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a b s t r a c t

Several approaches have been described for the manipulation of particles within an ultrasonic field. Of
those based on standing waves, devices in which the critical dimension of the resonant chamber is less
than a wavelength are particularly well suited to microfluidic, or ‘‘lab on a chip” applications. These might
include pre-processing or fractionation of samples prior to analysis, formation of monolayers for cell
interaction studies, or the enhancement of biosensor detection capability.
The small size of microfluidic resonators typically places tight tolerances on the positioning of the acous-
tic node, and such systems are required to have high transduction efficiencies, for reasons of power avail-
ability and temperature stability. Further, the expense of many microfabrication methods precludes an
iterative experimental approach to their development. Hence, the ability to design sub-wavelength res-
onators that are efficient, robust and have the appropriate acoustic energy distribution is extremely
important.
This paper discusses one-dimensional modelling used in the design of ultrasonic resonators for particle
manipulation and gives example of their uses to predict and explain resonator behaviour. Particular dif-
ficulties in designing quarter wave systems are highlighted, and modelling is used to explain observed
trends and predict performance of such resonators, including their performance with different coupling
layer materials.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Ultrasonic standing waves (USWs) can be used to trap and
manipulate particles, and are particularly well suited for the
manipulation of micron-scale biological particles in devices of a
microfluidic scale [1]. Several different approaches have been em-
ployed for the manipulation of particles using ultrasonic fields. For
example, focussed ultrasound [2,3] or near-field effects [4] can be
used to trap particles prior to analysis, particles can be moved by
using two or more opposing transducers to modulate the standing
wave field [5,6], or particles can be held and moved within USWs
excited by plate waves coupled into the containing fluid [7,8].
However, the use of a simple planar layered resonator with a single
transducer [9–11] offers the simplest approach to establishing a
USW suitable for particle movement.

Planar USW systems may employ resonators that are larger
than a wavelength and contain multiple pressure nodal planes
[12,13], but for microfluidic scale devices, a resonant cavity with
an axial dimension that is lower than the operating wavelength
All rights reserved.
may be employed [14–16]. Such sub-wavelength resonators typi-
cally rely for their operation on precise positioning of the pressure
node, to which particles will migrate. In these systems the ability
to design a resonator that will operate with a good efficiency and
have the required acoustic mode shapes is critical.

A variety of approaches to modelling resonators have been de-
scribed (see for example [9,17,18]). This paper uses one-dimen-
sional models implementing impedance transfer relationships
[11,19,20].

2. Layered resonators for particle manipulation

The structure of a typical planar resonator is shown in Fig. 1 and
consists of a transducer which is, in general, bonded to a coupling
layer (also known as a carrier layer or matching layer) that serves
to isolate the adjacent fluid layer from the transducer. A standing
wave is established in the fluid layer by a solid reflector layer.

Particles within the standing wave experience a force, which in
most cases of interest acts towards a pressure node of the standing
wave. The force on a particle of radius a at position x within the
standing wave can be expressed as a function of the spatial gradi-
ents of the time averaged kinetic (Ekin(x)) and potential (Epot(x))
energies [21]

mailto:m.hill@soton.ac.uk
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Fig. 2. The first four solutions of Eq. (2), based on [20]. Parameters tr and tf are the
thicknesses of the reflector and fluid layers, respectively and kr and kf are ultrasonic
wavelengths in those layers.
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where b and q are the compressibility and the mass density of the
fluid and the particle, indicated by subscripts f and p respectively.
The wave number, k is equal to 2p/k where k is the wavelength of
the standing wave.

The problem of modelling particle behaviour in the standing
wave then becomes one of describing the variation of acoustic
parameters through the acoustic field such that the energy param-
eters Ekin(x) and Epot(x) can be calculated. The rest of the paper dis-
cusses the characterisation of the field itself in order to provide the
behaviour required for the correct operation of the device (chiefly
nodal position and energy density).

3. Simple two-layer model

3.1. Background theory

An approach to the characterisation of the underlying proper-
ties of resonators is to begin by looking at the modal solutions of
a two-layer system consisting of a fluid layer with a rigid boundary
coupled with a reflector layer with a pressure-release boundary
[20]. Such a model is not, in itself, sufficient to understand the
behaviour of a resonator such as that shown in Fig. 1. However,
it can act as a starting point, suggesting layer properties able to
provide the required nodal behaviour. Additional layers can then
be added and their parameters adjusted in a fuller model to main-
tain, or fine-tune resonator response. The two-layer approach sim-
plifies to solving

kf tf ¼ tan�1 rf r2
r þ r2

0 tan2ðkrtrÞ
� �

rr tanðkrtrÞ r2
r � r2

0

� �
 !

ð2Þ

where tr and tf are the thicknesses of the reflector and fluid layers
respectively, k is the wave number and rf and r0 are the acoustic
impedances of the fluid and reflector layers, respectively. A given
ratio of the thicknesses of the two layers (i.e. a fixed design) is rep-
resented by a straight line passing through 0,0 on the graph in Fig. 2,
which shows the first four solutions of Eq. (2), plotted as the ratio of
thickness to wavelength of the fluid layer to the ratio of thickness to
wavelength of the reflector layer.

A fluid layer having two perfectly rigid boundaries would have
modal solutions corresponding to horizontal lines at tf/kf = 0.5, 1,
etc. where kf is the ultrasonic wavelength in the fluid layer. Simi-
larly, a reflector bounded by two pressure-release surfaces would
show half wave resonances as vertical lines corresponding to
tr/kr = 0.5, 1, etc. There is, however, no modal solution at (0.5,
0.5) on the graph, but region C shows how the modes of the cou-
ReflectorCoupling Layer

Transducer

Fluid

Adhesive

Fig. 1. Typical structure of a planar layered resonator.
pled system split when adjacent layers would have coincident res-
onances if isolated. The parameter in Fig. 2 that indicates the
position of the pressure node within the fluid layer is tf/kf. In order
to place a node centrally, in this two-layer model, a reflector thick-
ness of a quarter-wavelength is required, i.e. tr/kr = 0.25, as shown
in area A of Fig. 2. It can also be seen from area A that the solid line
representing the solution to Eq. (2) is relatively flat in that region,
indicating that the position of the node should be stable with re-
gards to the reflector layer thickness. Even with the combination
of a half wavelength fluid layer and a quarter-wavelength reflector
layer, the influences of the coupling layer and transducer need to
be considered, and Fig. 3a shows how the frequency of maximum
energy density in the fluid layer, and hence the position of the node
within the fluid layer, varies as a function of coupling layer thick-
ness. With the parameters used in this system (taken from [11])
the variation in frequency is relatively small, and selection of a
quarter-wavelength coupling gives the most stable frequency,
but a relatively low value of peak energy. The material used for
the coupling layer is investigated in more detail later.

The highest values of energy density occur either side of the
points at which the coupling layer equals half wavelength multi-
ples, but with a significant dip for the half wavelength coupling
layer itself. This dip, however, becomes less pronounced at lower
Q factors. If the Q factors are reduced from 200 and 500 for the cou-
pling and fluid layers, respectively (Fig. 3a) to 50 for both (Fig. 3b),
the frequency variation of the peak remains similar, but the peak
energy density characteristics change significantly. These Q factors
seem low, but their values represent observed losses throughout
the resonant device and will in general be much lower than mate-
rial Q factors [9]. A similar observation is made later for quarter-
wavelength fluid layer systems where coupling layer materials
have been investigated.

4. Modelling of quarter-wavelength devices

The need for robust design of resonators becomes particularly
important when dealing with quarter-wavelength devices. A quar-
ter-wavelength resonance is observed when the fluid layer is at a
quarter-wavelength and the reflector layer is a half wavelength
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Fig. 3. Variation of the frequency and energy density of the most energetic resonance as coupling thickness layer varies. (a) Parameters based on simulations in [11], and
normalised against the nominal resonance frequency. (b) With lower Q factors in coupling and fluid layers.
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Fig. 4. Schematic representation of a quarter-wavelength resonator forcing parti-
cles up against a solid surface with an immunosensor coating.
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Fig. 5. Simulated values of peak energy density, peak frequency and nodal position
for silicon microfabricated quarter-wavelength resonator.
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thick, in the region marked B in Fig. 2. Such a system may be used
to force particles against, or close to, a solid surface as shown in
Fig. 4 which is designed to enhance particle capture on an immu-
nosensor surface.

A simple simulation suggests that for fixed values of coupling
layer and reflector thickness, simply varying the fluid layer thick-
ness should enable the pressure node to be positioned at, or close
to, the reflector layer. This can be seen from the simulations of a
silicon/Pyrex resonator shown in Fig. 5, which use the parameters
shown in Table 1.

However the gradient of the solution line in region B of Fig. 2
suggests that the nodal position is likely to be extremely sensitive
to reflector layer thickness.

Martin et al. [22] investigated the acoustics of such a system
with the aim of forcing spores onto an antibody coated surface
using a 3 MHz USW. The device was tested in batch and flow-
through modes and it was found that the efficacy of capture was
critically dependent on the reflector layer thickness. When a
980 lm thick reflector was used, there was almost no capture of
the BG spores. Capture increased with a 1000 lm reflector, peaked
with a thickness of about 1100 lm and fell away significantly with
a reflector thickness of 1300 lm. This was explained by 1D simula-
tions of the acoustic pressure for different reflector thicknesses, as
shown in Fig. 6a. With a reflector thickness of 980 lm, the pressure
node is in the fluid, away from the reflector boundary, so particles
are forced away from the antigen surface. With a 1000 lm reflec-
tor, the node is just in the reflector, so particles will be forced to
the surface. A 1200 lm reflector places the node well into the
reflector, but also brings a pressure antinode into the fluid, causing
many particles to be forced to the opposite boundary. Hence there
is an optimum positioning of the node that is dependent on the



Table 1
Quarter wave simulation parameters

Coupling Fluid Reflector

Thickness (m) 5.25e�4 Varying 1.60e�3
Density (kg m�3) 2.34e+3 1.00e+3 2.20e+3
Speed of sound (m s�1) 8.43e+3 1.50e+3 5.43e+3

Fig. 6. Acoustic simulation of the pressure profile across the chamber used by
Martin et al. [22] for different reflector thicknesses (a), and simulations of particle
capture (line) compared with experimental data (b). Reproduced from [22] with
permission from Elsevier.

Fig. 8. Acoustic energy density in the fluid layer (upper) and fractional position of
pressure minimum (lower) with contours representing the coupled transducer and
coupling layer thickness in wavelengths.

524 M. Hill et al. / Ultrasonics 48 (2008) 521–528
reflector thickness and a significant decrease in capture efficiency
on each side of this thickness. When flow and particle tracking
were added to the acoustic model [23] it was possible to predict
the nature of the dependence of particle capture on reflector depth,
as shown in Fig. 6b.

5. Selecting operating points from 2D plots

There are other applications in which it is required to place a
pressure node close to, but not on, a boundary with a solid layer.
Such a ‘‘near quarter-wave” resonator has been designed for con-
Fig. 7. Schematic representation of a ‘
centrating particles prior to analysis [24] and is shown schemati-
cally in Fig. 7.

In this case the aim was to move particles to within 20 lm of
the reflector layer in a 180 lm cavity. In order to achieve this, mul-
tiple simulations were completed to predict the sensitivity of the
energy density and nodal position to relevant geometric parame-
ters. An example is shown in Fig. 8 in which these parameters
are plotted against reflector and coupling layer thickness. For each
geometric design, the acoustic energy within the fluid layer is
determined over a small range of frequencies in order to isolate
the fluid quarter-wavelength mode. Acoustic energy density and
corresponding position of the pressure minimum are recorded
for the frequency where energy density is seen to peak.

The parameters used in the simulations are shown in Table 2,
with the values of Q factor inferred by matching modelled and
experimentally derived electrical input impedance spectra for:
‘near quarter-wave” concentrator.



Table 2
Concentrator simulation parameters

Layer Thickness
(lm)

Density
(kg/m3)

Sonic velocity
(m/s)

Q
factor

Glue 10 1080 2640 2
Macor coupling 800–1800 2540 5510 100
Fluid 180 1000 1480 50
Reflector 1200–1550 2470 5600 100

Fig. 10. Acoustic energy density in the fluid layer (upper) and fractional position of
pressure minimum (lower) with contours representing the coupled transducer and
coupling layer thickness in wavelengths but with higher Q factors in the layers than
used in Fig. 9.
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1. the isolated transducer,
2. the transducer, glue and coupling layers,
3. the full system.

In Fig. 8 the white diagonal bar across plot (a) suggests that
both reflector and coupling layer thicknesses are important param-
eters to consider when designing to maximise acoustic energy den-
sity and therefore radiation force. Similarly, plot (b) indicates how
the design influences the position of the pressure minimum within
the fluid layer and how the thicknesses chosen can result in the
pressure node moving from within the fluid layer a small distance
from the reflector layer (grey) and into the reflector such that par-
ticles are pushed up to the reflector surface (white). The irregular-
ity of the contour representing a single wavelength is due to a
coincidence of the coupled transducer/matching layer resonance
and the half wavelength resonance of the reflector. Pressure ampli-
tude plots for the two points (‘o’ tr = 1350 lm and tc = 1200 lm,
and ‘+’ tr = 1350 lm and tc = 1300 lm) marked in Fig. 8 are shown
in Fig. 9.

It can be seen that point ‘+’ corresponds to a higher energy in
the coupling layer, although the pressure profile in the fluid layer
is similar. However from Fig. 8 point ‘o’ is far more robust in terms
of nodal position, despite having a lower energy.

Just as the damping in the system alters the characteristics be-
tween Fig. 3a and b, this system is also sensitive to changes in Q
factors. Fig. 10 is a repeat of the simulation shown in Fig. 8 but with
a significantly higher reflector Q factor. The nodal position (lower
figure in each case) as a function of layer thicknesses remains ro-
bust to layer thicknesses and is similar in both figures. Not surpris-
ingly the magnitude of the energy density in the fluid layer (upper
figure) changes significantly between the simulations. Further, the
form of the energy density surface has changed. In the more highly
damped system of Fig. 8, the maximum energy density lies close to
the irregular single wavelength contour, while for the higher Q
Fig. 10, the maximum energy lies either side of this contour in a
manner similar to the coupled resonances described in [11]. Hence
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Fig. 9. Acoustic pressure profile for the two potential design points marked in this
figure – ‘o’ (solid) and ‘+’ (dotted).
the position of the node in these systems appears to be relatively
robust to the damping factors.

Fig. 11 shows a prototype quarter wave concentrator in which
tr = 1440 lm and tc = 1040 lm. This device provided a factor of
four concentration with 1 lm diameter particles and the nodal
position was as predicted by modelling using high Q factors,
although the damping and hence energy density characteristics
proved to be closer to those shown in Fig. 8 on experimental
evaluation.
Fig. 11. Prototype quarter-wavelength concentrator.
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6. Effect of varying the coupling layer material

As discussed previously, the coupling layer material can have an
effect on the nodal positions, and the amount of energy stored
within the fluid layer. Practical considerations are also important
in designing particle manipulators, such as bio-compatibility, ease
of manufacture, and cost, so it is useful to know what range of
materials can be used and how they affect the performance. The
device shown in Fig. 11 has a coupling layer manufactured from
Macor, a machinable ceramic, similar to glass. Devices with cou-
pling layers made from other materials were also constructed.
The materials investigated were aluminium and brass. It is known
that the coupling layer material influences the acoustic energy
density and the maximum radiation force experienced by a parti-
cle. This is highly relevant to quarter-wavelength systems as the
success of a resonator typically relies on maximising the acoustic
energy density. In the case of a quarter wave device, the quarter
wave mode is a lot less energetic than a typical half wave device
and maximising the efficiency to avoid heating effects in the other
layers requires careful design. Quarter wave devices are much less
efficient than half wave devices because of the reliance on a reflec-
tor layer resonance where much of the acoustic energy is
dissipated.

Initial simulations were used to design near quarter-wave-
length resonators operating around 2 MHz for each coupling layer
material. The acoustic pressure profiles within these devices are
similar to that shown in Fig. 9 where a half wavelength resonance
is seen in the reflector layer above the fluid chamber. This reso-
nance imposes a node at the fluid/reflector boundary and for cer-
tain fluid depths will result in a quarter-wavelength ‘‘resonance”
in the fluid layer. This mode forces suspended particles up to this
surface.

For the experimental devices a transducer with a resonance
close to the operating frequency of the assembled chamber was
used (Ferroperm PZ26, 1 mm thick). To give comparable acoustic
pressure profiles in the fluid layer, the model was used to select
coupling layer and fluid layer thickness dimensions. In each case
the fluid layer thickness was chosen to be 0.18 mm and coupling
layer thicknesses of 1.0, 1.4, and 1.2 were selected for brass, alu-
minium and Macor, respectively. Table 3 contains the measured
thickness dimensions and acoustic properties used in the initial
modelling.

Although the modelling suggests good results for the pressure
profile, the model requires calibrating with experimental data to
provide absolute values for the acoustic parameters. This is done
by taking acoustic energy density measurements for the different
chambers and then adjusting the model parameters such as mate-
rial Q factors, to get the best match. Acoustic energy density mea-
surements are taken between 1.96 and 2.1 MHz at 10 kHz
intervals. These measurements are made by levitating a polysty-
rene particle and recording the threshold voltage where the parti-
cles begin to sediment, similar to the method described by Martin
et al. [22]. For the particles, fluid (water) and frequency used, this
threshold voltage corresponds to pressure amplitude of 33 kPa.
During experiments, the position of the node is difficult to measure
Table 3
Dimensions of experimental samples

Coupling layer material Coupling layer thickness (mm) Fluid layer th

Design Measured Design

Brass 1.00 1.08 0.18
Aluminium 1.40 1.42 0.18
Macor 1.20 1.17 0.18

Properties of materials taken from [25].
accurately but is reasonably consistent with predictions of the
pressure profile such as that shown in Fig. 9. As the acoustic pres-
sure amplitude is proportional to the transducer voltage, the pres-
sure amplitude P0 resulting from a 10 Vpkpk voltage is recorded and
converted to an energy density measurement using (3):

h�ei ¼ 1
4

P2
0bw; ð3Þ

where h�ei is the acoustic energy density and bw is the bulk modulus
of water, with the results presented in Fig. 12.

These plots show that the acoustic energy density peaks at fre-
quencies where resonant modes are encountered. Predicted energy
density is also shown, where the input parameters to the model
have been modified to improve the match with both impedance
and energy density measurements. Notably the Q factors have been
adjusted to 300, 100 and 100 for brass, aluminium and Macor,
ickness (mm) Density
(kg/m3)

Sonic velocity
(m/s)

Acoustic impedance
(MRayl)

Measured

0.17 8640 4700 40.6
0.175 2700 6420 17.3
0.19 2540 5510 14.0
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respectively. Similarly, the Q factors in the fluid and reflector are
low at �30 and �100, respectively. In the case of brass, two peaks
can be seen although the model suggests that the peak around
1.98 MHz is a combined transducer and coupling layer resonance.
This mode appears to be particularly energetic and may be rein-
forced, for example, by structural modes.

To compare each material more directly, the model was used to
simulate the effect of varying coupling layer thickness while apply-
ing identical reflector and fluid layer properties. Fig. 13 shows the
predicted peak energy density for a range of coupling layer thick-
nesses as a fraction of wavelength (tm/k) and where the transducer
voltage is a constant 10 Vpkpk. Note that Fig. 13 is generated by
locating the frequency at which the quarter-wavelength mode
(reflector resonance) occurs and omits any other resonant modes
close to this frequency. It therefore does not include the high en-
ergy resonance seen at 1.98 MHz in the experimental results for
the brass coupling material.

In general, the energy density is comparable for the materials
considered, although the material does have a limited impact in
the maximum energy density achievable. Peaks suggest that for
all the materials tested a coupling layer thickness of just under
n � tm/2k (n = 1, 2 only shown) results in a higher acoustic energy.
The trade-off in this case is that the acoustic node moves away
from the surface and further into the fluid layer at these dimen-
sions as shown in Fig. 13c. As the transducer is operating close to
a half wavelength, the peaks also coincide with a wavelength res-
onance in the transducer and coupling layer combined where if
this structure were isolated from the fluid and reflector would have
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Fig. 13. Predicted peak acoustic energy density in the fluid layer for a range of
coupling layer thicknesses for brass (solid), aluminium (dashed) and Macor
(dotted). Showing (a) acoustic energy density, (b) the quarter-wavelength excita-
tion frequency and (c) the fractional position of the pressure minimum within the
fluid chamber.
a pressure node located on the coupling layer surface. The close
proximity of this coupled resonance to the quarter-wavelength
mode may therefore be responsible for the change in energy
density and movement of the node towards the coupling layer sur-
face. Also, for an increase in n the energy density decreases, prob-
ably due to greater losses within a progressively thicker coupling
layer.

The observations made in Fig. 13 are similar to those in Fig. 3b
for a half wavelength system. This suggests that the design of the
coupling layer and transducer can be decoupled from the fluid
and reflector layer to some extent. For example, the position of
the nodal plane(s) within a fluid chamber depends on the con-
trolled design of the fluid and reflector design and aided by
Fig. 2. Although the coupling layer and transducer will influence
the node position and energy density, they have a small effect rel-
ative to fluid/reflector design and considering the wide range of
coupling layer/transducer designs which could feasibly drive the
system.

7. Conclusions

One-dimensional acoustic modelling has helped identify spe-
cific parameters which influence the robust design of resonators
for particle manipulation. The nodal position and energy density
are typically important factors in resonator performance, and the
choice of layer dimensions and material properties influence these
factors significantly. For example, the careful selection of Q factors
for the various materials and layers used to construct these resona-
tors may be used to help relax dimensional tolerances. It appears
that the influence of the coupling layer on the performance of both
half and quarter-wavelength resonances are related, with the prox-
imity of the coupling layer/transducer mode impacting upon the
characteristics of fluid/reflector modes.

It has also been shown that the behaviour of quarter-wave-
length modes can be more fully understood based on a comparison
of modelled and experimental data. Using experimental data to re-
fine the simulation input parameters it is possible to predict the
acoustic energy density to well within the correct order of magni-
tude. This is important, for example, for bio-sensing applications
where the location of the pressure node and strength of the field
influences significantly the feasibility of such devices. The choice
of material used to couple between the transducer and fluid
manipulation chamber determines to a limited extent the maxi-
mum energy density achievable, although coupling layer thickness
appears to have a greater impact. Therefore a range of materials
can be used for the construction of the coupling layer.

While 1D models are able to provide very useful, and in the case
of nodal position accurate, predictions of device behaviour, the
influences of lateral field variations are also of significance [26].
These variations are the main limitation on the performance of
the concentrator described here [24].
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