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1 Introduction

It is well known that the stability of the parallel projection operator mapping external distur-
bances to internal closed loop signals plays a critical role in both the linear and nonlinear theory
of robust stabilization. Indeed the key results of [3] state that if the gain of this operator is
finite, then the stability is maintained if the plant is perturbed by a distance (measured by the
gap metric) less than the reciprocal of the gain.

However, this only provides a sufficient condition for stability. Recent work [1] in adaptive control
has constructed controllers with robust stability properties which nevertheless violate the above
sufficiency condition. The purpose of this paper is to show that this is inevitiable, namely that
the specification of the adaptive control problem itself forces any ‘smooth’ controller to violate
the finite gain condition. Furthermore, the construction also shows that it is not possible to
achieve gain function stability with a class K gain function.

The problem is first motivated by considering the discontinuous local behaviour of a classical
adaptive controller. We then develop a generalisation of the concept of a Fréchet derivative to
enable us to relate the linearisation of an unstable system to an operator derivative. This in
turn is utilized to show that the local behaviour of a wide class of ‘smooth’ adaptive controllers
forces the closed loop operator to be discontinuous.

There are a number of implications of the discontinuity of the closed loop operator; most im-
portantly it shows that the classical quantity bp ¢ is not useful in this context. In the final part
of the paper we briefly argue that that a biased notion of stability overcomes these problems,
and allows a systematic development of a robust stability theory for adaptive control.

2 Operator Stability and the Gap metric

We counsider causal mappings P: U, — Y, and C: YV, — U,, where P and C represent a plant
and a controller, respectively, and & and ) are normed vector spaces such as L?(R,,R™) and
U,, V. are the analogous extended spaces, for example L*¢(Ry, R™). Our central concern is
with the system of equations:

y1=Pui, yo=y1+y
PC : 2.1
7 €] ug = Cya, wo = u1 + ug, } (2.1)

where ug, u1,u2 € U, yo,y1,y2 € Y and which correspond to the classical feedback configuration
of a plant and controller as depicted in Figure 1.
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Figure 1: The closed-loop system [P, C].

Let W =U x Y. The system [P, C] is said to be well posed if, and only if,
Ug uy U
Hpc: W — We x W,, < ) — (( > , < >> such that (2.1) holds (2.2)
Yo Y1 Y2

is a causal operator.

A causal operator F': X1 — X between normed spaces X1, Xs, is said to be gain-function stable
(or gf-stable) if, and only if, there exists a nonlinear function (a so called gain-function)

Y[F]: R =Ry, re—=y[F|(r)= Hs1H1<p |Fz]| . (2.3)

A closed-loop [P, C] is said to be gf-stable if, and only if, Hp¢ is gf-stable. Corresponding to
the plant operator P is a subset of W, called the graph of the plant Gp, which is defined as

M:gp:{<lfu> :uEU,Puey}CW. (2.4)

Finally we define the following closed loop parallel projection operator:

U U1
II W =W — ,
kl/e (ZA)) (?ﬂ)

3 Robust Stability Margins and Sufficient Conditions

Given normed i/o spaces U, ), we are interested in the following fundamental quantity: given a
disturbance level d > 0, a nominal plant P and a controller C,

Bpc(d) =sup{r 2 0[4(P, 1) <7 = |[Hp,,c(uo, o) < oo forall |[(uo, yo)| < d},  (3.5)

where for the purposes of this paper we restrict our attention to minimal linear finite dimensional
plants, but make no such restriction on the controllers. In this setting we interpret § as the
standard gap metric.

Note that Bp is undefined if Hp is not BIBO stable. For LTI systems, (P,C € RLy), it
is well known that Bpc can be computed exactly in an L? setting, and has a constant value
independent of the disturbance level d > 0:

Bpo(d) =bpe = |Up) ol ™ (3.6)

For nonlinear systems, the robust stability margin is in general dependent on the disturbance
level, and the parallel projection gain only provides a lower bound:

—1
I ;
BP,c(d) > sup | P//C(Uo o) || 7
luowoll<r(d)  II(o0,%0)ll

(3.7)

for some appropriate choice of r. Furthermore, the reverse inequality does not necessarily hold.



4 A prototypical example

The potential lack of tightness of the lower bound (3.7) is not pathological; many adaptive
controllers have the property
prc(d) >0 foralld>0 (48)

whilst

II
. (|| p/jc (o, yo) |l

> =oo forallr > 0. (4.9)
(w0, yo) |

[luo,yoll<r

This arises due to a problem with small signal behaviour, where whilst IIp, /C(O) = 0, the
operator Ilp; ¢ is not continuous at 0 — which precludes the existence of a ‘local finite gain’.

An explicit example of this (in an L? setting) is given by the plant
P(0)(u1) = y1 where 91 = 0y; + u1 y1(0) =0, (4.10)
with 8 > 0 and the controller:

Cly2)(t) = wualt)
ux(t) = —kiys(t)
E(t) = 2. (4.11)

It has been shown that this closed loop is BIBO stable, see [1]. Clearly uy = yo = 0 implies
u1,y1 = 0, ie. Ip;/c(0) = 0, but for any disturbance (arbitrarily small) which moves y; # 0,
the system is unstable unless there exists a time at which k(t) > 6%, ie. ||ya| 2[0,4 > 0%. Hence
for all € > 0, Jug, yo, ||uo, yol| < €

I uo, T T 02
1Mol > 1p/sc(uo ?;0) I _ ||(u2,y2)T|| S o aseso. (4.12)
[1(wo, yo) " | (o, yo) "Il — €
Hence [|IIp;,c|| = oo, and this is caused by a lack of continuity at 0. The remainder of this

paper establishes a result which shows that this behaviour is inherent in all smooth adaptive
controllers.

However, let us first note that this discontinuity is addressed in [1] by appending 6 onto the
input space, for then an inequality of the form:

w1, y1, Olluxyxr < g(|lwo, yolluxy, |0]), (4.13)

was constructed, and from this it was shown in [1] that Bpg) c(r) > 0, ie. we have a non zero
but disturbance dependent robustness margin.

5 Differentiation and Linearisation

Let N (X}, X2) denote the set of nonlinear operators with domain X; and co-range X5 and let
L(X1, X3) denote the set of bounded linear operators with domain X; and co-range Xs. An
operator N: dom(N) — Xy where dom(N) C X5 and X, X5 are normed spaces, is said to be
Fréchet differentiable at an interior point z € dom(V) if there exists a bounded linear operator
A: Xy — X, such that
L IN ()~ N@) - Ay )]
y—e ly — |l

The Fréchet derivative of N at z¢ is denoted by D, N, and we write DN = Do N.

= 0. (5.14)



Note that the Fréchet derivative is required to be a bounded linear operator, which essentially
restricts the definition to operators N which are locally bounded. No sensible meaning can be
given to the derivative if N is unbounded, (eg. dropping the criteria that A is bounded does
not yield a sensible limiting process). However, we will need to generalize the derivative to this
unbounded setting. In order to do this we now recall the definition and basic facts concerning
nonlinear co-prime factorisations.

Definition 5.1 An operator P: U, — Y. has a right coprime factoristion if and only if there
exist causal operators N: U — Y and D:Y — U s.t. 1. D is causally invertible with
dom(D~Y) = P7Y(Y), 2. P = ND7', and 3. there exists a stable operator L: U x Y — U
s.t. L ( Jl\)/, ) = 1. We let RCF(Uy,Y,) denote the set of all operators P: U — YV, s.t. P ad-

mits has a right coprime factorisation P = ND~', and let rcf(P) denote the set of all coprime
factors (N, D) of P.

We now extend the definition of the Fréchet derivative as follows:

Definition 5.2 Suppose P € RCF Uy, Vo), and let (N,D) € rcf(P). Then we define the
extended Fréchet differential as:

Dy N = D, N(D,,D)"". (5.15)

It can be easily verified that D, N is well defined, ie. that if (N, D), (Ny,D;) € rcf(P), then
DyyN(DyyD)™' = DyyNi(DyyDy)~'. Furthermore if Dy, N is defined then Dy N = Dy, N,
therefore henceforth we will call the ‘extended Fréchet derivative’ simply the ‘Fréchet derivative’,
and write D, for D,,. As with the standard Fréchet derivative, the extended Fréchet derivative
of a smoothly stabilizable system can be interpreted as a linearisation, hence the above class of
controllers includes all finite dimensional C! systems, © = f(z,y), u = h(x), which are smoothly
stabilizable.

6 The Main Results

The controller is considered to belong to a wide class of (nonlinear) operators, denoted by
N (&1, Xy), where C € N(Xy,X,) if and only if 1. C = ND ! is a co-prime factorisation, 2.
N, D are Fréchet differentiable at 0, and 3. DoD, DgN have causal, minimal finite dimensional
realisations.

We can now state our two main results.

Theorem 6.1 Suppose P(0): U, — Y, is defined by:
P(0)(u1) = y1 where 91 = 0y; + u1 y1(0) =0, (6.16)

and suppose C € N'(Uy,V,). Then there exists @ € R such that Hpg),c 1s not continuous at 0.

Proof. (Sketch). For a contradiction, we suppose Hpg),c is continuous at 0 for § € R.
Since Hp(g)c(0) = 0, it follows that [P(0),C] is locally vy-stable for all # € R. From this
it can be shown that DIlp)//c is stable for all # € R. Furthermore, it can be shown that
DHP(H)//C = HDP(H)//DC = HP(H)//DC; and hence that HP(G)//DC is stable for 6 € R. But since
C € N(Uq,Ya), DC has a causal, minimal finite dimensional realisation, ie. DC' is a universal
controller for P(-). But it is easily shown that no such universal controller (in RLx) exists. O



Theorem 6.2 Suppose P(0): U, — Y, is defined by:
P(0)(u1) = y1 where g1 = 0y; +u1 y1(0) =0, (6.17)

and suppose C(0y,) € N (Uy,V,) is such that [P(0),C(0y,)] is locally vy, -stable for all €
[—0m, Om]. Then
Y,0,, — 00 as O, — 00. (6.18)

Proof. (Sketch). The proof is similar to the proof of Theorem 6.1, where the final contradiction
is obtained by observing that within any gap neighbourhood of % there exists plants of the form

Pi(s) = %I_z 's%e’ and for any such plant it is possible to find a 6 s.t. no C(s) can simultaneously

stabilize P;(s) and P(s) = -15. O

S

7 Conclusions

The results in this paper demonstrate that, for a wide class of ‘smooth’ universal controllers, the
closed loop operator Hp ¢ is not continuous, and hence it is not possible to achieve (even local)
L? gain stability. Furthermore, if the universality requirement is dropped, then necessarily the
L? gain performance degrades at fixed values of the parameter as the parametric uncertainty set
increases in size. The construction is based on analysing small signal behaviour via appropriate
linearisations. As such the proof generalises in a straightforward manner to a variety of signal
space settings, both in the continuous and discrete time domains, eg. L', L™, [1, (2, [*°.

It is important to observe that gain-stability is not possible even in a local sense, hence demon-
strating that a relaxation of the underlying stability requirement to allow different signal gains
at different signal levels (ie. the existence of a class K gain function) does not suffice. We have
shown that an obstruction to good behaviour occurs at the small signal level, hence the stability
condition must be relaxed even at a small signal level to obtain an appropriate robust stability
and performance theory.

A construction of an appropriate robust stability theory for adaptive control based on a biased
notion of stability! which is appropriate to the analysis of the above discontinuous operators is
the subject of current work.
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LA causal operator F': X1 — A between normed spaces X1, Ao, is said to be ~-stable with bias 8 if || Fz||x, <
~v(||z||x,) + B, where v can be taken to be either a class K gain function, or a scalar. [P, (] is said to be stable
with bias if there exists 7, 8 > 0 such that IIx//a is y-stable with bias 3.



