Characterization of glutamate-gated chloride channels in the pharynx of wild-type and mutant Caenorhabditis elegans delineates the role of the subunit GluCl-alpha 2 in the function of the native receptor
Characterization of glutamate-gated chloride channels in the pharynx of wild-type and mutant Caenorhabditis elegans delineates the role of the subunit GluCl-alpha 2 in the function of the native receptor
Glutamate-gated chloride (GluCl) channels are the site of action of the anthelmintic ivermectin. Previously, the Xenopus laevis oocyte expression system has been used to characterize GluCl channels cloned from Caenorhabditis elegans. However, information on the native, pharmacologically relevant receptors is lacking. Here, we have used a quantitative pharmacological approach and intracellular recording techniques of C. elegans pharynx to characterize them. The glutamate response was a rapidly desensitizing, reversible, chloride-dependent depolarization (EC50 = 166 µM), only weakly antagonized by picrotoxin. The order of potency of agonists was ibotenate > L-glutamate > kainate = quisqualate. Ivermectin potently and irreversibly depolarized the muscle (EC50 = 2.7 nM). No further depolarization was seen with coapplication of maximal glutamate during the maximal ivermectin response, indicating that ivermectin depolarizes the muscle by the same ionic mechanism as glutamate (i.e., chloride). The potency of ivermectin on the pharynx was greater than at any of the GluCl subunits expressed in X. laevis oocytes. This effect of ivermectin was abolished in the mutant avr-15, which lacks a functional GluCl-alpha 2 subunit. However, a chloride-dependent, nondesensitizing response to glutamate persisted. Therefore, the GluCl-alpha 2 subunit confers ivermectin sensitivity and a high-affinity desensitizing glutamate response on the native pharyngeal GluCl receptor.
1037-1043
Pemberton, Darrel J.
5b1ccd87-460d-4866-b2e7-5ec38694f532
Franks, Christopher J.
9842534b-4d3f-4ee8-a07e-3b050f748593
Walker, Robert J.
9368ac2d-f1e9-4bd9-a4b4-4a161c4aa140
Holden-Dye, Lindy
8032bf60-5db6-40cb-b71c-ddda9d212c8e
1 May 2001
Pemberton, Darrel J.
5b1ccd87-460d-4866-b2e7-5ec38694f532
Franks, Christopher J.
9842534b-4d3f-4ee8-a07e-3b050f748593
Walker, Robert J.
9368ac2d-f1e9-4bd9-a4b4-4a161c4aa140
Holden-Dye, Lindy
8032bf60-5db6-40cb-b71c-ddda9d212c8e
Pemberton, Darrel J., Franks, Christopher J., Walker, Robert J. and Holden-Dye, Lindy
(2001)
Characterization of glutamate-gated chloride channels in the pharynx of wild-type and mutant Caenorhabditis elegans delineates the role of the subunit GluCl-alpha 2 in the function of the native receptor.
Molecular Pharmacology, 59 (5), .
Abstract
Glutamate-gated chloride (GluCl) channels are the site of action of the anthelmintic ivermectin. Previously, the Xenopus laevis oocyte expression system has been used to characterize GluCl channels cloned from Caenorhabditis elegans. However, information on the native, pharmacologically relevant receptors is lacking. Here, we have used a quantitative pharmacological approach and intracellular recording techniques of C. elegans pharynx to characterize them. The glutamate response was a rapidly desensitizing, reversible, chloride-dependent depolarization (EC50 = 166 µM), only weakly antagonized by picrotoxin. The order of potency of agonists was ibotenate > L-glutamate > kainate = quisqualate. Ivermectin potently and irreversibly depolarized the muscle (EC50 = 2.7 nM). No further depolarization was seen with coapplication of maximal glutamate during the maximal ivermectin response, indicating that ivermectin depolarizes the muscle by the same ionic mechanism as glutamate (i.e., chloride). The potency of ivermectin on the pharynx was greater than at any of the GluCl subunits expressed in X. laevis oocytes. This effect of ivermectin was abolished in the mutant avr-15, which lacks a functional GluCl-alpha 2 subunit. However, a chloride-dependent, nondesensitizing response to glutamate persisted. Therefore, the GluCl-alpha 2 subunit confers ivermectin sensitivity and a high-affinity desensitizing glutamate response on the native pharyngeal GluCl receptor.
Text
LHD-pemberton.pdf
- Version of Record
Restricted to Repository staff only
Request a copy
More information
Submitted date: 19 October 2000
Published date: 1 May 2001
Identifiers
Local EPrints ID: 26691
URI: http://eprints.soton.ac.uk/id/eprint/26691
ISSN: 0026-895X
PURE UUID: 6773dace-468a-4e47-9586-bdcd426df9db
Catalogue record
Date deposited: 10 Apr 2006
Last modified: 16 Mar 2024 04:37
Export record
Contributors
Author:
Darrel J. Pemberton
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics