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1 Introduction

The purpose of these notes is to state a series of simply stated questions in adaptive control.

2 Background

We consider causal mappings P : Ue → Ye and C : Ye → Ue, where P and C represent a plant
and a controller, respectively, and U and Y are normed vector spaces such as L2(R+,Rm) and
Ue, Ye are the analogous extended spaces, for example L2,e(R+,Rm). Our central concern is
with the system of equations:

[P, C] :
y1 = Pu1, y0 = y1 + y2

u2 = Cy2, u0 = u1 + u2,

}
(2.1)

where u0, u1, u2 ∈ U , y0, y1, y2 ∈ Y and which correspond to the classical feedback configuration
of a plant and controller as depicted in Figure 1. We will state our problems in terms of the
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Figure 1: The closed-loop.

operator:

ΠP//C : W →W : w0 =
(

u0

y0

)
7→

(
u1

y1

)
= w1.

We are interested in the following fundamental quantity: given a disturbance level d ≥ 0, a
nominal plant P and a controller C,

BP,C(d) = sup{r ≥ 0 | δ(P, P1) ≤ r =⇒ ‖ΠP1//Cw0‖ < ∞ for all ‖w0‖ ≤ d}. (2.2)

Note that BP,C is undefined if ΠP//C is not BIBO stable.
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3 Global Limitations of Performance and Robustness

1. Answers to the following questions are of interest in any sensible signal space setting, e.g.
U ,Y = L2(R+) or L∞(R+). Suppose P (θ) : dom(P ) → Y is defined by:

P (θ)(u1) = y1 where ẏ1 = θy1 + u1, y1(0) = 0. (3.3)

Then we know there exists a causal controller C and aθ ≥ 0, γθ ∈ K 1 such that:

‖ΠP (θ)//Cw0‖ ≤ aθ + γθ(‖w0‖) ∀θ ∈ R. (3.4)

(a) What is the minimal achievable rate of growth of γθ? Concretely, find:

p = inf{q ≥ 0 : ∃ causal C s.t. γθ(r) = O(rq), ∀θ ∈ R}. (3.5)

(b) Is the above infimum attained?
(c) Is there a control design which achieves a robustness margin independent of the

disturbance level? That is, find or prove the non-existence of, a controller C and a
constant bP (θ),C > 0 such that:

BP (θ),C(d) = bP (θ),C > 0 ∀θ ∈ R, ∀d ≥ 0. (3.6)

Observe that if there exists a causal C s.t. γθ(r) = O(r) ∀θ ∈ R then (c) follows, i.e. p = 1
in (a) and (b) implies (c), or p < 1 in (a) implies (c).

2. We ask the same questions in a discrete time setting, e.g. with U ,Y = l2(Z+) or l∞(Z+),
and

P (θ)(u1) = y1 where y1(k + 1) = θy1(k) + u1(k), y1(0) = 0. (3.7)

3. As an alternative generalisation of the concept of (e.g. L2) gain stability, we ask the same
questions (a),(b) when (3.4) is replaced by (3.8):

‖TτΠP (θ)//Cw0‖ ≤ aθ + ‖Tτγθ ◦ (|w0(·)|)‖ ∀τ > 0, ∀θ ∈ R, (3.8)

and where Tτ denotes the truncation operator:

Tτ (v) :=
{

v(t), t ∈ [0, τ ]
0, t ∈ (τ,∞) .

In the particular case when U = Y = L2(R+), this corresponds to the existence of 0 ≥
M > −∞ such that the following inequality

∫ τ

0
(γθ(|w0(t)|))2 −

(
ΠP (θ)//Cw0(t)

)2
dt ≥ M > −∞ (3.9)

holds for all τ > 0 (in the case U = Y = L∞(R+), (3.4) and (3.8) are equivalent).

4. A weaker version of questions (a),(b) is to allow C to be dependent of θmax, and to replace
(3.4) with the requirement that the parameterised controller set {C(θmax)}θmax≥0 has the
property that there exists aθ > 0, γθ ∈ K such that for all θmax ≥ 0,

‖ΠP (θ)//C(θmax)w0‖ ≤ aθ + γθ(‖w0‖) ∀|θ| ≤ θmax. (3.10)

A similar replacement can also be made for (3.8). Note that it is critical that aθ, γθ are
independent of θmax. The corresponding weak version of question (c) becomes to find or
to prove the non-existence of, a controller C and a constant bP (θ) > 0 such that:

BP (θ),C(d) = bP (θ),C(θmax) > bP (θ) > 0 ∀θ ∈ R, ∀d ≥ 0. (3.11)

1K denote the class of functions γ : R+ → R+ with the properties: γ(0) = 0, γ is monotonically increasing.
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We now make some remarks on the classes of uncertain nominal plants considered. The two
plant classes considered are deliberately simple; nevertheless the questions asked are not trivial.
From a control perspective, the continuous-time class (3.3) is high gain stabilizable, hence any
rationale for adaptive control has to that of (suitably formulated) superior performance. The
discrete plant (3.7) represents a simple class which captures many of the difficulties of traditional
adaptive control, including non-minimum phase behaviour; here the existence of stabilizing
adaptive controllers already beats linear controllers.
A more general problem is to ascertain which of the above properties are achievable in the more
general setting of appropriate classes of (LTI) plants P (θ) suitably parameterised by θ ∈ Rn.

4 Adaptive Control as H-Infinity Optimization

Let P = {Pθ}θ∈Θ be a family of finite order LTI plants (causal, discrete time), parameterized by
parameter θ ranging over set Θ. Each Pθ is assumed to have two vector inputs (“disturbance”
w = wθ and “control” u = uθ) and two vector outputs (“cost” z = zθ and “sensor” y = yθ). The
dimension of yθ is assumed to be independent of θ, and the same assumption is made about the
dimension of uθ. In addition, assume that two functions γ+ : Θ 7→ (0,∞) and γ− : Θ 7→ (0,∞)
are given.
A general question of interest can be formulated as follows: for which families {Pθ and functions
γ± does there exist an efficient algorithm for either finding a single (in general, nonlinear) strictly
causal feedback law u(·) = K(y(·)) which makes the closed loop gain from wθ to zθ less than
γ+(θ) for all θ ∈ Θ, or certifying that no single strictly causal feedback law u(·) = K(y(·)) is
capable of making the closed loop gain from wθ to zθ less than γ−(θ) for all θ ∈ Θ.
In the case when Θ contains a single element, we get the standard suboptimal H-Infinity op-
timization problem, which has an elegant and efficient solution. In the case when Θ is finite,
one can inquire about existence of a polynomial time algorithm which solves this problem when
γ+(θ) = ργ−(θ) for all θ, where ρ > 1 is a given constant.
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