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1 Introduction

We begin by observing that the graph topology with its various metrizations plays a
fundamental role in the theory of robust stability for classical LTI systems([1, 2, 6]. The
contribution of this note is to develop the basic theory of robust stability involving the
gap-distance directly from a behavioural perspective, observing that recent approaches
to generalisations of the gap metric [2] have been purely trajectory based and hence are
easily amenable to such an approach. There has been previous interest in developing
behavioural notions of the gap metric, see e.g. [3] for an example.

1.1 The classical result

Our concern is with the closed loop systems of equations as shown in Figure 1:

y1 = Puy, Yo = Y1+ Yo
PC :
|7, C] up = Cya,  Up = Uy + U,

where g, w1, us € H?, yo,y1,92 € H? and P, C are transfer functions. For such a BIBO
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Figure 1: The closed-loop system [P, C].

system, the closed loop transfer function Ilp, /¢ is of interest:
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The classical robust stability theorem of linear control is as follows:
Theorem If [P,C| is BIBO stable, i.e. ||Ilp//c||me < 00, [P, C] is well posed, and

-

§(P, P1)|[Hpy el <1,

then [Py, C| is BIBO stable, i.e. ||Ilp,//c|lme < 00.

Here 0 (Py, P,) denotes the directed H? gap distance between Py and P». The gap measures
the size of the smallest stable co-prime factor perturbation between normalised co-prime
factor representations of P, and Ps.

1.2 A behavioural generalisation

Within a behavioural framework the above result has been generalised as follows. Consider
the interconnection shown in Figure 2,
where,

O<—— Wy
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Figure 2: The interconnected behaviours: w; = (u;,3;)7, i = 0,1, 2.

wo— [ "0 ). L= W), = ™
0 Yo )’ ! Y1 7 2 Y2 .
BP = {wl S LIO:C | wr = <u17y1>T}; BC = {w2 € Li)c?c | Wy = (u27y2)T}

BI = {(Ujo,wl,’wz)T c L?OOC ‘ Wy =— W1 +U)2}

BP/\C = {(U)O,U)l,wg)T < BI | wy € BP, Wy € BC}

Then we have the following result (the full version of the paper will detail all the concepts
required to make this statement):

Theorem 1.1 Suppose BT, B, B are linear, shift invariant behaviours with finite
memory. If:

1. BY BY are soundly stabilizable,



2. BPNC BRAC are well-posed,
3. BPAC s uniformly stable, and,
4. 8(B”, BM)|[Tp el < 1,

then B s uniformly stable.

2 Relation to the behavioural H*™ results of Trentel-
man and Willems

Within the context of L? signal spaces, classical H> synthesis [7] provides constructions
for controllers C' which achieve ||IIp/,c|| < 1, i.e. solve the normalized version of the
inequality required in our robustness theorems. The classical gap robustness results then
provide an explicit description of plant uncertainties tolerated in the closed loop. In direct
counterpart, and in the interests of a self-contained behavioural theory, it is relevant to
relate the results of this paper to the behavioural approach to H> synthesis found in
[4, 5], for then our basic robust stability theorem completes a ‘behavioural robust control
theory’ by providing an explicit robustness interpretation of the behavioural H*> synthesis
results.

Therefore we explicitly describe the relationship between the problem formulation of [4, 5]
and this paper. We first consider Proposition 1 of [4]. By choosing the exogenous variable
d to be wy, and the endogenous ‘to be controlled’ variable f to be w;, we have

K = {(wo,w1) € C* | Fwy € C s.t. (wy, wy, ws) € B},

and Gy—y, is the transfer function corresponding to Ilp//c. Proposition 1 asserts that
if BY, B¢ are smooth differential behaviours and B7"¢ is controllable then the following
are equivalent:

1. In K, wy is the input, w; is the output and ||Gug—w, |1, < 1;
2. K is X-dissipative on R_ and m(K) = 04 (X);

3. [Jwill 2 rry < [Jwoll c2r gy, wo is free in K and (0, w:) € K implies that limy_ wi (£)
0,

where ¥ =diag(ly, —If), 04+(X) is the number of positive eigenvalues of ¥ and m(K) =
dim(U x Y) is the number of “free” input variables. We refer to [4, 5] for the definition
of Y-dissipativity on R_.
We now relate the above stability concepts to the notion of uniform stability, within an
L? context, as considered in this paper. Consider the following condition:

4. B¢ is uniformly stable, and ||p//c||r2@,) < 1.
Then:

Proposition 2.1 Let X = L?(R,). Suppose B?, B® are differential behaviours and BX"
1s controllable. Then 1,2,3 and 4 are equivalent.
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Within the context of disturbance attenuation for linear controllable differential systems
in an L? setting, the results of [4, 5] establish conditions under which there exists a
controllable differentiable behaviour B¢ which renders Y-dissipativity on R_ of the closed
loop interconnection B¢, Here BF is also required to be a controllable differential
behaviour. Since the resulting interconnection B¢ is controllable, and by the above, it
follows that this synthesis yields the uniform stability condition 4. above, and in turn, the
robust stability theorem 1.1 provides an explicit description of a set of plants for which
stability can be guaranteed.

It is worth noting that it is observed in [5] that the synthesis can be extended in an
ad-hoc manner from the controllable case to the general case by introducing appropriate
stabilizability assumptions in the analysis. The robust stability theorem 1.1 can be utilized
to achieve these observations directly. Given a (soundly) stabilizable plant behaviour
BY | follow the H> synthesis to derive a controller B (which is controllable) for the
controllable plant sub-behaviour B%, .. Then since 5| (BE . ,BP) =0, Theorem 1.1 can be
applied to establish the required uniform stability for the interconnection of the derived
controller behaviour B¢ and the original plant B .

3 Extensions and Examples

The final part of the paper will consider extensions to more general feedback interconnec-
tions, and within a QDF formulation will approach alternative cost structures. A variety
of examples will illustrate the approaches.
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