
notation and, in particular, the meaning of(wp,wf).

4. The paper does not include sections for introduction and conclusion. It is very unusual.

“Introduction” and “Conclusion” sections are added.
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