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1 Introduction

The purpose of these notes is to state a series of simply stated questions in adaptive control.

2 Background

We consider causal mappings P: U, — Y, and C': Y, — U, where P and C represent a plant
and a controller, respectively, and ¢/ and ) are normed vector spaces such as L?(R,,R™) and
U., V. are the analogous extended spaces, for example L*¢(R,,R™). Our central concern is
with the system of equations:

[ch] . 1 :PU1, y0:y1+y2 (21)
uz = Cya, up = u1 + ug,

where ug, u1,us € U, yo,y1,y2 € Y and which correspond to the classical feedback configuration
of a plant and controller as depicted in Figure 1. We will state our problems in terms of the
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Figure 1: The closed-loop.

operator:

uQ Ul
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P//C - wWo <y0> = <y1) w1

We are interested in the following fundamental quantity: given a disturbance level d > 0, a
nominal plant P and a controller C,

Bpc(d) =sup{r > 0| (P, 1) <r = |[|llp /cwol|l < oo forall |Jwo| < d}. (2.2)

Note that Bp ¢ is undefined if IIp, /¢ is not BIBO stable.
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3 Global Limitations of Performance and Robustness
1. Answers to the following questions are of interest in any sensible signal space setting, e.g.
U, Y =L*(Ry) or L°(Ry). Suppose P(): dom(P) — Y is defined by:
P(0)(u1) = y1 where g1 = 0y1 + u1, y1(0) = 0. (3.3)
Then we know there exists a causal controller C' and ag > 0, 79 € K ! such that:
e 9y /cwoll < ag +vo([[woll) VO € R. (3.4)
(a) What is the minimal achievable rate of growth of 74?7 Concretely, find:
p=inf{qg >0 : 3 causal C s.t. yp(r) = O(r?), VO € R}. (3.5)

(b) Is the above infimum attained?

(c) Is there a control design which achieves a robustness margin independent of the
disturbance level? That is, find or prove the non-existence of, a controller C' and a
constant bp(gy,c > 0 such that:

Bp(g)yc(d) = bp(g)pf >0 VOeR, Vd>0. (36)

Observe that if there exists a causal C' s.t. y5(r) = O(r) V0 € R then (c) follows, i.e. p=1
in (a) and (b) implies (c), or p < 1 in (a) implies (c).

2. We ask the same questions in a discrete time setting, e.g. with U,Y = (*(Z) or [®(Z.),
and
P(0)(u1) = y1 where y1(k + 1) = 0y1(k) + ui(k), y1(0) = 0. (3.7)

3. As an alternative generalisation of the concept of (e.g. L?) gain stability, we ask the same
questions (a),(b) when (3.4) is replaced by (3.8):

|77 pg)) ;cwoll < ag + || Trvg o (|wo(-)])| V7 >0, V8 € R, (3.8)

and where T, denotes the truncation operator:

T.(v) = { v(t), telo,r7]

0, t e (r,00).

In the particular case when U = ) = L?(R.), this corresponds to the existence of 0 >
M > —oo such that the following inequality

T 2
| Cottun®)? = (Wngyjcun(e))” de > M > —oc (39)
holds for all 7 > 0 (in the case Y =) = L*°(R4), (3.4) and (3.8) are equivalent).

4. A weaker version of questions (a),(b) is to allow C to be dependent of 0,,.x, and to replace
(3.4) with the requirement that the parameterised controller set {C(fmax)}o,. >0 has the
property that there exists ag > 0, 79 € K such that for all 0, > 0,

TP (8)//C(uma) woll < ag +vo([lwoll) V0] < Omax. (3.10)

A similar replacement can also be made for (3.8). Note that it is critical that ag, v are
independent of 6,,.x. The corresponding weak version of question (c¢) becomes to find or
to prove the non-existence of, a controller C' and a constant bp(g) > 0 such that:

Bp(g)7c(d) = bP(9)7C(9max) > bp(g) >0 VOeR, Vd>0. (3.11)

1KC denote the class of functions v: Ry — R, with the properties: ~(0) = 0, v is monotonically increasing.



We now make some remarks on the classes of uncertain nominal plants considered. The two
plant classes considered are deliberately simple; nevertheless the questions asked are not trivial.
From a control perspective, the continuous-time class (3.3) is high gain stabilizable, hence any
rationale for adaptive control has to that of (suitably formulated) superior performance. The
discrete plant (3.7) represents a simple class which captures many of the difficulties of traditional
adaptive control, including non-minimum phase behaviour; here the existence of stabilizing
adaptive controllers already beats linear controllers.

A more general problem is to ascertain which of the above properties are achievable in the more
general setting of appropriate classes of (LTI) plants P(6) suitably parameterised by 6 € R™.

4 Adaptive Control as H-Infinity Optimization

Let P = {Pp}gco be a family of finite order LTI plants (causal, discrete time), parameterized by
parameter ¢ ranging over set ©. Each Py is assumed to have two vector inputs (“disturbance”
w = wy and “control” u = wuy) and two vector outputs (“cost” z = zp and “sensor” y = yp). The
dimension of yy is assumed to be independent of €, and the same assumption is made about the
dimension of ug. In addition, assume that two functions y* : © +— (0,00) and v~ : © — (0, 0)
are given.

A general question of interest can be formulated as follows: for which families { Py and functions
7F does there exist an efficient algorithm for either finding a single (in general, nonlinear) strictly
causal feedback law u(-) = K(y(-)) which makes the closed loop gain from wy to zp less than
vt (0) for all § € O, or certifying that no single strictly causal feedback law u(-) = K(y(-)) is
capable of making the closed loop gain from wy to zy less than v~ (6) for all § € O.

In the case when © contains a single element, we get the standard suboptimal H-Infinity op-
timization problem, which has an elegant and efficient solution. In the case when © is finite,
one can inquire about existence of a polynomial time algorithm which solves this problem when
v(0) = py~(0) for all f, where p > 1 is a given constant.



