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1 Introduction
It is well known that the stability of the parallel projection operator mapping external distur-bances to internal closed loop signals plays a critical role in both the linear and nonlinear theoryof robust stabilization. Indeed the key results of [3] state that if the gain of this operator is�nite, then the stability is maintained if the plant is perturbed by a distance (measured by thegap metric) less than the reciprocal of the gain.However, this only provides a su�cient condition for stability. Recent work [1] in adaptive controlhas constructed controllers with robust stability properties which nevertheless violate the abovesu�ciency condition. The purpose of this paper is to show that this is inevitiable, namely thatthe speci�cation of the adaptive control problem itself forces any `smooth' controller to violatethe �nite gain condition. Furthermore, the construction also shows that it is not possible toachieve gain function stability with a class K gain function.The problem is �rst motivated by considering the discontinuous local behaviour of a classicaladaptive controller. We then develop a generalisation of the concept of a Fr�echet derivative toenable us to relate the linearisation of an unstable system to an operator derivative. This inturn is utilized to show that the local behaviour of a wide class of `smooth' adaptive controllersforces the closed loop operator to be discontinuous.There are a number of implications of the discontinuity of the closed loop operator; most im-portantly it shows that the classical quantity bP;C is not useful in this context. In the �nal partof the paper we brie
y argue that that a biased notion of stability overcomes these problems,and allows a systematic development of a robust stability theory for adaptive control.
2 Operator Stability and the Gap metric
We consider causal mappings P : Ue ! Ye and C : Ye ! Ue, where P and C represent a plantand a controller, respectively, and U and Y are normed vector spaces such as L2(R+;Rm) andUe, Ye are the analogous extended spaces, for example L2;e(R+;Rm). Our central concern iswith the system of equations:

[P;C] : y1 = Pu1; y0 = y1 + y2u2 = Cy2; u0 = u1 + u2;
� (2.1)

where u0; u1; u2 2 U , y0; y1; y2 2 Y and which correspond to the classical feedback con�gurationof a plant and controller as depicted in Figure 1.
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Figure 1: The closed-loop system [P;C].
Let W = U � Y. The system [P;C] is said to be well posed if, and only if,

HP;C : W !We �We ; �u0y0
� 7! ��u1y1

� ;�u2y2
�� such that (2.1) holds (2.2)

is a causal operator.A causal operator F : X1 ! X2 between normed spaces X1;X2, is said to be gain-function stable(or gf-stable) if, and only if, there exists a nonlinear function (a so called gain-function)

[F ] : R! R+; r 7! 
[F ](r) = sup

kxk�r kFxk : (2.3)
A closed-loop [P;C] is said to be gf-stable if, and only if, HP;C is gf-stable. Corresponding tothe plant operator P is a subset of W, called the graph of the plant GP , which is de�ned as

M = GP = �� uPu
� : u 2 U ; Pu 2 Y� � W: (2.4)

Finally we de�ne the following closed loop parallel projection operator:
�P==C : W !W : �u0y0

� 7! �u1y1
� ;

3 Robust Stability Margins and Su�cient Conditions
Given normed i/o spaces U ;Y, we are interested in the following fundamental quantity: given adisturbance level d � 0, a nominal plant P and a controller C,

BP;C(d) = supfr � 0 j �(P; P1) � r =) kHP1;C(u0; y0)k <1 for all k(u0; y0)k � dg; (3.5)
where for the purposes of this paper we restrict our attention to minimal linear �nite dimensionalplants, but make no such restriction on the controllers. In this setting we interpret � as thestandard gap metric.Note that BP;C is unde�ned if HP;C is not BIBO stable. For LTI systems, (P;C 2 RL1), itis well known that BP;C can be computed exactly in an L2 setting, and has a constant valueindependent of the disturbance level d � 0:

BP;C(d) = bP;C = k�P==Ck�1 (3.6)
For nonlinear systems, the robust stability margin is in general dependent on the disturbancelevel, and the parallel projection gain only provides a lower bound:

BP;C(d) �  sup
ku0;y0k�r(d) k�P==C(u0; y0)kk(u0; y0)k

!�1 ; (3.7)
for some appropriate choice of r. Furthermore, the reverse inequality does not necessarily hold.
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4 A prototypical example
The potential lack of tightness of the lower bound (3.7) is not pathological; many adaptivecontrollers have the property BP;C(d) > 0 for all d � 0 (4.8)whilst sup

ku0;y0k�r
�k�P==C(u0; y0)kk(u0; y0)k

� =1 for all r > 0: (4.9)
This arises due to a problem with small signal behaviour, where whilst �P==C(0) = 0, theoperator �P==C is not continuous at 0 { which precludes the existence of a `local �nite gain'.An explicit example of this (in an L2 setting) is given by the plant

P (�)(u1) = y1 where _y1 = �y1 + u1 y1(0) = 0; (4.10)
with � > 0 and the controller:

C(y2)(t) = u2(t)u2(t) = �k 1
4 y2(t)_k(t) = y22: (4.11)

It has been shown that this closed loop is BIBO stable, see [1]. Clearly u0 = y0 = 0 impliesu1; y1 = 0, ie. �P==C(0) = 0, but for any disturbance (arbitrarily small) which moves y1 6= 0,the system is unstable unless there exists a time at which k(t) � �4, ie. ky2kL2[0;t] � �2. Hencefor all � > 0, 9u0; y0, ku0; y0k � �
k�P==Ck � k�P==C(u0; y0)T kk(u0; y0)T k = k(u2; y2)T kk(u0; y0)T k � �2� !1 as �! 0: (4.12)

Hence k�P==Ck = 1, and this is caused by a lack of continuity at 0. The remainder of thispaper establishes a result which shows that this behaviour is inherent in all smooth adaptivecontrollers.However, let us �rst note that this discontinuity is addressed in [1] by appending � onto theinput space, for then an inequality of the form:
ku1; y1; �kU�Y�R � g(ku0; y0kU�Y ; j�j); (4.13)

was constructed, and from this it was shown in [1] that BP (�);C(r) > 0, ie. we have a non zerobut disturbance dependent robustness margin.
5 Di�erentiation and Linearisation
Let N(X1;X2) denote the set of nonlinear operators with domain X1 and co-range X2 and letL(X1;X2) denote the set of bounded linear operators with domain X1 and co-range X2. Anoperator N : dom(N) ! X2 where dom(N) � X2 and X1, X2 are normed spaces, is said to beFr�echet di�erentiable at an interior point x 2 dom(N) if there exists a bounded linear operatorA : X1 ! X2 such that limy!x kN(y)�N(x)�A(y � x)kky � xk = 0: (5.14)
The Fr�echet derivative of N at x0 is denoted by Dx0N , and we write DN = D0N .

3



Note that the Fr�echet derivative is required to be a bounded linear operator, which essentiallyrestricts the de�nition to operators N which are locally bounded. No sensible meaning can begiven to the derivative if N is unbounded, (eg. dropping the criteria that A is bounded doesnot yield a sensible limiting process). However, we will need to generalize the derivative to thisunbounded setting. In order to do this we now recall the de�nition and basic facts concerningnonlinear co-prime factorisations.
De�nition 5.1 An operator P : Ue ! Ye has a right coprime factoristion if and only if thereexist causal operators N : U ! Y and D : Y ! U s.t. 1. D is causally invertible withdom(D�1) = P�1(Y), 2. P = ND�1, and 3. there exists a stable operator L : U � Y ! Us.t. L� DN

� = I. We let RCF(Ua;Ya) denote the set of all operators P : Ue ! Ye s.t. P ad-
mits has a right coprime factorisation P = ND�1, and let rcf(P ) denote the set of all coprimefactors (N;D) of P .
We now extend the de�nition of the Fr�echet derivative as follows:
De�nition 5.2 Suppose P 2 RCF(Ua;Ya), and let (N;D) 2 rcf(P ). Then we de�ne theextended Fr�echet di�erential as:

~Dx0N = Dx0N(Dx0D)�1: (5.15)
It can be easily veri�ed that Dx0N is well de�ned, ie. that if (N;D); (N1; D1) 2 rcf(P ), thenDx0N(Dx0D)�1 = Dx0N1(Dx0D1)�1. Furthermore if Dx0N is de�ned then Dx0N = ~Dx0N;therefore henceforth we will call the `extended Fr�echet derivative' simply the `Fr�echet derivative',and write Dx0 for ~Dx0 . As with the standard Fr�echet derivative, the extended Fr�echet derivativeof a smoothly stabilizable system can be interpreted as a linearisation, hence the above class ofcontrollers includes all �nite dimensional C1 systems, _x = f(x; y), u = h(x), which are smoothlystabilizable.
6 The Main Results
The controller is considered to belong to a wide class of (nonlinear) operators, denoted byN (X1;X2), where C 2 N (X1;X2) if and only if 1. C = ND�1 is a co-prime factorisation, 2.N;D are Fr�echet di�erentiable at 0, and 3. D0D, D0N have causal, minimal �nite dimensionalrealisations.We can now state our two main results.
Theorem 6.1 Suppose P (�) : Ua ! Ya is de�ned by:

P (�)(u1) = y1 where _y1 = �y1 + u1 y1(0) = 0; (6.16)
and suppose C 2 N (Ua;Ya). Then there exists � 2 R such that HP (�);C is not continuous at 0.
Proof. (Sketch). For a contradiction, we suppose HP (�);C is continuous at 0 for � 2 R.Since HP (�);C(0) = 0, it follows that [P (�); C] is locally 
-stable for all � 2 R. From thisit can be shown that D�P (�)==C is stable for all � 2 R. Furthermore, it can be shown thatD�P (�)==C = �DP (�)==DC = �P (�)==DC , and hence that HP (�)==DC is stable for � 2 R. But sinceC 2 N (Ua;Ya), DC has a causal, minimal �nite dimensional realisation, ie. DC is a universalcontroller for P (�). But it is easily shown that no such universal controller (in RL1) exists. 2
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Theorem 6.2 Suppose P (�) : Ua ! Ya is de�ned by:
P (�)(u1) = y1 where _y1 = �y1 + u1 y1(0) = 0; (6.17)

and suppose C(�m) 2 N (Ua;Ya) is such that [P (�); C(�m)] is locally 
�;�m-stable for all � 2[��m; �m]. Then 
0;�m !1 as �m !1: (6.18)
Proof. (Sketch). The proof is similar to the proof of Theorem 6.1, where the �nal contradictionis obtained by observing that within any gap neighbourhood of 1s there exists plants of the formP1(s) = M�sM+s � 1s+� , and for any such plant it is possible to �nd a � s.t. no C(s) can simultaneouslystabilize P1(s) and P (s) = 1s�� . 2

7 Conclusions
The results in this paper demonstrate that, for a wide class of `smooth' universal controllers, theclosed loop operator HP;C is not continuous, and hence it is not possible to achieve (even local)L2 gain stability. Furthermore, if the universality requirement is dropped, then necessarily theL2 gain performance degrades at �xed values of the parameter as the parametric uncertainty setincreases in size. The construction is based on analysing small signal behaviour via appropriatelinearisations. As such the proof generalises in a straightforward manner to a variety of signalspace settings, both in the continuous and discrete time domains, eg. L1, L1, l1, l2, l1.It is important to observe that gain-stability is not possible even in a local sense, hence demon-strating that a relaxation of the underlying stability requirement to allow di�erent signal gainsat di�erent signal levels (ie. the existence of a class K gain function) does not su�ce. We haveshown that an obstruction to good behaviour occurs at the small signal level, hence the stabilitycondition must be relaxed even at a small signal level to obtain an appropriate robust stabilityand performance theory.A construction of an appropriate robust stability theory for adaptive control based on a biasednotion of stability1 which is appropriate to the analysis of the above discontinuous operators isthe subject of current work.
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1A causal operator F : X1 ! X2 between normed spaces X1;X2, is said to be 
-stable with bias � if kFxkX2 �

(kxkX1) + �, where 
 can be taken to be either a class K gain function, or a scalar. [P;C] is said to be stable
with bias if there exists 
; � > 0 such that �M==N is 
-stable with bias �.
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