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Abstract

The main result establishes that if a controller C (comprising of a linear feedback of the
output and its derivatives) globally stabilizes a (nonlinear) plant P , then global stabilization
of P can also be achieved by an output feedback controller C[h] where the output derivatives
in C are replaced by an Euler approximation with sufficiently small delay h > 0. This is
proved within the conceptual framework of the nonlinear gap metric approach to robust
stability. The main result is then applied to finite dimensional linear minimum phase systems
with unknown coefficients but known relative degree and known sign of the high frequency
gain. Results are also given for systems with non-zero initial conditions.

Nomenclature
C+, C− = {s ∈ C |Re s > 0}, {s ∈ C |Re s < 0}, respectively

|x| =
√

xT x, the Euclidean norm of x ∈ Rn

|A| = max
{|Ax| ∣∣ x ∈ Rm, |x| = 1

}
, the induced matrix norm for A ∈ Rn×m

[a1/a2/ . . . /am] =
[
aT

1 , aT
2 , . . . , aT

m

]T ∈ Rm×n for a1, a2, . . . , am ∈ R1×n

e
(n)
k = [0, . . . , 0, 1, 0, . . . , 0]T , the k-th unit vector in Rn, for k, n ∈ N and k ≤ n

spec(A) the spectrum of A ∈ Rn×n

im A, kerA the image and kernel of A ∈ Rn×m

‖v‖V the norm of v ∈ V, for a normed vector space V
map(E → F ) the set of all maps from the set E to the set F

Cr(I → R`) the set of r-times continuous differentiable functions y : I → R`, where
r ∈ N ∪ {∞} and I ⊂ R is an interval

Cpw(I → R`) the set of piecewise continuous functions y : I → R`, I ⊂ R an interval
Lp(I → R`) the space of p-integrable functions y : I → R`, 1 ≤ p < ∞, I ⊂ R an

interval, with norm ‖y‖Lp(I→R`) =
(∫

I |y(t)|p dt
) 1

p

L∞(I → R`) the space of essentially bounded functions y : I → R`, I ⊂ R an interval,
with norm ‖y‖L∞(I→R`) = ess sup

t∈I
|y(t)|

CLp(I → R`) = C(I → R`) ∩ Lp(I → R`), 1 ≤ p ≤ ∞, I ⊂ R an interval, with norm
‖y‖CLp(I→R`) = ‖y‖Lp(I→R`)

CW r,p(I → R`) =
{

y ∈ Cr(I → R`)
∣∣∣∀ i ∈ {0, . . . , r} : y(i) ∈ Lp(I → R`)

}
, r ∈ N, 1 ≤ p ≤

∞, I ⊂ R an interval, with norm ‖y‖CW r,p(I→R`) =
r∑

i=0
‖y(i)‖Lp(I→R`)
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CW r,p
0 (I → R`) =

{
y ∈ Cr(I → R`)

∣∣∣∣∣
∀ i ∈ {0, . . . , r} : y(i) ∈ Lp(I → R`) ,

if 0 ∈ I , then ∀ i ∈ {0, . . . , r − 1} : y(i)(0) = 0

}
,

r ∈ N, 1 ≤ p ≤ ∞, I ⊂ R an interval, with norm ‖y‖CW r,p(I→R`)

CW∞,p
0 (I → R`) =





y ∈ C∞(I → R`)

∣∣∣∣∣∣∣

∀ i ∈ N0 : y(i) ∈ Lp(I → R`) ,∑∞
i=0 ‖y(i)‖Lp(I→R`) < ∞ ,

if 0 ∈ I , then ∀ i ∈ N0 : y(i)(0) = 0





,

1 ≤ p ≤ ∞, I ⊂ R an interval, with norm ‖y‖CW∞,p(I→R`)

1 Introduction

We present conditions under which a feedback controller based on the measured output and its
derivatives can be replaced by a feedback controller based on the measured output and numerical
derivatives. Derivative feedback occurs frequently in control; for example, PD controllers are of
this type as are state feedback of systems of full relative degree and as are suitable partial state
feedbacks for systems of non-zero relative degree.

The problem is studied in the setup of the classical feedback configuration shown in Figure 1,

u0

u1 y1

P

C y0

u2 y2

−

+

+

−

Figure 1: The closed-loop system [P, C]

and we are concerned with the concept of gain stability, that is with the existence and size of
a finite gain from the external disturbances (u0, y0) to the internal signals (u1, y1), that is the
quantity

γ := sup
(u0,y0)∈U×Y\{0}

‖(u1, y1)‖U×Y
‖(u0, y0)‖U×Y < ∞,

for some appropriate choices of signal spaces U ,Y. We show that if P is stabilizable (P may be
nonlinear) by some derivative feedback controller

Ck : y2 7→ u2 = −
r−1∑

i=0

ki+1 y
(i)
2 , k = (k1, . . . , kr) ∈ R1×r , (1.1)

then stabilization can also be achieved by replacing Ck by the delay feedback controller CEuler
k [h]

for sufficiently small h > 0, given by

CEuler
k [h] : y2 7→ u2 = −

r−1∑

i=0

ki+1 ∆i
hy2 , (1.2)

here ∆0
hy2 = y2 and ∆i

hy2, for i ≥ 1, denotes the Euler approximation of the ith derivative of y2

defined by

∆i
hy2 = ∆h ◦ · · · ◦∆h︸ ︷︷ ︸

i times

y2 , where (∆hy2) (t) =
y2(t)− y2(t− h)

h
.
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The signal spaces for which these results hold depend on structural properties of the plant P .
For concreteness we consider the case of single input, single output linear plants, which are
minimum phase and of relative degree ρ ≥ 1 and show that the choices U = CLp(R≥0 → R),
Y = CW k,p(R≥0 → R) are valid, where k = ρ and either r = ρ− 1 if p < ∞ or r = ρ if p = ∞.
The key motivation for this linear study is to establish the appropriate signal space settings,
whereby the degree of regularity required in Y is determined by the relative degree. In the case
of r = ρ, a stabilizing high-gain feedback is constructed and an explicit upper bound on the
permitted delays is given. The case of k = ∞ is also considered. In the linear setting, the results
are also extended to incorporate systems with non-zero initial conditions.
The results are established by computing the gap distance between Ck and CEuler

k [h] and using
variants on nonlinear robust stability theory [7] to deduce the stability of the closed-loop con-
taining the Euler controller from the stability of the derivative feedback controlled closed-loop.
In practice, PD controllers or (partial) state feedback are often implemented by such approxima-
tions. In the context of nonlinear plants, there are often limited options for the implementation
of a (partial) state feedback: nonlinear observers are only available for limited classes of plants.
Of course, in practice, a direct implementation of CEuler

k [h] is as problematic as the direct imple-
mentation of Ck from measurement of y2 only: we are simply replacing the problem of calculating
the derivative of the measurement with the problem of storing a finite interval of past measure-
ments (so that the delays can be evaluated). However, sampled versions of CEuler

k [h] can also
be analysed utilizing the techniques of this paper, and such realisations, which coincide with
common engineering practice, give analogous results. A variety of sampled versions of these re-
sults will be given in the companion paper [6], which also extends the results for fully nonlinear
controllers and to the important case of semi-global stabilization.
Perhaps surprisingly, there are relatively few theoretical results available on closed-loop stabil-
ity for such delay based controllers. For linear time-invariant systems with relative degree 2
controlled by the delay feedback (1.2), exponential stability of the resulting closed-loop delay
differential system was established in [10]. An analogous result for higher relative degree has not
been previously established. Stabilization of (nonlinear) systems via delays has been considered
by some authors: in [13] the authors give a control strategy with multiple delays that stabilizes
a simple system of the form y(n) = u. In [12] necessary conditions for multiple delay controllers
that stabilize linear systems are shown, but no explicit control strategy is given. In [11] the
author considers nonlinear systems with several constraints and gives a control strategy that
achieves a bounded output.
The paper is organized as follows. In Section 2 we introduce the background theory and establish
a key robust stability result. Section 3 contains the main theorem of the paper which shows that a
stabilizing derivative feedback controller may be substituted by a delay feedback controller if the
delay is sufficiently small. In Section 4 we consider applications to linear systems to demonstrate
structural features of the conditions, giving results establishing both external (gain) stability
and internal stability of the closed-loop system.

2 Background

The material in this section is based on [7, Sect. II], [4, Sect. 2] and [5, Sect. 2] and contains
the gap metric results necessary for proving robustness in Section 3.

2.1 Terminology

Let X be a nonempty set. For 0 < ω ≤ ∞ let Sω denote the set of all locally integrable maps in
map([0, ω) → X ). For ease of notation define S := S∞. For 0 < τ < ω ≤ ∞ define a truncation

3



operator Tτ and the restriction of maps as follows:

Tτ : Sω → S , v 7→ Tτv :=
(

t 7→
{

v(t), t ∈ [0, τ)
0, t ∈ [τ,∞)

)
,

(·)∣∣
[0,τ)

: Sω → Sτ , v 7→ v
∣∣
[0,τ)

:= (t 7→ v(t), t ∈ [0, τ)) .

With V ⊂ S we associate spaces as follows:

V[0, τ) =
{

v ∈ Sτ

∣∣∣∃w ∈ V with ‖Tτw‖V < ∞ : v = w
∣∣
[0,τ)

}
, for τ > 0 ;

Ve =
{

v ∈ S
∣∣∣ ∀ τ > 0 : v

∣∣
[0,τ)

∈ V[0, τ)
}

, the extended space ;

Vω =
{

v ∈ Sω

∣∣∣ ∀ τ ∈ (0, ω) : v
∣∣
[0,τ)

∈ V[0, τ)
}

, for 0 < ω ≤ ∞ ;

Va =
⋃

ω∈(0,∞] Vω , the ambient space .

For Lp spaces these definitions coincide with the definitions of ambient and extended spaces
given in [4, 5, 7] however note that the definitions in [4, 5, 7] are not applicable for subspaces of
continuously differentiable functions as considered in the present paper, this is due to the fact
that CW r,p(R≥0 → R) is not closed under the action of Tτ , τ > 0.

If v, w ∈ Va with v|I = w|I on I = dom(v)∩dom(w), then we write v = w. For (u, y) ∈ Va×Va,
the domains of u and y may be different; we adopt the convention

dom(u, y) := dom(u) ∩ dom(y) .

We say V ⊂ S is a signal space if, and only if, it is a normed vector space. For our main results
we will consider different types of signal spaces which are specified in (3.2).

2.2 Well posedness

A mapping Q : Ua → Ya is said to be causal if, and only if,

∀ x, y ∈ Ua ∀ τ ∈ dom(x) ∩ dom(Qx) :
[

x
∣∣
[0,τ)

= y
∣∣
[0,τ)

⇒ (Qx)∣∣
[0,τ)

= (Qy)∣∣
[0,τ)

]
.

Consider P : Ua → Ya, u1 7→ y1, and C : Ya → Ua, y2 7→ u2 being causal mappings representing
the plant and the controller, respectively, and satisfying the closed-loop equations:

[P,C] : y1 = Pu1, u2 = Cy2, u0 = u1 + u2, y0 = y1 + y2 , (2.1)

corresponding to the closed-loop shown in Figure 1.

For w0 = (u0, y0) ∈ W := U ×Y a pair (w1, w2) = ((u1, y1), (u2, y2)) ∈ Wa×Wa, Wa := Ua×Ya,
is a solution if, and only if, (2.1) holds on dom(w1, w2). The (possibly empty) set of solutions is
denoted by

Xw0 := {(w1, w2) ∈ Wa ×Wa | (w1, w2) solves (2.1)}
The closed-loop system [P, C], given by (2.1), is said to have:

• the existence property if, and only if, Xw0 6= ∅ ;

• the uniqueness property if, and only if,

∀ w0 ∈ W :
[
(ŵ1, ŵ2), (w̃1, w̃2) ∈ Xw0 =⇒

(ŵ1, ŵ2) = (w̃1, w̃2) on dom(ŵ1, ŵ2) ∩ dom (w̃1, w̃2)
]
.
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Assume that [P,C] has the existence and uniqueness property. For each w0 ∈ W, define ωw0 ∈
(0,∞], by the property

[0, ωw0) := ∪(ŵ1,ŵ2)∈Xw0
dom(ŵ1, ŵ2)

and define (w1, w2) ∈ Wa×Wa, with dom(w1, w2) = [0, ωw0), by the property (w1, w2)|[0,t) ∈ Xw0

for all t ∈ [0, ωw0). This construction induces the operator

HP,C : W →Wa ×Wa, w0 7→ (w1, w2) .

For Ω ⊂ W the closed-loop system [P, C], given by (2.1), is said to be:

• locally well posed on Ω if, and only if, it has the existence and uniqueness properties and
the operator HP,C

∣∣
Ω

: Ω →Wa ×Wa, w0 7→ (w1, w2), is causal;

• globally well posed on Ω if, and only if, it is locally well posed on Ω and HP,C(Ω) ⊂ We×We;

• regularly well posed if, and only if, it is locally well posed and

∀ w0 ∈ W
[

ωw0 < ∞ ⇒ ∥∥(HP,Cw0)|[0,τ)

∥∥
Wτ×Wτ

→∞ as τ → ωw0

]
. (2.2)

2.3 Graphs, the nonlinear gap metric and gain stability

For the plant operator P : Ua → Ya and the controller operator C : Ya → Ua define the graph
GP of the plant and the graph GC of the controller, respectively, as follows:

GP :=
{(

u
Pu

) ∣∣∣∣ u ∈ U , Pu ∈ Y
}
⊂ W , GC :=

{(
Cy
y

) ∣∣∣∣ Cy ∈ U , y ∈ Y
}
⊂ W .

Note that GP and GC are, strictly speaking, not subsets of W; however, abusing the notation we
identify GP 3 ( u

Pu ) = (u, Pu) ∈ W and GC 3 (
Cy
y

)
= (Cy, y) ∈ W. An operator P : Ua → Ya

is said to be causally extendible [8] (or stabilizable in [4]) if, and only if,

∀ τ > 0 ∀w1 = (u1, y1) ∈ Wa with Tτy1 = TτPu1 ∃w∗1 ∈ GP : Tτw1 = Tτw
∗
1 .

Given normed signal spaces X and V and Ω ⊂ X , a causal operator Q : X → Va is said to be
gain stable on Ω if, and only if,

Q(Ω) ⊂ V , Q(0) = 0 ,
∥∥Q

∣∣
Ω

∥∥
X ,V := sup

{‖(Qx)|[0,τ)‖Vτ

‖x|[0,τ)‖Xτ

∣∣∣ x ∈ Ω , τ > 0 , x|[0,τ) 6= 0
}

< ∞ .

Given normed signal spaces U , Y and W := U × Y and causal operators P : Ua → Ya, C : Ya →
Ua we make the following definitions. The closed-loop system [P, C] given by (2.1) with the
associated operator HP,C : W → Wa ×Wa is said to be W-stable if, and only if, it is globally
well posed and HP,C(W) ⊂ W ×W. It is said to be W-gain stable if and only if it is W-stable
and HP,C is gain stable on W.

Next, associate with the closed-loop system [P, C] given by (2.1) the following two parallel
projection operators:

ΠP//C : W →Wa , w0 7→ w1 and ΠC//P : W →Wa , w0 7→ w2 .

Note that gain stability of either ΠP//C and ΠC//P implies gain stability of the closed-loop
system [P,C], and that

∥∥ΠP//C

∥∥
W,W ,

∥∥ΠC//P

∥∥
W,W ≥ 1 since ΠP//C = Π2

P//C , ΠC//P = Π2
C//P .
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For P1, P2 ∈ Γ(U ,Y) := {P : Ua → Ya |P is causal}, define the directed gap by

~δ : Γ(U ,Y)× Γ(U ,Y) → [0,∞] , ~δ(P1, P2) := inf
Φ∈OP1,P2

sup
x∈GP1

\{0}

(‖(Φ− I)|GP1
(x)‖W

‖x‖W

)
,

where OP1,P2 is the (possibly empty) set

OP1,P2 := {Φ : GP1 → GP2 |Φ is causal, surjective and Φ(0) = 0} .

Here we adopt the convention that ~δ(P1, P2) := ∞ if OP1,P2 = ∅. The nonlinear gap is defined as

δ : Γ(U ,Y)× Γ(U ,Y) → [0,∞] , (P1, P2) 7→ δ(P1, P2) := max{~δ(P1, P2), ~δ(P2, P1)} .

2.4 Robust Stability

We now prove the robust stability theorem on which the main result in this paper is based. This
result is based on [7, Th. 1], but extends the scope of that result in several directions. Firstly,
the result is established in the language of ambient signal spaces to handle finite escape times
(cf. [7, Th. 8]). More importantly, the implicit requirement in [7] of well posedness of [P1, C]
is extended to include the often weaker requirement of regular well posedness. This eases the
application of the result in general, as global well posedness is non-trivial to verify a priori, and
regular well posedness is often easier to establish (for p = ∞ regular well posedness follows from
standard results on the finite escape time properties of differential equations).

Note that we state this theorem in a form where stability of [P1, C] is inferred from [P, C],
however, in the sequel we will apply this theorem in the setting whereby stability of [P, C1] is to
be inferred from [P, C]. Such applications of the theorem follow from a trivial interchange of P
and C and U , Y; we elect to present the theorem in the context of P , P1 to follow the convention
of the literature and since, in contrast to this paper, most applications of such robust stability
results concern uncertainty in the plant P .

Theorem 2.1 Let U , Y be signal spaces and W = U ×Y. Consider P : Ua → Ya, P1 : Ua → Ya

and C : Ya → Ua with P (0) = 0, C(0) = 0. Suppose [P,C] is gain stable on W, P1 is causally
extendible and [P1, C] is either a) globally or b) regularly well posed. If

~δ(P, P1) <
∥∥ΠP//C

∥∥−1

W,W (2.3)

then the closed-loop system [P1, C] is gain stable on W with

∥∥ΠP1//C

∥∥
W,W ≤ ∥∥ΠP//C

∥∥
W,W

1 + ~δ(P, P1)

1− ∥∥ΠP//C

∥∥
W,W

~δ(P, P1)
. (2.4)

Proof. Since
∥∥ΠP//C

∥∥
W,W ≥ 1, it follows that ~δ(P, P1) < ∞ and hence there exists a causal

surjective mapping Φ: GP → GP1 such that

γ := ‖(Φ− I)ΠP//C‖ ≤ ‖(Φ− I)‖ · ‖ΠP//C‖ < 1. (2.5)

Let w ∈ W and let [0, ωw) be the maximal interval of existence for HP1,C(w). Let 0 < τ < ωw.
Consider the equation

w
∣∣
[0,τ)

= ((I + (Φ− I)ΠP//C)(x))∣∣
[0,τ)

(2.6)

= ((ΠC//P + ΦΠP//C)(x))∣∣
[0,τ)

. (2.7)
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By either well posedness assumption a) or b), we know that [P1, C] is locally well posed, and
hence satisfies the existence and uniqueness properties on [0, τ). Hence there exists w1 =
(u1, y1), w2 = (u2, y2) ∈ Wωw such that y1 = P1u1, u2 = Cy2 and w

∣∣
[0,τ)

= w1
∣∣
[0,τ)

+ w2
∣∣
[0,τ)

.
Since P1 is stabilizable, there exists w′′1 ∈ GP1 , such that w′′1

∣∣
[0,τ)

= w1
∣∣
[0,τ)

. By definition of
Wωw we have w2

∣∣
[0,τ)

∈ W[0, τ) and hence there exists w′2 ∈ W such that w′2
∣∣
[0,τ)

= w2
∣∣
[0,τ)

.
Since Φ is surjective it follows that there exists w′1 ∈ GP such that Φ(w′1) = w′′1 and hence
(Φ(w′1))

∣∣
[0,τ)

= w′′1
∣∣
[0,τ)

= w1
∣∣
[0,τ)

. It can now be seen that x = w′1 + w′2 ∈ W satisfies
x
∣∣
[0,τ)

= (w′1 + w2)
∣∣
[0,τ)

and x is a solution of (2.7).

Since Φ, ΠP1//C , ΠP//C , ΠC//P are causal, it follows from equation (2.7) that

(ΠP1//C(w))∣∣
[0,τ)

=
(
ΠP1//C

(
ΠC//P x + ΦΠP//C(x)

)) ∣∣
[0,τ)

= (ΦΠP//C(x))∣∣
[0,τ)

. (2.8)

It follows from (2.6) that
∥∥x

∣∣
[0,τ)

∥∥ ≤ 1
1−γ

∥∥w
∣∣
[0,τ)

∥∥, hence, in view of (2.3), (2.5) and (2.8),

∥∥ΠP1//C(w)∣∣
[0,τ)

∥∥ =
∥∥ΦΠP//C(x)∣∣

[0,τ)

∥∥

≤ ∥∥ΠP//C(x)∣∣
[0,τ)

∥∥ +
∥∥(Φ− I)ΠP//C(x)∣∣

[0,τ)

∥∥

≤ ∥∥ΠP//C

∥∥
W,W

1 + ~δ(P, P1)

1− ∥∥ΠP//C

∥∥
W,W

~δ(P, P1)

∥∥w
∣∣
[0,τ)

∥∥ . (2.9)

If [P1, C] is globally well posed, ωw = ∞, so inequality (2.9) holds for all τ > 0, and the proof
is complete.

Suppose [P1, C] is regularly well posed. Since we have shown (ΠP1//C(w))∣∣
[0,τ)

∈ W[0, τ) is
uniformly bounded for all τ ∈ (0, ωw) and since [P1, C] is regularly well posed, it follows that
ωw = ∞ so inequality (2.9) holds for all τ > 0. This completes the proof. 2

3 Robust stabilization by delay feedback

Our main result will establish conditions under which a derivative feedback controller (1.1)
may be replaced by Euler approximation (1.2). We first formally define, for h > 0, the Euler
approximation

∆h : map(R≥0 → R) → map(R≥0 → R) ,

(t 7→ y(t)) 7→
(

t 7→ y(t)− y(t− h)
h

)
, where y(s) = 0 if s < 0 ,

of the derivative of y and, for higher derivatives y(i), i ∈ N,

∆i
h : map(R≥0 → R) → map(R≥0 → R) ,

y 7→ ∆i
h(y) :=





∆i−1
h (∆h(y)) if i ≥ 2

∆h(y) if i = 1
y if i = 0 .

(3.1)
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Our results will hold in the following signal space settings (A)–(C):

(A) W = U × Y = CL∞(R≥0 → R) × CW r,∞(R≥0 → R) ,

W0 = U0 × Y0 = CL∞(R≥0 → R) × CW r,∞
0 (R≥0 → R) , r ∈ N , p = ∞

(B) W = U × Y = CLp(R≥0 → R) × CW r,p(R≥0 → R) ,

W0 = U0 × Y0 = CLp(R≥0 → R) × CW r,p
0 (R≥0 → R) , r ∈ N , p ∈ [1,∞) ,

(C) W = U × Y = CW∞,p(R≥0 → R) × CW∞,p(R≥0 → R) ,

W0 = U0 × Y0 = CW∞,p
0 (R≥0 → R) × CW∞,p

0 (R≥0 → R) , p ∈ [1,∞) .





(3.2)

The spaces W0 will be utilized for results whereby the initial conditions of the system are zero,
whilst the spaces W are utilized in the general setting with non-zero initial conditions. The
spaces of type (A) and (B) are standard, the need for spaces with constrained derivatives arises
from the setting whereby derivative based controllers are being considered. In Section 4 we will
motivate the spaces of type (C), which allows for more general controllers (we will not require
kr = 0 for controller Ck given by (1.1) as for signal spaces of type (B), see below) at the price
of greater regularity constraints on the disturbances.

We are now in a position to state the main result of this section, namely that if Ck gain stabilizes
P it follows that CEuler

k [h] is also a gain stabilizing controller of P for sufficiently small h > 0.
The idea behind the proof is to show that the gap ~δ(Ck, C

Euler
k [h]) is small if h > 0 is small and

hence deduce the result from Theorem 2.1.

Theorem 3.1 Let 1 ≤ p ≤ ∞, r ∈ N and consider signal spaces U0, Y0 and W0 of type (A),
(B) or (C) in (3.2). Suppose that there exists k = (k1, . . . , kr) ∈ R1×r \ {0}, with kr = 0 for case
(B), such that controller Ck : Y0a → U0a given by (1.1) applied to a causal plant P : U0a → Y0a

with P (0) = 0 yields a closed-loop system [P, Ck] which is gain stable onW0 := U0×Y0. Suppose
h∗ > 0 satisfies

h∗ ≤
(

γ
r−1∑
i=1

|ki+1| · iηp(h∗, i)
)−1

where, for h > 0, ηp(h, i) :=





1 , in case (A)

2
1
p (1 + ihp)

1
p in case (B)

2
1
p (1 + ihp) in case (C)

(3.3)

and 1 ≤ γ :=
∥∥ΠCk//P

∥∥
W0,W0

< ∞. Let h ∈ (0, h∗) and suppose that [P,CEuler
k [h]] is either

globally or regularly well posed, where the controller CEuler
k [h] : Y0a → U0a is given by (1.2).

Then the closed-loop system [P, CEuler
k [h]] is gain stable on W0 with

∥∥ΠCEuler
k [h]//P

∥∥
W0,W0

≤ ∥∥ΠCk//P

∥∥
W0,W0

1 + h
r−1∑
i=1

|ki+1| iηp(h, i)

1− ∥∥ΠCk//P

∥∥
W0,W0

h
r−1∑
i=1

|ki+1| iηp(h, i)
. (3.4)

In all three signal space settings (A), (B) and (C) the condition (3.3) on h∗ can always be met

for sufficiently small h∗ > 0, e.g. by taking h∗ =
(

γ
r−1∑
i=1

|ki+1| · i
)−1

in case (A) and by taking

h∗ = min

{
1
rp ,

(
2

1+p
p γ

r−1∑
i=1

|ki+1| · i
)−1

}
in cases (B) and (C). Before giving the proof of this

result, we establish the following key bound which will be required in the proof of Theorem 3.1
for the signal space choices (B) and (C).
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Proposition 3.2 For y ∈ C(R≥0 → R) and % > 0, define the function

M%[y] : R≥0 → R , t 7→ max
τ∈[t−%,t]

|y(τ)| , where y(s) = 0 if s < 0 . (3.5)

Then, for every y ∈ CW 1,p
0 (R≥0 → R) and 1 ≤ p < ∞,

∀T > 0 : ‖M%[y]‖p
Lp([0,T )→R) ≤ 2‖y‖p−1

Lp(R≥0→R)

(
‖y‖Lp(R≥0→R) + %p‖ẏ‖Lp(R≥0→R)

)
. (3.6)

Proof. Let y ∈ CW 1,p
0 (R≥0 → R), 1 ≤ p < ∞, T > 0, ε > 0, i ∈ N0. By the density of

C2
0 ([i, i + 1]) → R) in C0([i, i + 1] → R) it follows from [15, Th. 4.12] applied successively on the

intervals [i, i + 1] that there exists a (piecewise cubic) function Gi : [i, i + 1] → R such that Gi is
nowhere locally constant, Gi ∈ C2([i, i + 1],R), Gi(i) = y(i), Ġi(i) = ẏ(i), Gi(i + 1) = y(i + 1),
Ġi(i + 1) = ẏ(i + 1), and

|Gi(t)− y(t)| ≤ ε

2i+1
≤ εe−t , |Ġi(t)− ẏ(t)| ≤ ε

2i+1
≤ εe−t , t ∈ [i, i + 1] .

We now define G ∈ C1(R≥0,R) by G|[i,i+1] = Gi|[i,i+1], i ∈ N0. Suppose, for the time being,

‖M%[G]‖p
Lp([0,T )→R) ≤ 2 ‖G‖p−1

Lp(R≥0→R)

(
‖G‖Lp(R≥0→R) + %p‖Ġ‖Lp(R≥0→R)

)
. (3.7)

Then in view of

M%[y](t) = M%[y + G−G](t) ≤ M%[G](t) + M%[y −G](t) ≤ M%[G](t) + M%[εe−·](t) ,

and M%[εe−·](t) = εe−t for t ≥ 0, it follows that

‖M%[y]‖p
Lp([0,T )→R) ≤ ‖G‖p−1

Lp(R≥0→R)

(
‖G‖Lp(R≥0→R) + %p‖Ġ‖Lp(R≥0→R)

)
+

εp

p
.

Since

‖G‖ ≤ ‖G− y‖Lp(R≥0→R) + ‖y‖Lp(R≥0→R) ≤ c ε + ‖y‖Lp(R≥0→R) ,

‖Ġ‖ ≤ ‖Ġ− ẏ‖Lp(R≥0→R) + ‖ẏ‖Lp(R≥0→R) ≤ c ε + ‖ẏ‖Lp(R≥0→R) ,

where c := (1/p)1/p, it follows that

‖M%[y](t)‖p
Lp([0,T )→R)

≤ (c ε + ‖y‖Lp(R≥0→R))
p−1

(
c ε + ‖y‖Lp(R≥0→R) + %p(c ε + ‖ẏ‖Lp(R≥0→R))

)
+

εp

p
.

As this holds for all ε > 0, inequality (3.6) follows as required.

It remains to show (3.7). Let

R(G) := {t ∈ R≥0 | |G(t)| is a local maximum of |G|} .

Since |G| is piecewise polynomial, G 6≡ 0, R(G) is non-empty and has a finite or countable
number of elements. To every point t ∈ R(G) we define (adopting the convention that inf ∅ = ∞)

tM := inf{τ > t | |G(τ)| is a local minimum of |G|},
tR := min

{
t + % , inf

{
τ ∈ R(G)

∣∣ τ > t
}}

.
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8
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M%[G](·)p

Figure 2: Example function |G|p and M%[G]p, here: tR1 = t2, tR2 = t2 + %, tR3 = t4, tR4 = t5,
tR5 = t6, tR6 = t7, tR7 = t8 and tR8 = t8 + %.

We estimate the Lp-norm of M%[G] by the Lp-norm of G and the sum of parts of the areas of
the hatched boxes, see Figure 2. By the definition of M%[G] we have

‖M%[G]‖p
Lp([0,T )→R) =

∫ T

0

(
max

τ∈[t−%,t]
|G(τ)|

)p

dt

≤
∫ ∞

0
|G(t)|p dt +

∑

t∈R(G)

( [
tR − t

] |G(t)|p

+
[
t + %− tR

] ·max
{
0, |G(t)|p − |G(tR)|p}

)
,

where
([

tR − t
]|G(t)|p) is the area of the hatched box of height |G(t)|p between the local maxi-

mum t and either the following local maximum tR on the right or the point t + %. Furthermore,[
t + %− tR

] ·max
{
0, |G(t)|p − |G(tR)|p} is the area of the box which remains by subtracting a

box with the height |G(tR)|p of the following maximum value tR from a box with height |G(t)|p
and length t+%− tR. Since |G(tR)| ≥ |G(tM )| and since (t, tM )∩ (s, sM ) = ∅ for all t, s ∈ R(G),
we have: ∑

t∈R(G)

[
tR − t

]|G(tM )|p ≤
∑

t∈R(G)

∫ tR

t
|G(t)|p dt ≤

∫ ∞

0
|G(t)|p dt,

and hence

‖M%[G]‖p
Lp([0,T )→R) ≤

∫ ∞

0
|G(t)|p dt +

∑

t∈R(G)

( [
tR − t

] (|G(t)|p − |G(tM )|p) +
[
tR − t

] |G(tM )|p

+
[
t + %− tR

] ·max
{
0, |G(t)|p − |G(tR)|p}

)

≤
∫ ∞

0
|G(t)|p dt +

∑

t∈R(G)

( [
tR − t

] (|G(t)|p − |G(tM )|p) +
[
tR − t

] |G(tM )|p

+
[
t + %− tR

] (|G(t)|p − |G(tM )|p)
)

≤ 2
∫ ∞

0
|G(t)|p dt + %

∑

t∈R(G)

(|G(t)|p − |G(tM )|p) . (3.8)
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Since G
∣∣
(t,tM )

is either strictly positive or negative, |G| is continuously differentiable on (t, tM ),
and partial integration yields

∑

t∈R(G)

(|G(t)|p − |G(tM )|p) ≤
∑

t∈R(G)

∫ tM

t
p |G(t)|p−1 |Ġ(t)| dt ≤ p‖Gp−1Ġ‖L1(R≥0→R), (3.9)

where the second inequality above follows from (t, tM ) ∩ (s, sM ) = ∅ for all t, s ∈ R(G). Let
1 < q < ∞ satisfy 1

p + 1
q = 1, then by Hölder’s inequality

‖Gp−1Ġ‖L1(R≥0→R) ≤ ‖Gp−1‖Lq(R≥0→R)‖Ġ‖Lp(R≥0→R) = ‖G‖p−1
Lp(R≥0→R)‖Ġ‖Lp(R≥0→R). (3.10)

Finally, inequalities (3.8), (3.9) and (3.10) give the claimed inequality (3.7). 2

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Let 1 ≤ p ≤ ∞, r ∈ N, signal spaces U0, Y0 and W0 of type (A),
(B) or (C) given by (3.2), and k = (k1, . . . , kr) ∈ R1×r, kr = 0 in case (B). We claim that if
h ∈ (0, h∗), then

~δ
(
Ck, C

Euler
k [h]

)
≤ h

r−1∑

i=1

|ki+1| · iηp(h, i) , (3.11)

and hence,

~δ(Ck, C
Euler
k [h])

(3.11)
≤ h

r−1∑

i=0

|ki+1| · iηp(h, i)
(3.3)
< γ−1 =

∥∥ΠCk//P

∥∥−1

W0,W0
.

By assumption, P , C are causal, C(0) = P (0) = 0, [P, Ck] is gain stable on W0 and [P, CEuler
k [h]]

is either globally or regularly well posed. Finally, since CEuler
k [h](Y0) ⊂ U0 it follows that

CEuler
k [h] is causally extendible. Applying Theorem 2.1 with the roles of P and C interchanged

we see that (3.4) is a consequence of inequality (2.4) and inequality (3.11).

It remains to show (3.11).
Step 1 : The graphs of Ck and CEuler

k [h] are given by

GCk
=






−

r−1∑
i=0

ki+1 y(i)

y




∣∣∣∣∣∣
−

r−1∑
i=0

ki+1 y(i) ∈ U , y ∈ Y


 ⊂ U × Y ,

GCEuler
k [h] =






−

r−1∑
i=0

ki+1 ∆i
h(y)

y




∣∣∣∣∣∣
−

r−1∑
i=0

ki+1 ∆i
h(y) ∈ U , y ∈ Y



 ⊂ U × Y .

Consider the surjective map

Φh : GCk
→ GCEuler

k [h] ,


−

r−1∑
i=0

ki+1 y(i)

y


 7→


−

r−1∑
i=0

ki+1 ∆i
h(y)

y


 . (3.12)

Since
∥∥∥∥
(
−∑r−1

i=0 ki+1 y(i), y
)T

∥∥∥∥
U0×Y0

≥ ‖y‖Y0
and

∥∥∥∥∥
(

r−1∑
i=0

ki+1 ∆i
h(y), y

)T

−
(

r−1∑
i=0

ki+1 y(i), y

)T
∥∥∥∥∥
W0

=
∥∥∥∥

r−1∑
i=1

ki+1

(
∆i

h(y)− y(i)
)∥∥∥∥
U0

≤
r−1∑
i=1

|ki+1|
∥∥∆i

h(y)− y(i)
∥∥
U0

,
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it follows that

~δ(Ck, C
Euler
k [h]) ≤ ‖Φh − I‖W0,W0 ≤ sup

y∈Y0\{0}

r−1∑
i=1

|ki+1|
∥∥∆i

h(y)− y(i)
∥∥
U0

‖y‖Y0

. (3.13)

Note that (3.13) holds for all signal spaces U0 and Y0 considered in (A), (B) and (C).

Step 2 : Recall, that, for y ∈ Y0, the definition of Y0 gives y(i)(0) = 0, for all i ∈ {0, . . . , r − 1},
in case of (A) and (B), and that y(i)(0) = 0, for all i ∈ N0 in case of (C). Also recall that by
definition of ∆i

h we have ∆i
h(y)(t) = 0 for t < ih. To simplify notation, without loss of generality,

define y(t) = 0 for t < 0.

Let y ∈ Y0 and fix i ∈ {1, . . . , r − 1}. By i + 1 applications of the Mean Value Theorem there
exist, for j ∈ {1, . . . , i}, functions ξi

j : [0,∞) → R with ξi
j(t) ∈ (0, jh] and ξi,0

i+1 : [0,∞) → R with
ξi,0
i+1(t) ∈ (0, ih] such that, for all t ≥ 0,

∣∣∣∆i
h(y)(t)− y(i)(t)

∣∣∣ =
∣∣∣∣∆i−1

h

(
1
h

(
y(·)− y(· − h)

))
(t)− y(i)(t)

∣∣∣∣
=

∣∣∣∆i−1
h y(1)(t− ξi

1)− y(i)(t)
∣∣∣

...

=
∣∣∣∣
1
h

(
y(i−1)(t− ξi

i−1)−
(
y(i−1)

)
(t− ξi

i−1 − h)
)
− y(i)(t)

∣∣∣∣
=

∣∣∣y(i)
(
t− ξi

i

)− y(i)(t)
∣∣∣

≤ ih
∣∣∣y(i+1)(t− ξi,0

i+1(t))
∣∣∣ .

Furthermore, in case of (C) there exist, for all µ ∈ N, functions ξi,µ
i+1 : [0,∞) → R with ξi,µ

i+1(t) ∈
(0, ih] such that, for all t ≥ 0,

∣∣∣∆i
h(y(µ))(t)− y(µ+i)(t)

∣∣∣ ≤ ih
∣∣∣y(µ+i+1)(t− ξi,µ

i+1(t))
∣∣∣ .

Hence: in case (A) for p = ∞, µ = 0; in case (B) for p ∈ [1,∞), µ = 0; and in case (C) for
p ∈ [1,∞), µ ∈ N0; the following inequality holds

∥∥∥∆i
h(y(µ))− y(µ+i)

∥∥∥
Lp(R≥0→R)

≤ ih
∥∥∥y(µ+i+1)(· − ξi,µ

i+1(·))
∥∥∥

Lp(R≥0→R)

≤ ih
∥∥∥Mih[y(µ+i+1)](·)

∥∥∥
Lp(R≥0→R)

. (3.14)

Step 3 : We show inequality (3.11) in case (A), i.e. for U0 = CL∞(R≥0 → R) and Y0 =
CW r,∞

0 (R≥0 → R). Let y ∈ Y0. Observe that ‖y(i+1)‖U0 ≤ ‖y‖Y0 for all i ∈ {1, . . . , r − 1}.
Thus it follows from inequalities (3.13), (3.14) that

~δ(Ck, C
Euler
k [h]) ≤ sup

y∈Y0\{0}

r−1∑
i=1

|ki+1| ih
∥∥y(i+1)

∥∥
U0

‖y‖Y0

≤ h
r−1∑
i=1

|ki+1| i .

This completes the proof in case of (A).
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Step 4 : We show (3.11) in case (B) with kr = 0, that is for p ∈ [1,∞) we let U0 = CLp(R≥0 → R)
and Y0 = CW r,p

0 (R≥0 → R). Let y ∈ Y0, i ∈ {1, . . . , r − 2}. Since k = (k1, . . . , kr−1, 0) ∈ R1×r

and y(i+1) ∈ CW 1,p
0 (R≥0 → R), it follows from (3.14) and Proposition 3.2 that

∥∥∥∆i
h(y)− y(i)

∥∥∥
U0

≤ ih
∥∥∥Mih[y(i+1)](·)

∥∥∥
U0

≤ ih
(
2 ‖y(i+1)‖p−1

U0

(
‖y(i+1)‖U0 + ihp‖y(i+2)‖U0

)) 1
p

≤ 2
1
p ih(1 + ihp)

1
p ‖y‖Y0 (3.15)

Then by (3.13) and (3.15)

~δ(Ck, C
Euler
k [h]) ≤ 2

1
p h

r−2∑

i=0

|ki+1| · i(1 + ihp)
1
p

kr=0= 2
1
p h

r−1∑

i=0

|ki+1| · i(1 + ihp)
1
p .

This completes the proof in case of (B) with kr = 0.

Step 5 : We show (3.11) in case (C), i.e. for p ∈ [1,∞) let U0 = Y0 = CW∞,p
0 (R≥0 → R).

For brevity write ‖ · ‖Lp := ‖ · ‖Lp(R≥0→R). Since y(i+1) ∈ CW 1,p
0 (R≥0 → R), it follows from

Proposition 3.2 and inequality (3.14), that for all y ∈ Y0 and i ∈ {1, . . . , r − 1}
∥∥∥∆i

h(y)− y(i)
∥∥∥
U0

≤ ih
∥∥∥Mih

[
y(i+1)

]
(·)

∥∥∥
U0

≤ ih
∞∑

µ=0

[
2 ‖y(µ+i+1)‖p−1

Lp

(‖y(µ+i+1)‖Lp + ihp‖y(µ+i+2)‖Lp

) ] 1
p

≤ 2
1
p ih

(
∞∑

µ=0
‖y(µ+i+1)‖Lp + ihp

∞∑
µ=0

‖y(µ+i+1)‖
p−1

p

Lp ‖y(µ+i+2)‖
1
p

Lp

)

≤ 2
1
p ih

(
∞∑

µ=0
‖y(µ+i+1)‖Lp + ihp

(
∞∑

µ=0
‖y(µ+i+1)‖

p−1
p

Lp

) (
∞∑

µ=0
‖y(µ+i+2)‖

1
p

Lp

))

≤ 2
1
p ih

(
∞∑

µ=0
‖y(µ)‖Lp + ihp

(
∞∑

µ=0
‖y(µ)‖

p−1
p

Lp

)(
∞∑

µ=0
‖y(µ)‖

1
p

Lp

))

≤ 2
1
p ih(1 + ihp)

∞∑
µ=0

‖y(µ)‖Lp

= 2
1
p ih(1 + ihp)‖y‖Y0

and so (3.13) yields

~δ(Ck, C
Euler
k [h]) ≤ 2

1
p h

r−1∑

i=0

|ki+1| · i(1 + ihp) .

which completes the proof in case of (C) and concludes the proof of the theorem. 2

4 Applications to linear minimum phase systems

The main result, Theorem 3.1, is stated for various signal spaces (3.2). We now consider lin-
ear systems in detail to illustrate how the choice of signal space is determined by relative de-
gree assumptions on the linear system and the stabilizability requirements in the various signal
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spaces. In particular we consider the class Pn,r of all state space triples (A, b, c) correspond-
ing to n-dimensional, minimum phase, single-input, single-output systems with relative degree
r ∈ {1, . . . , n} and positive high frequency gain cAr−1b. Let (A, b, c) ∈ Pn,r, x0 ∈ Rn and
P (A, b, c;x0) : Ue → Ye be the associated plant operator u1 7→ y1 given by

ẋ = A x + b u1 , x(0) = x0

y1 = c x ,

}
, (4.1)

where U and Y are any of the input/output signal spaces pairs given in (3.2). We establish
stability properties for both the nominal closed-loop system [P (A, b, c; x0), Ck] and the closed-
loop system with the delay based controller [P (A, b, c; x0), CEuler

k [h]]. In particular, we show
exponential stability of the initial value problems for closed-loop systems with zero disturbances
u0 ≡ y0 ≡ 0 and gain stability of the closed-loop systems with arbitrary u0, y0 from signal spaces
in cases (A), (B) or (C). For the following consider the high-gain control design:

Ck,κ,ν : Ye → Ue , y2 7→ u2 = −ν

r−1∑

i=0

κr−iki+1y
(i)
2 , (4.2)

where κ, ν ≥ 1 are suitably large scalars which are to be determined and k = (k1, . . . kr) is such
that kr > 0 and the polynomial s 7→ ∑r−1

i=0 ki+1 si is Hurwitz, i.e. has all roots in C−.

4.1 Exponential stability of [P (A, b, c; x0), Ck,κ,ν] with u0 ≡ y0 ≡ 0

In Proposition 4.1 we present how the high-gain derivative feedback controller of form (4.2)
stabilizes systems (A, b, c) ∈ Pn,r, r ≤ n, given by (4.1). We show that there exist κ, ν ≥ 1 such
that an application of controller Ck,κ,ν to a linear system (A, b, c) yields an exponentially stable
closed-loop system [P (A, b, c; x0), Ck,κ,ν ] with u0 ≡ y0 ≡ 0.

With controller Ck,κ,ν we use a static feedback of derivatives of the output signal to stabilize
linear systems. Note that there are only structural conditions to the considered system (A, b, c):
the relative degree is known, the system is minimum phase and has a positive high-frequency
gain cAr−1b.

Proposition 4.1 Let, for r, n ∈ N with r ≤ n, (A, b, c) ∈ Pn,r and x0 ∈ Rn. Suppose
k = (k1, . . . , kr) ∈ R1×r with kr > 0 and s 7→ ∑r−1

i=0 ki+1 si Hurwitz. Then, for sufficiently
large κ, ν ≥ 1, the closed-loop system [P (A, b, c; x0), Ck,κ,ν ] given by (4.1), (4.2), (2.1) with
u0 ≡ y0 ≡ 0 is exponentially stable, in the sense

∃ ν∗ ≥ 1 ∀ ν ≥ ν∗ ∃κ∗ ≥ 1 ∃M > 0 ∃α > 0 ∀κ ≥ κ∗ ∀ t ≥ 0 ∀x0 ∈ Rn :
∣∣x(t; x0)

∣∣ ≤ Me−αt|x0| ,
where x(·; x0) denotes the solution of (4.1), (4.2), (2.1) with u0 ≡ y0 ≡ 0.

Proposition 4.1 shows the existence of parameters κ, ν ≥ 1 with which controller (4.2) stabilizes
system (4.1). Explicit bounds for κ and ν, which are not given here, depend only on the system
matrices A, b, c and the vector k = (k1, . . . , kr).

The proof of Proposition 4.1 is based on the following Byrnes-Isidori normal form.

Lemma 4.2 Let, for r, n ∈ N with r ≤ n, (A, b, c) ∈ Pn,r. For C :=
[
c
/
cA

/
. . .

/
cAr−1

]
,

B :=
[
b, Ab, . . . , Ar−1b

]
, N ∈ Rn×(n−r) with imN = ker C and

V =
[ C(N TN )−1N T

[
In−r − B (CB)−1 C]

]
, V −1 =

[
B (CB)−1 ,N

]
, (4.3)
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the coordinate transformation (
ξ
η

)
(t) := V x(t) , (4.4)

converts (A, b, c), given by (4.1) into the normal form (V AV −1, V b, cV −1) ∈ Pn,r:

d
dt

(
ξ
η

)
=




0 1 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 1 0
R1 . . . Rr S
T 0 . . . 0 Q




︸ ︷︷ ︸
=V AV −1

(
ξ
η

)
+




0
...
0

cAr−1b
0




︸ ︷︷ ︸
=V b

u1 ,

(
ξ
η

)
(0) = V x0 ∈ Rn

y1 = ξ1 = (1, 0, . . . , 0)︸ ︷︷ ︸
=cV −1

(
ξ
η

)

T ∈ R(n−r)×1, Q ∈ R(n−r)×(n−r), S ∈ R1×(n−r), R1, . . . , Rr ∈ R.





(4.5)

Proof. See [9, Lem. 3.5]. 2

Remark 4.3 Proposition 4.1 shows that for every system (A, b, c) ∈ Pn,r of form (4.1), r, n ∈ N
with r ≤ n, we may choose k ∈ R1×r such that

spec
(
A + bk[c/ . . . /cAr−1]

)
= spec

(
V AV −1 + V b(k | 0)

) ⊂ C− ,

where the transformation matrix V ∈ Rn×n is given by (4.3), k = (k1, . . . , kr) with ki :=
νκr+1−ik̃i, i ∈ {1, . . . , r}, s 7→ ∑r−1

i=0 k̃i+1s
i with k̃r > 0 is any Hurwitz polynomial and κ, ν ≥ 1

are sufficiently large.
For the following results in case of signal spaces of type (B) in (3.2) we assume that kr = 0 and
spec

(
A + bk[c/ . . . /cAr−1]

) ⊂ C−. In this case we cannot refer to Propostion 4.1.

Proof of Proposition 4.1. By equations (2.1) and (4.2),

u1(t) = −
r−1∑

i=0

νκr−iki+1

[
y

(i)
1 (t)− y

(i)
0 (t)

]
+ u0(t) . (4.6)

The closed-loop system (4.1), (4.6) is equivalent to (4.5), (4.6). Setting ζi = κ−i+1ξi, for i =
1, . . . , r, yields

ζ̇i = κ−i+1ξ̇i = κ−i+1ξi+1 = κζi+1 , for i = 1, . . . , r − 1 ,

ζ̇r = κ−r+1ξ̇r

= κ−r+1
(
(R1 − ϑνk1κ

r)ξ1 + · · ·+ (Rr−1 − ϑνkr−1κ
2)ξr−1 + (Rr − ϑνkrκ)ξr

)
+ κ−r+1Sη

= κ

((
R1

κr
− ϑνk1

)
ζ1 + · · ·+

(
Rr−1

κ2
− ϑνkr−1

)
ζr−1 +

(
Rr

κ
− ϑνkr

)
ζr

)
+ κ−r+1Sη .

Thus the scaling
(

ζ
η

)
= Uκ

(
ξ
η

)
, Uκ := diag

(
1, κ−1, . . . , κ−r+1, 1, . . . , 1

)
,
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converts (4.5), (4.6) into

d
dt

(
ζ
η

)
=




κ




0 1
. . . . . .

0 1
R1
κr − ϑνk1 . . . Rr−1

κ2 − ϑνkr−1
Rr
κ − ϑνkr




0
...
0

κ−r+1S

T 0 . . . 0 Q




︸ ︷︷ ︸
= Uκ(V AV −1+V b(νk | 0))U−1

κ =: Âk,κ,ν

(
ζ
η

)

+ κ−r+1ϑ




0
...
0
1
0




[
r−1∑
i=0

νκr−iki+1y
(i)
0 + u0

]

y1 = (1, 0, . . . , 0)
(

ζ
η

)
,

u1 = −
r−1∑
i=0

νκr−iki+1

[
y

(i)
1 − y

(i)
0

]
+ u0 ,

(
ζ
η

)
(0) =

(
ζ0

η0

)
= UκV x0 ,





(4.7)

where ϑ = cAr−1b, R1, . . . , Rr ∈ R, S ∈ R1×(n−r), T ∈ Rn−r, Q ∈ R(n−r)×(n−r) with spec(Q) ⊂
C− and V ∈ Rn×n with detV 6= 0.

In view of u0 ≡ y0 ≡ 0 and the equivalence of (4.1), (4.2), (2.1) and the closed-loop equa-
tions (4.7) it remains to show that

∃ ν∗ ≥ 1 ∀ ν ≥ ν∗ ∃κ∗ ≥ 1 ∃M > 0 ∃α > 0 ∀κ ≥ κ∗ ∀ t ≥ 0 :
∣∣eÂk,κ,νt

∣∣ ≤ Me−αt . (4.8)

Since kr > 0, ϑ > 0 and s 7→ p(s) =
∑r−1

i=0 ki+1 si is Hurwitz, it follows from the root-locus [14,
Sect. 5] that r − 1 roots of qν(s) = sr + νϑp(s) = 0 converge to the roots of p(s) = 0 as ν →∞
and that the remaining root of qν is real and diverges to −∞ as ν → ∞. Thus there exists
ν∗ > 0 such that the polynomial qν is Hurwitz, for all ν ≥ ν∗. Let ν ≥ ν∗ and choose the
positive definite matrices Nζ = NT

ζ ∈ Rr×r and Nη = NT
η ∈ R(n−r)×(n−r) solving

Nζ

[
0(r−1)×1 Ir−1

−ϑνk1 ... −ϑνkr

]
+

[
0(r−1)×1 Ir−1

−ϑνk1 ... −ϑνkr

]T
Nζ = −Ir , NηQ + QT Nη = −In−r . (4.9)

Then the derivative of

t 7→ V (t) := 1
2 ζ(t)T Nζζ(t) + 1

2 η(t)T Nηη(t)

along the solution of
d
dt

(
ζ
η

)
(t) = Âk,κ,ν

(
ζ
η

)
(t)
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yields, for all t ≥ 0, and omitting the argument t for brevity,

V̇ (t) = d
dt

(
1
2 ζT Nζζ + 1

2 ηT Nηη
)

= ζT Nζ


κ




0 1
. . . . . .

0 1
R1
κr −ϑνk1 ...

Rr−1
κ2 −ϑνkr−1

Rr
κ
−ϑνkr


 ζ +

[ 0...
0

κ−r+1Sη

]
 + ηT Nη (Qη + Tζ1)

(4.9)
≤ −κ

2 |ζ|2 + κζNζ




0
. . .

0
R1
κr ... Rr

κ


 ζ +

1
κr−1

|Nζ | |S| |ζ| |η| − 1
2 |η|2 + |NηT | |η| |ζ1|

κ≥1
≤ −κ

2 |ζ|2 + |Nζ | |(R1, . . . , Rr)| |ζ|2 + 1
κr−1 |Nζ | |S| |ζ|2 + 1

κr−1 |Nζ | |S| |η|2
−1

2 |η|2 + 1
4 |η|2 + 4|NηT | |ζ1|2

≤ −
(

κ
2 − |Nζ | |(R1, . . . , Rr)| − |Nζ | |S| − 4|NηT |

)
|ζ|2 −

(
1
4 −

|Nζ | |S|
κr−1

)
|η|2 ,

and so, for

κ∗ := max
{

1
4 + 2(|Nζ | |(R1, . . . , Rr)| − |Nζ | |S| − 4|NηT |), (8|Nζ | |S|)−r+1

}
,

α := min
{

1
8|Nζ | ,

1
8|Nη|

}
,

we conclude, for all t ≥ 0 and κ ≥ κ∗,

V̇ (t) ≤ −1
8 |ζ(t)|2 − 1

8 |η(t)|2 ≤ − 1
8|Nζ |ζ(t)T Nζζ(t)− 1

8|Nη |η(t)T Nηη(t) ≤ −αV (t) ,

hence

∀ t ≥ t0 ∀ t0 ≥ 0 :
∣∣∣∣
(

ζ(t)
η(t)

)∣∣∣∣ ≤ exp (−α(t− t0))

√√√√√
max spec

[
Nζ 0
0 Nη

]

min spec
[

Nζ 0
0 Nη

]
∣∣∣∣
(

ζ(t0)
η(t0)

)∣∣∣∣ .

This proves (4.8) and completes the proof of the proposition. 2

4.2 Stability properties of the closed-loop system [P (A, b, c; x0), Ck]

Now we show for (A, b, c) ∈ Pn,r with k ∈ R1×r such that spec
(
A + bk[c/ . . . /cAr−1]

) ⊂ C−
and for appropriate input/output signal spaces of types (A), (B) or (C) in (3.2) that if x0 = 0,
then the closed-loop system [P (A, b, c; x0), Ck] is gain stable on W0. For the input/output signal
spaces of type (A) or (B) only, we also show that the closed-loop system [P (A, b, c;x0), Ck] is
W-stable for any initial conditions x0 ∈ Rn.

Theorem 4.4 Let, for r, n ∈ N with r ≤ n, (A, b, c) ∈ Pn,r given by (4.1) and choose k ∈ R1×r

such that spec
(
A + bk[c/ . . . /cAr−1]

) ⊂ C−. Let the signal spaces U , Y, W, W0 be of type
(A), (B) or (C) in (3.2); in case of (B) suppose ke

(r)
r = 0. Consider the controller operator

Ck : Ye → Ue, as defined by (1.1) and the associated plant operator P (A, b, c;x0) : Ue → Ye

with initial value x0 ∈ Rn as defined by (4.1). Then the closed-loop system [P (A, b, c; 0), Ck]
is W0-gain stable. In the case of signal spaces given by (A) or (B), the closed-loop system
[P (A, b, c;x0), Ck] is also W-stable.
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Proof. Step 1 : Consider W of type (A), (B) or (C) given by (3.2) and let (u0, y0) ∈ W.
The closed-loop system [P (A, b, c; x0), Ck] given by equations (4.1), (1.1), (2.1) is, in view of
coordinate transformation (4.4), equivalent to (4.5), (1.1), (2.1). Invoking Lemma 4.2 and
applying Variation of Constants yields

∀ t ≥ 0 :
(

ξ
η

)
(t) = e

V


A+bk




c...
cAr−1




V −1t (

ξ0

η0

)
+

∫ t

0
e

V


A+bk




c...
cAr−1




V −1(t−s)

ϕ(s)ds , (4.10)

where, in view of u0 ∈ U and y0 ∈ Y,

ϕ(·) :=




0r−1

cAr−1b
0n−r


[

u0(·) +
(
Cky0

)
(·)] ∈ U . (4.11)

Step 2 : Consider case (A) or (B), i.e. U ×Y = CLp(R≥0 → R)×CW r,p(R≥0 → R), 1 ≤ p < ∞,
r ≤ n. Taking norms in (4.10) and invoking the well-known inequality

∥∥ ∫ ·
0 f(· − s) g(s) ds

∥∥
Lp ≤

‖f‖L1‖g‖Lp , for f ∈ L1 and g ∈ Lp, we obtain, for some β1, β2 > 0,
∥∥∥∥
(

ξ
η

)∥∥∥∥
Lp(R≥0→Rn)

≤ β1

[∣∣∣∣
(

ξ0

η0

)∣∣∣∣ + ‖ϕ‖Lp(R≥0→Rn)

]

≤ β1

∣∣∣∣
(

ξ0

η0

)∣∣∣∣ + β1β2

[
‖u0‖Lp(R≥0→R) +

r−1∑
i=0

|ki+1|
∥∥y

(i)
0

∥∥
Lp(R≥0→R)

]

and thus, (
ξ
η

)
∈ Lp(R≥0 → Rn) .

Now, by (4.5),

y
(i)
1 = ξi+1 ∈ Lp(R≥0 → R) , for i = 0, . . . , r − 1

y
(r)
1 = ξ̇r =

(
r∑

i=1

(
Ri − cAr−1bki

)
ξi

)
+ Sη + ϕ ∈ Lp(R≥0 → R)

and with (4.11) it follows that y1 ∈ CW r,p(R≥0 → R) = Y.

Finally,
u1 = u0 − Ck(y2) = u0 − Ck(y0) + Ck(y1) ∈ CLp(R≥0 → R) = U ,

and we have shown that the closed-loop system [P (A, b, c;x0), Ck] is W-stable in case (A) and
(B).

Step 3 : Let x0 = 0 and letW0 be as in (A) or (B), i.e. U0×Y0 = CLp(R≥0 → R)×CW r,p
0 (R≥0 →

R), 1 ≤ p < ∞, r ≤ n. It is straightforward to see that y(i)(0) = 0 for i = 0, . . . , r, and hence
one can show similarly as in Step 2 that, for some β1, . . . , β5 ≥ 1,

‖y1‖CW r,p
0 (R≥0→R) ≤ β1β2β3

[
‖u0‖CLp(R≥0→R) +

r−1∑
i=0

|ki+1|
∥∥y

(i)
0

∥∥
CLp(R≥0→R)

]

≤ β4

[
‖u0‖CLp(R≥0→R) + ‖y0‖CW r−1,p

0 (R≥0→R)

]

and

‖u1‖CLp(R≥0→R) ≤ ‖u0‖CLp(R≥0→R) + ‖Cky2‖CLp(R≥0→R)

≤ ‖u0‖CLp(R≥0→R) + β5 ‖y2‖CW r−1,p
0 (R≥0→R)

≤ ‖u0‖CLp(R≥0→R) + β5

[
‖y1‖CW r−1,p

0 (R≥0→R)
+ ‖y0‖CW r−1,p

0 (R≥0→R)

]
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and thus W0 gain stability in case (A), (B) follows.

Step 4 : Let x0 = 0 and let W0 be as in (C), i.e. U0 = Y0 = CW∞,p
0 (R≥0 → R), 1 ≤ p < ∞.

First note that ϕ ∈ CW∞,p
0 (R≥0 → R). By [17, Proposition VI.3.1] we have, for all i ∈ N and

t ≥ 0,

di

dti

∫ t

0
e

V


A+bk




c...
cAr−1




V −1(t−s)

ϕ(s)ds =
∫ t

0
e

V


A+bk




c...
cAr−1




V −1(t−s)

ϕ(i)(s)ds.

Hence it follows from (4.10) that di

dti

(
ξ
η

)∣∣∣∣
t=0

= 0, and so y(i)(0) = 0 for all i ∈ N. It follows also

that u
(i)
1 (0) = u

(i)
0 (0)− Ck(y

(i)
0 (0)) + Ck(y

(i)
1 (0)) = 0 for all i ∈ N. One can then show similarly

as in Step 3 that, for some β1, β2 ≥ 1,

‖y1‖CW∞,p(R≥0→R) =
∑
j≥0

‖y1‖CLp(R≥0→R)

≤ β1
∑
j≥0

[∥∥u
(j)
0

∥∥
CLp(R≥0→R)

+
∥∥ (Cky0)

(j)
∥∥

CLp(R≥0→R)

]

≤ β1 ‖u0‖CW∞,p(R≥0→R) + β2
∑
j≥0

r−1∑
i=0

∥∥y
(i+j)
0

∥∥
CLp(R≥0→R)

≤ β1 ‖u0‖CW∞,p(R≥0→R) + rβ2 ‖y0‖CW∞,p(R≥0→R) .

An analogous inequality for ‖u1‖CW∞,p(R≥0→R) gives W0 gain stability as required. This com-
pletes the proof of the theorem. 2

Theorem 4.4 shows in combination with Proposition 4.1, for signal spaces of type (A) or (C)
in (3.2), that if r ≤ n and κ, ν ≥ 1 sufficiently large then [P (A, b, c;x0), Ck,κ,ν ] is W0-gain stable,
with a bound for the gain given by

∥∥ΠCk,κ,ν//P (A,b,c;0)

∥∥
W0,W0

≤ β(k, κ, ν) , (4.12)

for some β(k, κ, ν) > 0 determined by the proof of Theorem 4.4 and Proposition 4.1.

In the signal space setting of type (B) in (3.2), i.e. p, r < ∞, these stability results are only
proved for kr = 0, thus precluding the application of Proposition 4.1. However, there are many
plants stabilizable in Pn,r, r ≤ n− 1, including, for example, the class of plants stabilizable by
PD controllers (r = 2, n ≥ 3).
Since Proposition 4.1 gives stabilizability of plants in Pn,r, r ≤ n, and since the signal space
setting (A) is only applicable when p = ∞, the setting (C) has been introduced to allow stability
results in the context of p < ∞, without the assumption that kr = 0 as in (B). However, the
setting (C) does introduce extra regularity requirements on the external disturbances u0, y0.

4.3 Gain stability of the closed-loop system [P (A, b, c; 0), CEuler
k [h]]

We are now in a position to show that linear systems (A, b, c) ∈ Pn,r are gain stabilizable on
U × Y by the delay feedback CEuler

k [h] defined in (1.2), for suitable k ∈ R1×r, for sufficiently
small h > 0 and for signal spaces of type (A), (B) or (C) in (3.2).

Theorem 4.5 Let, for r, n ∈ N with r ≤ n, (A, b, c) ∈ Pn,r and choose k ∈ R1×r such that
spec

(
A + bk[c/ . . . /cAr−1]

) ⊂ C−. Let the signal spaces U , Y, W, W0 be of type (A), (B) or
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(C) in (3.2); in case of (B) suppose ke
(r)
r = 0. Then γ :=

∥∥ΠCk//P (A,b,c;0)

∥∥
W0,W0

< ∞. Suppose
h ∈ (0, h∗), where h∗ > 0 satisfies (3.3). Then the delay feedback controller CEuler

k [h] : Y0e → U0e,
defined in (1.2), applied to the plant P (A, b, c; 0) : U0e → Y0e given by (4.1) yields

∥∥ΠCEuler
k [h]//P (A,b,c;0)

∥∥
W0,W0

≤ γ

1 + h
r−1∑
i=1

|ki+1| iηp(h, i)

1− hγ
r−1∑
i=1

|ki+1| iηp(h, i)
. (4.13)

Proof. By Theorem 4.4 it follows that γ :=
∥∥ΠCk//P (A,b,c;0)

∥∥
W0,W0

< ∞. The result now
follows from Theorem 3.1 since [P (A, b, c; 0), CEuler

k [h]] is globally well posed and P (0) = 0. 2

In the following let CEuler
k,κ,ν [h] : y2 7→ u2 = −ν

∑r−1
i=0 κr−iki+1∆i

hy2 be the delay feedback controller
corresponding to controller Ck,κ,ν given in (4.2).

Together with Proposition 4.1 and Theorem 4.4, Theorem 4.5 shows for signal spaces of type
(A) or (C) in (3.2), that for sufficiently large κ, ν ≥ 1 (determined by Proposition 4.1), β(k, κ, ν)
given in (4.12), and sufficiently small h > 0 (determined by Theorem 4.5), the closed-loop system
[P (A, b, c; 0), CEuler

k,κ,ν [h]] is W0-gain stable and

∥∥ΠCEuler
k,κ,ν [h]//P (A,b,c;0)

∥∥
W0,W0

≤ β(k, κ, ν)
1 + hνκr−1

r−1∑
i=1

|ki+1| iηp(h, i)

1− hβ(k, κ, ν)νκr−1
r−1∑
i=1

|ki+1| iηp(h, i)
.

4.4 Gain stability of [P (A, b, c; x0), CEuler
k [h]] with non-zero initial condition

To generalize Theorem 4.5 by allowing for non-zero initial conditions, we give the following result
which will be applied to signal spaces of type (A) or (B) in (3.2). The proof of Theorem 4.6 is
based on an extension of [4, Th. 5.3].

Theorem 4.6 Let r, n ∈ N with r ≤ n and consider signal spaces U , Y, W, W0 of type (A) or
(B) in (3.2). Let k ∈ R1×r and additionally in case (B) suppose ke

(r)
r = 0. Let (A, b, c) ∈ Pn,r,

x0 ∈ Rn and consider the operator P (A, b, c; x0) : Ue → Ye as defined in (4.1). Suppose that for
h > 0, applying the feedback controllers

Ck : Ye → Ue and CEuler
k [h] : Y0e → Ue

as defined in (1.1) and (1.2), respectively, to P (A, b, c; 0) yields
∥∥ΠCk//P (A,b,c;0)

∥∥
W0,W0

< ∞ and
∥∥ΠCEuler

k [h]//P (A,b,c;0)

∥∥
W0,W0

=: γ < ∞ .

Then

∃λ > 0 ∀x0 ∈ Rn ∀w0 ∈ W0 :
∥∥ΠCEuler

k [h]//P (A,b,c;x0)w0

∥∥
W ≤ λ|x0|+ γ ‖w0‖W0

. (4.14)

Proof. Note that we may consider P (A, b, c; 0) as an operator from Ue to Ye or from Ue to
Y0e. Furthermore, note that Ck and CEuler

k [h] may be considered as operators from Ye to U or
from Y0e to U . Thus we may consider the graphs of P (A, b, c; 0), Ck and CEuler

k [h] in W0 or in
W. To identify in which signal space a graph is considered we add a superscript W0 or W such
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as in GW0

P (A,b,c;0) ⊂ W0 or GWP (A,b,c;0) ⊂ W. For x0 6= 0 we have to consider P (A, b, c; x0) as an
operator from Ue to Ye with GWP (A,b,c;x0) ⊂ W.

Step 1 : Let y0 ≡ 0 and consider the map defined by u0
(4.5), (1.1), (2.1)7−→ y1 with transfer function

s 7→ G(s) = (1, 0, . . . , 0)(sI − (V AV −1 + V b(k | 0)))−1V b

= (1, 0, . . . , 0)(V (sI − (A + bk[c/ . . . /cAr−1]))V −1)−1V b ,

where the matrix V is given by (4.3). By boundedness of
∥∥HP (A,b,c;0),Ck

∥∥
W0,W0×W0

and [3,
Th. 2, Sect. 2.4] it follows that G(·) is stable. Since (A, b, c) is minimum phase, setting F :=
k[c/ . . . /cAr−1], [1, Th. 10] yields that spec(A + bF ) = spec((A + bk[c/ . . . /cAr−1]) ⊂ C−.

Since
∥∥HP (A,b,c;0),Ck

∥∥
W0,W0×W0

< ∞, we may define maps Ñ : U → U , u0 7→ u1, and M : U →
Y0, u0 7→ y1 by

Ñu0 = (1 0) ΠP (A,b,c;0)//Ck

(
u0

0

)
, Mu0 = (0 1) ΠP (A,b,c;0)//Ck

(
u0

0

)
.

Proposition 4.1 yields that the tuples (u0, u1) = (u0, Ñu0) and (u0, y1) = (u0,Mu0) satisfy

ẋ = (A + bF )x + bu0 , x(0) = 0
u1 = Fx + u0 ,
y1 = cx .



 (4.15)

Step 2 : We show Ñ(U) = V := {u ∈ U |P (A, b, c; 0)u ∈ Y}.
Suppose u ∈ V, i.e. u ∈ U with P (A, b, c; 0)u ∈ Y. Then Y 3 P (A, b, c; 0)u = cx =: y for x being
a solution of ẋ = Ax + bu, x(0) = 0. Since (A, b, c) is minimum phase, thus (A, c) is detectable,
there exists L ∈ Rn such that spec(A + Lc) ⊂ C−. Since y ∈ Y and u ∈ U writing

ẋ = (A + Lc)x− Lcx + bu = (A + Lc)x− Ly + bu

yields that x ∈ CLp(R≥0 → Rn). Thus u0 := u− Fx ∈ U and (4.15) then yields that u = u1 =
Ñ(u0) ∈ Ñ(U), which gives Ñ(U) ⊂ V.

Conversely, suppose u ∈ N(U). Then there exists u0 ∈ U such that u0 = u − Fx ∈ U . Since
spec(A + bF ) ⊂ C− it follows by (4.15) that P (A, b, c; 0)u = y = cx ∈ Y. Hence Ñ(U) ⊂ V.

Now N : U → V, u0 7→ (1 0) ΠP (A,b,c;0)//Ck
( u0

0 ), is well defined and writing

ẋ = Ax + bu1 , x(0) = 0
u0 = Fx− u1 ,

directly gives that is invertible and P (A, b, c; 0) = MN−1.

Step 3 : Set Ā := A + bF = (A + bk[c/ . . . /cAr−1]). We show

GWP (A,b,c;x0) = Q :=
{(

N
M

)
v +

(
F exp(Ā·)x0

c exp(Ā·)x0

)
∈ W

∣∣∣∣
v ∈ U ,
N, M, F and Ā as in Step 1

}
.

We show Q ⊂ GWP (A,b,c;x0). Consider, for any v ∈ U , qv =
(

N
M

)
v +

(
F exp(Ā·)x0

c exp(Ā·)x0

)
∈ Q. Let

u = Nv + F exp(Ā·)x0. Since Nv ∈ U and exp(Ā·) ∈ CW r,p(R≥0 → R)n×n = Yn×n, we have
u ∈ U . Observe

ẋ = Ax + b(F exp(Ā·)x0) , x(0) = x0 ∈ Rn
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has the solution x(·) = exp(Ā·)x0. Thus it follows that

P (A, b, c; x0)F exp(Ā·)x0 = c exp(Ā·)x0 .

Hence

P (A, b, c; x0)u = P (A, b, c; x0)Nv + P (A, b, c;x0)
(
F exp(Ā·)x0

)− P (A, b, c; x0)0

= P (A, b, c; 0)Nv + P (A, b, c; x0)
(
F exp(Ā·)x0

)

= M(N)−1Nv + c exp(Ā·)x0

= Mv + c exp(Ā·)x0 ∈ Y . (4.16)

Thus qv =
(

u
P (A, b, c; x0)u

)
∈ U × Y, so qv ∈ GWP (A,b,c;x0) and Q ⊂ GWP (A,b,c;x0).

We show GWP (A,b,c;x0) ⊂ Q. Consider
(

u
P (A, b, c;x0)u

)
∈ GWP (A,b,c;x0). Then

P (A, b, c; 0)
(
u− F exp(Ā·)x0

)
= P (A, b, c;x0)u− P (A, b, c; x0)

(
F exp(Ā·)x0

)

and since the right hand side lies in Y, it follows that P (A, b, c; 0)
(
u− F exp(Ā·)x0

) ∈ Y.
Therefore u − F exp(Ā·)x0 ∈ V = Im(N), and so there exists v ∈ U such that Nv = u −
F exp(Ā·)x0. Therefore equation (4.16) holds, hence

(
u

P (A, b, c; x0)u

)
=

(
N
M

)
v +

(
F exp(Ā·)x0

c exp(Ā·)x0

)
∈ Q

and so GWP (A,b,c;x0) ⊂ Q. Therefore we have shown GWP (A,b,c;x0) = Q as claimed.

Step 4 : Finally we show (4.14). For w0 ∈ W0 and x0 ∈ Rn let

w′0 := w0 − v1 − v2, v1 :=
(

F exp(Ā·)x0

c exp(Ā·)x0

)
v2 :=

( −CEuler
k [h](c exp(Ā·)x0)
−c exp(Ā·)x0

)
.

Since CEuler
k [h](Y) ⊂ U , we have w′0 ∈ W0, hence,

HP (A,b,c;0),CEuler
k [h](w

′
0) = (w1, w2) ∈ GW0

P (A,b,c;0) × GW0

CEuler
k [h]

.

In particular, w′0 = w1 + w2, and by rearranging we have w0 = (w1 + v1) + (w2 + v2).

Since w1 ∈ GW0

P (A,b,c;0) ⊂ GWP (A,b,c;0), there exists v ∈ U such that w1 =
(

N
M

)
v, hence

w1 + v1 ∈ Q = GWP (A,b,c;x0). Since w2 ∈ GW0

CEuler
k [h]

⊂ GW
CEuler

k [h]
and v2 ∈ GW

CEuler
k [h]

, it follows by

linearity of CEuler
k [h] that w2 + v2 ∈ GWCEuler

k [h]
. Therefore, since [P (A, b, c; x0), CEuler

k [h]] has the
uniqueness property, HP (A,b,c;x0),CEuler

k [h] : W →W ×W is defined and

HP (A,b,c;x0),CEuler
k [h]w0 = (w1 + v1, w2 + v2) ∈ GWP (A,b,c;x0) × GWCEuler

k [h]
⊂ W ×W.

Now for

λ := sup
x0∈Rn\{0}

‖v2‖W
|x0| =

∥∥∥∥
( −CEuler

k [h](c exp(Ā·))
−c exp(Ā·)

)∥∥∥∥
Wn

(4.17)

it follows that
∥∥ΠCEuler

k [h]//P (A,b,c;x0)w0

∥∥
W×W ≤ ‖v2‖W + ‖w2‖W ≤ λ|x0|+ γ ‖w0‖W0

,

thus concluding the proof. 2
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We can now state the result for the delay feedback controller in the presence of both input/ouput
disturbances and initial conditions.

Theorem 4.7 Let, for r, n ∈ N with r ≤ n, (A, b, c) ∈ Pn,r and choose k ∈ R1×r such
that spec

(
A + bk[c/ . . . /cAr−1]

) ⊂ C−. Let the signal spaces U , Y, W, W0 be of type (A)
or (B) in (3.2); in case of (B) suppose ke

(r)
r = 0. Then γ :=

∥∥ΠCk//P (A,b,c;0)

∥∥
W0,W0

< ∞.
Suppose h ∈ (0, h∗), where h∗ > 0 satisfies (3.3). Consider for (A, b, c) the plant operator
P (A, b, c;x0) : Ue → Ye given by (4.1) and the delay feedback controller CEuler

k [h] : Y0e → Ue,
defined in (1.2). Then there exists λ > 0 such that, for all w0 ∈ W0,

∥∥ΠCEuler
k [h]//P (A,b,c;x0)w0

∥∥
W,W ≤ λ|x0|+ γ

1 + h
r−1∑
i=1

|ki+1| iηp(h, i)

1− hγ
r−1∑
i=1

|ki+1| iηp(h, i)
‖w0‖W0

.

Proof. The result follows directly from Theorem 4.5 and Theorem 4.6. 2

Together with Proposition 4.1 and Theorem 4.4, Theorem 4.7 shows for signal spaces of type
(A) in (3.2), that for sufficiently large κ, ν ≥ 1 (determined by Proposition 4.1), β(k, κ, ν) given
in (4.12) and for sufficiently small h > 0 (determined by Theorem 4.5) there exists λ > 0
(determined by equation (4.17)) such that, for all x0 ∈ Rn and w0 ∈ W0:

∥∥ΠCEuler
k,κ,ν [h]//P (A,b,c;x0)w0

∥∥
W,W

≤ λ|x0|+


β(k, κ, ν)

1 + hνκr−1
r−1∑
i=1

|ki+1| iηp(h, i)

1− hβ(k, κ, ν)νκr−1
r−1∑
i=1

|ki+1| iηp(h, i)


 ‖w0‖W0

.

4.5 Exponential stability of [P (A, b, c; x0), CEuler
k [h]] with u0 ≡ y0 ≡ 0

In Proposition 4.1 we have shown that the high-gain derivative feedback controller Ck,κ,ν : y2 7→
u2 leads to an internally stable system, i.e. (4.7) with u0 ≡ y0 ≡ 0 gives

∃ ν∗ ≥ 1 ∀ ν ≥ ν∗ ∃κ∗ ≥ 1, ∀κ ≥ κ∗ : ż = Ak,κ,νz is exponentially stable.

Now (as in [10] where a more limited class of systems was considered) we will show that an
analogous result holds true if a stabilizing derivative feedback controller Ck : y2 7→ u2 is replaced
by the delay feedback CEuler

k [h] : y2 7→ u2 for h > 0 sufficiently small. Exponential stability for
a delay differential equation is defined as follows, see, for example [2, Def. 5.1.1].

Definition 4.8 Let h > 0 and, for r, n ∈ N with r ≤ n, A0, . . . , Ar−1 ∈ Rn×n. Then the delay
initial value problem

ẋ =
r−1∑

j=0

Aj x(t− jh) , x ≡ ϕ on [(1− r)h, 0] , (4.18)

is said to be exponentially stable if, and only if,

∃M, λ > 0 ∀ t ≥ 0 ∀ϕ ∈ Cpw([(1− r)h, 0] → Rn) : |x(t)| ≤ Me−λt max
s∈[(1−r)h,0]

|ϕ(s)| . (4.19)
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Proposition 4.9 Let, for r, n ∈ N with r ≤ n, (A, b, c) ∈ Pn,r, x0 ∈ Rn. Consider the signal
spaces U = Y = CW∞,2

0 (R≥0 → R) and W := U × Y and choose k ∈ R1×r and h > 0 such that
∥∥ΠP (A,b,c;0)//CEuler

k [h]

∥∥
W,W < ∞ ,

Then the delay initial value problem for the closed-loop system [P (A, b, c;x0), CEuler
k [h]] given

by (4.1), (1.2) and (2.1) with u0 ≡ y0 ≡ 0 is exponentially stable.

Proof. For (A, b, c) ∈ Pn,r, r, n ∈ N with r ≤ n and h > 0, the closed-loop system
[P (A, b, c;x0), CEuler

k [h]] given by (4.1), (1.2) and (2.1) is described by a delay differential equa-
tion of the form (4.18) as follows:

ẋ(t) =
(
A + Ã0

)
x(t) +

r−1∑
j=1

Ãjx(t− jh) + bu0(t) +
r−1∑
j=0

b̃jy0(t− jh) ,

y1(t) = c x(t) , x ≡ ϕ on [(1− r)h, 0] ,

u1(t) = u0(t) +
r−1∑
j=0

(−1)j
r−1∑
i=j

ki+1

hi

(
i
j

)
(y0 − y1)(t− jh)





(4.20)

where ϕ(0) = x0 and, in view of (4.4), (4.5), for j = 0, . . . , r − 1,

Ãj := (−1)j+1cAr−1b
r−1∑

i=j

ki+1

hi

(
i

j

)
V −1

[
e(n)
r

∣∣ 0n×(n−1)

]
V , b̃j := (−1)j

r−1∑

i=j

ki+1

hi

(
i

j

)
b ,

and the transformation matrix V ∈ Rn×n is given by (4.3). Let GP (A,b,c;0)//CEuler
k [h] ∈ R(s)2×2

denote the transfer function of ΠP (A,b,c;0)//CEuler
k [h]. Then, [16, Th. 30] and [3, Th. 2, Sect. 2.4]

yields:
sup
ω∈R

∥∥GP (A,b,c;0)//CEuler
k [h](iω)

∥∥
2

=
∥∥ΠP (A,b,c;0)//CEuler

k [h]

∥∥
W,W < ∞ .

Since the denominator of the function
(
s 7→ GP (A,b,c;0)//CEuler

k [h](s)
)

is equal to

det
(
sI −

(
A + Ã0 + e−shÃ1 + · · ·+ e−s(r−1)hÃr−1

))
,

it follows that

∀ s ∈ C+ : det
(
sI −

(
A + Ã0 + e−shÃ1 + · · ·+ e−s(r−1)hÃr−1

))
6= 0 .

Now, [2, Th. 5.1.5] yields exponential stability of (4.20) with u0 ≡ y0 ≡ 0. 2

We conclude the paper by noting that for sufficiently large κ, ν ≥ 1 (determined by Proposi-
tion 4.1) and for sufficiently small h > 0 (determined by Theorem 4.5) Proposition 4.9 yields
that the closed-loop system [P (A, b, c;x0), CEuler

k,κ,ν [h]] with u0 ≡ y0 ≡ 0 is exponentially stable.
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