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1 Introduction

We begin by observing that the graph topology with its various metrizations plays a
fundamental role in the theory of robust stability for classical LTI systems([1, 2, 6]. The
contribution of this note is to develop the basic theory of robust stability involving the
gap-distance directly from a behavioural perspective, observing that recent approaches
to generalisations of the gap metric [2] have been purely trajectory based and hence are
easily amenable to such an approach. There has been previous interest in developing
behavioural notions of the gap metric, see e.g. [3] for an example.

1.1 The classical result

Our concern is with the closed loop systems of equations as shown in Figure 1:

[P,C] :
y1 = Pu1, y0 = y1 + y2

u2 = Cy2, u0 = u1 + u2,

where u0, u1, u2 ∈ H2, y0, y1, y2 ∈ H2 and P , C are transfer functions. For such a BIBO
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Figure 1: The closed-loop system [P,C].

system, the closed loop transfer function ΠP//C is of interest:

w0 =

(

u0

y0

) ΠP//C

7→

(

u1

y1

)

= w1.
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The classical robust stability theorem of linear control is as follows:

Theorem If [P,C] is BIBO stable, i.e. ‖ΠP//C‖H∞ < ∞, [P1, C] is well posed, and

~δ(P, P1)‖ΠP//C‖ < 1,

then [P1, C] is BIBO stable, i.e. ‖ΠP1//C‖H∞ < ∞.

Here ~δ(P1, P2) denotes the directed H2 gap distance between P1 and P2. The gap measures
the size of the smallest stable co-prime factor perturbation between normalised co-prime
factor representations of P1 and P2.

1.2 A behavioural generalisation

Within a behavioural framework the above result has been generalised as follows. Consider
the interconnection shown in Figure 2,
where,
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Figure 2: The interconnected behaviours: wi = (ui, yi)
T , i = 0, 1, 2.

w0 =

(

u0

y0

)

; w1 =

(

u1

y1

)

; w2 =

(

u2

y2

)

.

BP = {w1 ∈ L∞

loc | w1 = (u1, y1)
T}; BC = {w2 ∈ L∞

loc | w2 = (u2, y2)
T}

BI = {(w0, w1, w2)
T ∈ L∞

loc | w0 = w1 + w2}

BP∧C = {(w0, w1, w2)
T ∈ BI | w1 ∈ BP , w2 ∈ BC}.

Then we have the following result (the full version of the paper will detail all the concepts
required to make this statement):

Theorem 1.1 Suppose BP , BP1, BC are linear, shift invariant behaviours with finite

memory. If:

1. BP ,BC are soundly stabilizable,
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2. BP∧C, BP1∧C are well-posed,

3. BP∧C is uniformly stable, and,

4. ~δ(BP ,BP1)‖ΠP//C‖ < 1,

then BP1∧C is uniformly stable.

2 Relation to the behavioural H∞ results of Trentel-

man and Willems

Within the context of L2 signal spaces, classical H∞ synthesis [7] provides constructions
for controllers C which achieve ‖ΠP//C‖ ≤ 1, i.e. solve the normalized version of the
inequality required in our robustness theorems. The classical gap robustness results then
provide an explicit description of plant uncertainties tolerated in the closed loop. In direct
counterpart, and in the interests of a self-contained behavioural theory, it is relevant to
relate the results of this paper to the behavioural approach to H∞ synthesis found in
[4, 5], for then our basic robust stability theorem completes a ‘behavioural robust control
theory’ by providing an explicit robustness interpretation of the behavioural H∞ synthesis
results.

Therefore we explicitly describe the relationship between the problem formulation of [4, 5]
and this paper. We first consider Proposition 1 of [4]. By choosing the exogenous variable
d to be w0, and the endogenous ‘to be controlled’ variable f to be w1, we have

K = {(w0, w1) ∈ C∞ | ∃w2 ∈ C∞ s.t. (w0, w1, w2) ∈ BP∧C},

and Gw0→w1
is the transfer function corresponding to ΠP//C . Proposition 1 asserts that

if BP , BC are smooth differential behaviours and BP∧C is controllable then the following
are equivalent:

1. In K, w0 is the input, w1 is the output and ‖Gw0→w1
‖H∞ ≤ 1;

2. K is Σ-dissipative on R− and m(K) = σ+(Σ);

3. ‖w1‖L2(R,Rf ) ≤ ‖w0‖L2(R,Rd), w0 is free in K and (0, w1) ∈ K implies that limt→∞ w1(t) =
0,

where Σ =diag(Id,−If ), σ+(Σ) is the number of positive eigenvalues of Σ and m(K) =
dim(U × Y) is the number of “free” input variables. We refer to [4, 5] for the definition
of Σ-dissipativity on R−.

We now relate the above stability concepts to the notion of uniform stability, within an
L2 context, as considered in this paper. Consider the following condition:

4. BP∧C is uniformly stable, and ‖ΠP//C‖L2(R+) ≤ 1.

Then:

Proposition 2.1 Let X = L2(R+). Suppose Bp, BC are differential behaviours and BP∧C

is controllable. Then 1,2,3 and 4 are equivalent.
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Within the context of disturbance attenuation for linear controllable differential systems
in an L2 setting, the results of [4, 5] establish conditions under which there exists a
controllable differentiable behaviour BC which renders Σ-dissipativity on R− of the closed
loop interconnection BP∧C . Here BP is also required to be a controllable differential
behaviour. Since the resulting interconnection BP∧C is controllable, and by the above, it
follows that this synthesis yields the uniform stability condition 4. above, and in turn, the
robust stability theorem 1.1 provides an explicit description of a set of plants for which
stability can be guaranteed.

It is worth noting that it is observed in [5] that the synthesis can be extended in an
ad-hoc manner from the controllable case to the general case by introducing appropriate
stabilizability assumptions in the analysis. The robust stability theorem 1.1 can be utilized
to achieve these observations directly. Given a (soundly) stabilizable plant behaviour
BP , follow the H∞ synthesis to derive a controller BC (which is controllable) for the

controllable plant sub-behaviour BP
cont. Then since ~δ(BP

cont,B
P ) = 0, Theorem 1.1 can be

applied to establish the required uniform stability for the interconnection of the derived
controller behaviour BC and the original plant BP .

3 Extensions and Examples

The final part of the paper will consider extensions to more general feedback interconnec-
tions, and within a QDF formulation will approach alternative cost structures. A variety
of examples will illustrate the approaches.
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