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Abstract—Schottky barrier (SB) Ge channel MOSFETs suffer
from high drain-body leakage at the required elevated substrate
doping concentrations to suppress source—drain leakage. Here, we
show that electrodeposited Ni-Ge and NiGe/Ge Schottky diodes
on highly doped Ge show low off current, which might make
them suitable for SB p-MOSFETs. The Schottky diodes showed
rectification of up to five orders of magnitude. At low forward
biases, the overlap of the forward current density curves for the
as-deposited Ni/n-Ge and NiGe/n-Ge Schottky diodes indicates
Fermi-level pinning in the Ge bandgap. The SB height for elec-
trons remains virtually constant at 0.52 eV (indicating a hole
barrier height of 0.14 e¢V) under various annealing temperatures.
The series resistance decreases with increasing annealing tempera-
ture in agreement with four-point probe measurements indicating
the lower specific resistance of NiGe as compared to Ni, which
is crucial for high drive current in SB p-MOSFETs. We show
by numerical simulation that by incorporating such high-quality
Schottky diodes in the source/drain of a Ge channel PMOS, a
highly doped substrate could be used to minimize the source-
to-drain subthreshold leakage current.

Index Terms—Electrodeposition, leakage current, Schottky
barrier (SB) MOSFET.

I. INTRODUCTION

OR FUTURE high-speed CMOS technology, Ge channel

MOSFETs are considered as promising devices as they
offer high carrier mobilities suitable for large drive current.
Schottky barrier (SB) source/drain MOSFETSs overcome the
problems faced by the conventional transistor scaling caused by
the stringent conditions required for doping with low series re-
sistance [1]-[3]. The Ge-based SB p-MOSFETs, however, suf-
fer from increased leakage currents due to their narrow bandgap
and low SB height [4]-[6]. We have recently shown that
Ni-Si diodes prepared by electrodeposition exhibit superior
properties to physical-vapor-deposition-prepared diodes [7],
[8]. In this paper, we show that electrodeposited Ni—-Ge and
NiGe-Ge Schottky diodes on highly doped Ge exhibit near-
ideal SB behavior with low off current. The experimental data
of the diodes are used to calibrate numerical simulations of
the Ge SB MOSFET. At short channel lengths, SB MOSFETs
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suffer from source-to-drain leakage currents. We show that a
highly doped Ge substrate is the key to limiting source-to-
drain subthreshold leakage currents. The low off current of the
electrodeposited SBs on highly doped substrate might make this
possible without increasing the junction leakage current at the
drain/body of SB p-MOSFETs.

II. EXPERIMENTAL TECHNIQUES

For the fabrication of Ni-Ge SBs, Antimony-doped Ge (100)
wafers were taken as the starting materials. Square patterns of
sizes from 10 to 400 um were transferred to the photoresist-
coated substrates by conventional lithography. The back ohmic
contacts were defined by Au—Sb evaporation and annealing
the samples in an Hy /Ny inert atmosphere. Subsequently, a
20:1 buffered HF dip for 30 s, followed by DI water dip, was
performed to remove any native oxides. For electrodeposition, a
Ni sulphate bath and an Autolab AUT72032 potentiostat three-
electrode system with a Pt counter electrode and a saturated
calomel reference electrode (SCE) were used. The deposition
potential ranged from 1.10 to 1.15 V (against the SCE) for
the various Ge substrates. The film thickness was monitored
during electrodeposition by observing the charge accumu-
lated at the cathode. Current (I)-voltage (V') and capacitance
(C)-voltage (V') characteristic measurements were performed
using a Hewlett Packard 4155A semiconductor parameter an-
alyzer and a Hewlett Packard 4280 A, 1 MHz, C Meter/C-V
plotter. Germanidation of the Ni films was performed for 20 min
in the anneal chamber at temperatures ranging from 300 °C
to 500 °C. The various film thicknesses were measured using
scanning electron microscopy (SEM) on a cross section of the
electrodeposited film.

III. EXPERIMENTAL RESULTS

Typical current density (J) versus applied voltage (V') char-
acteristics of electrodeposited Ni-Ge SBs for the three different
substrate resistivities (p1 =2—2.4 € -cm, p2 = 0.13-0.15Q -
cm, and p3 = 0.005—0.02 2 - cm) and of 10-m? contact area
are shown in Fig. 1.

A high-quality rectifying behavior is observed for the SBs.
For the highly resistive (p1) Ge, excellent SBs are achieved
with very low reverse bias current, being five orders of mag-
nitude smaller than the forward bias current at 1-V bias. Tun-
neling effects of this SB are negligible in the reverse bias. SBs
on the medium resistive (p2) Ge showed similar rectifying
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Fig. 1. J—V characteristics of the Ni/Ge Schottky diodes (10-;zm? contact)

as a function of Ge resistivities (p1 =2—-2.4€ - cm, p2 = 0.13—0.15 2 - cm,
and p3 = 0.005—0.02 2 - cm).
TABLE 1
EXTRACTED ¢y, 1, Rs (FROM J—V METHOD) AND ¢, Ng, SUBSTRATE
RESISTIVITY (C-V METHOD) OF THE Ni/Ge SCHOTTKY DIODES

Resistivity Label = pl p2 p3
n 1.12 1.04 1.09
Rs (2) 30.77 16.05 11.72
bn (€V) 0.52 0.53 0.52
(from J-V)
b (eV) 0.56 0.53 0.53
(from C-V)
Ng (em™?) 8.7x101 | 1.45x10%6 | 2.9x10%7
Resistivity (2-cm) 2-2.4 0.13-0.15 | 0.005-0.02
(nominal)
Resistivity (£2-cm) 1.84 0.11 0.006
(from C-V)

behavior with a little tunneling current in the reverse direc-
tion. On the lowly resistive substrate (p3), Ni/Ge SB showed
increased tunneling effects in the reverse bias. However, even
these diodes showed excellent rectifying behavior with the
reverse bias current of the diodes at the lowly resistive (p3)
substrate, still being five orders of magnitude smaller than the
forward bias current. All currents can be explained by standard
thermionic emission (TE) and, additionally, thermionic field
emission (TFE) theory for the reverse bias. We will show in
the following section by numerical simulation that both forward
and reverse bias currents are dominated by electron transport.
This is a significant improvement over a similar work done in
literature [9], [10] where Schottky diodes grown by evaporation
technique exhibited rectification of only 2-3 orders even on
highly resistive Ge substrates. Breakdown of the diodes was
not observed up to —3-V bias, indicating that edge effects are
suppressed as explained in our previous work [11].

From the J—V curves in Fig. 1, the Ni/Ge Schottky electron
barrier height (¢,,), ideality factor (n), and series resistance
(Rs) can be extracted, assuming the TE model in the forward
bias [12]. The calculated SB parameters are shown in Table I for
all types of substrates. For these calculations, Richardson con-
stant (A*) of 50 A -cm~2 - K2 [13], [14] was used. It is seen
from Table I that the SB heights are virtually constant for the
Ge substrates of various resistivities. The low ideality factors
indicate TE to be the dominant current conduction mechanism
in the forward bias for the SBs on different substrates.
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Fig. 2. C~—2-V curve of an electrodeposited Ni-Ge contact (400 pm?) for
various substrate resistivities (pl = 2—2.4 Q- cm, p2 = 0.13—0.15 ©Q - cm,
and p3 = 0.005—0.02 2 - cm).

C-V measurements of SBs on Ge were performed for A*-
independent measurement of the SB height. Inverse square
capacitance versus voltage characteristics are shown in Fig. 2
for SBs on Ge substrates of various resistivities and having
a contact area of 400 um?. As expected, a straight line is
observed, and from its intercept on the voltage axis, the SB
height (¢,,) is calculated [15]. Furthermore, from the slope
of this characteristic, the Ge doping concentration (IN;) can
be determined. For example, a value of 2.9 x 107 cm ™3 for
N, is obtained corresponding to a resistivity of 0.006 €2 - cm,
which matches the specification of the Ge substrate. Similar
C-V measurements were performed on SBs on the medium
(0.13-0.15 Q - cm) and highly (2-2.4 Q) - cm) resistive Ge and
barrier heights (¢,) of 0.53 and 0.56 eV, respectively, and
substrate doping densities of 1.45 x 10%® and 8.7 x 10* cm ™3
were obtained. The barrier heights obtained are in good agree-
ment with those obtained from the I-V measurements as
observed in Table L.
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Fig. 3. XRD spectra for the as-deposited and annealed Ni/Ge samples show-

ing transformation from Ni to NiGe.

The electrodeposited Ni films on Ge (0.005-0.02 €2 - cm)
were annealed for 20 min at temperatures ranging from 300 °C
to 500 °C to investigate their Germanidation mechanism. Phase
identification and crystallographic structure determination were
carried out using XRD with Cu Ko radiation (A = 1.5418 A)
in a §—260 geometry. Fig. 3 shows the XRD spectra for as-
deposited and annealed Ni/Ge samples for initial Ni thicknesses
of 70 nm. The initial Ni (111) peak at 44.68° completely
disappears after annealing, indicating complete reaction of the
Ni film with Ge. Peaks at 34.8°, 35.2°, 44.2°, 45.7°, 53.8°, and
54.4° are observed when the sample was annealed at 500 °C.
These peaks are in excellent agreement with the §—26 pattern
of the NiGe JCPDS standard. The peaks were identified as
NiGe(111), (210), (211), (121), (002), and (301). No peaks cor-
responding to other Ni-Germanides, e.g., NioGe, NiGe-, etc.,
are observed. This clearly shows only polycrystalline Ni-mono-
Germanide (NiGe) phase forms at the annealing temperatures.
The lattice constants of the formed NiGe are determined to be
a=5.81 A, b=1537 A, and ¢ = 3.40 A from the XRD spectra,
in agreement with the reported values [16], [17].

For the 300-°C annealed samples, the NiGe peaks are very
weak, while after 400-°C annealing, the peaks become quite
strong. The crystallite size (¢) of the grown NiGe(111) was
investigated by taking further XRD scan within close intervals
surrounding the peak. These are shown in Fig. 4 as a function of
annealing temperature (7). The crystallite sizes are calculated
from the peaks using the Scherrer relation

0.9\
t= 1
dcosf M

where d is the broadening of the peaks due to the crystallite
size. It was observed that ¢ increases with increasing 7T'.

The variation of thickness of the Ni and Ni—-Ge films as a
function of annealing temperature (7') was determined by SEM
as shown in Fig. 5. This thickness is seen to increase with
increasing 7'. Theoretically, the ratio of the atomic volume of
NiGe and Ni is 2.44. As shown in Fig. 5, the ratio of the film
thickness of NiGe at 500 °C to that of Ni is 2.53. This confirms
complete reaction of the 70-nm Ni and formation of NiGe at
that temperature.
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Fig. 4. XRD spectra showing the NiGe(111) peak of the Ni(70 nm)/Ge
samples when annealed at various temperatures. The calculated crystallites are
presented in the inset.

In order to further exploit the Germanidation mechanism,
the sheet resistance (Rs) of the grown films was measured
using the four-point probe method. The obtained R, values
were multiplied by the film thicknesses to calculate the film
resistivities (p). The results are plotted as a function of anneal-
ing temperatures in Fig. 6. It is observed that Ry, decreased
with increasing T'. The measured Ry, of NiGe is 0.23 Q/sq
when annealed at 500 °C. The low Ry, could be attributed to
the increase in crystallite size at 500 °C as shown in Fig. 4.
The resistivity of Ni-Ge also decreased when the films were
annealed above 300 °C.

Typical current (I) versus applied potential (V) charac-
teristics of the grown Ni(70 nm)/Ge Schottky diodes under
the as-deposited and annealed conditions on lowly resistive
(0.005-0.02 Q2 - cm) Ge are shown in Fig. 7 for a contact pad
size of 20 pum?.

A high-quality rectifying behavior (4-5 orders in magnitude)
is observed for all annealing conditions. Again, ¢,, 1, and
R are calculated, assuming the TE model in the forward bias
region, and are presented in Table II. The values of ¢,, are vir-
tually constant at 0.52 eV. Assuming a Ge bandgap of 0.66 eV,
the corresponding hole barrier height (¢,) is 0.14 eV. This
value is low enough to guarantee a large on current in SB
MOSFET. At low forward bias, there is a considerable overlap
of the current curves of the nonannealed Ni-Ge and NiGe-Ge
samples as shown in Fig. 7. This indicates both thermal stability
and Fermi-level pinning in the Ge bandgap as the barrier height
is independent of the metal work function. The reverse current
at 1-V bias is 1 pA for the various annealed diodes. This is
a significant achievement as this value is more than an order
of magnitude smaller than the reported value in literature [10]
for NiGe/Ge diodes formed by evaporation on highly resistive
(4-6 Q - cm) Ge.

The low values of ideality factor for the Schottky diodes
presented in Table II indicate TE to be the dominant current
conduction mechanism in the forward bias. The series resis-
tance decreases with increasing 71" (see the inset of Fig. 7),
indicating a lower specific resistance of NiGe than Ni. This
is consistent with the four-point probe measurement shown
in Fig. 6.
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Fig. 6. Ry and p of Ni and Ni-Ge films at various anneal temperatures. The
initial Ni thickness was 70 nm. The substrate resistivity was 0.005-0.02 €2 - cm.

IV. SB MOSFET SIMULATION

The commercial TCAD simulator Sentaurus Device from
Synopsys has been used for the simulation work that provided
a self-consistent and fully coupled implementation of nonlocal
tunnelling models of both electrons and holes. The devices were
generated using Sentaurus Structure Editor and its Meshing
engine. The simulator was, at first, calibrated by using the SB
heights and the various experimental doping densities (Ng)
of the substrates obtained by the C-V methods which were
presented in Table I. To account for the substrate series resis-
tances in the experimental results, systematic 3-D simulations
of the actual substrate size and thicknesses were performed
for a 10-um? pad. The corresponding calculated J—V curves
for the various substrate doping densities are shown in Fig. 8
along with the experimental curves. Separation of the electron
and hole currents in the simulation (not shown) indicates that
holes play a negligible role in the reverse and forward bias
currents. The concordance of the experimental and simulated

1185nm

(d)

Fig. 5. Cross-sectional SEM images of the various Ni/Ge samples: (a) As-deposited, (b) annealed at 300 °C, (c) annealed at 400 °C, and (d) annealed at 500 °C.
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Fig. 7. I-V characteristics of the Ni/Ge Schottky diodes, having a contact
area of 20 um?, as a function of annealing temperatures. Ge resistivity was
0.005-0.02 €2 - cm. The high forward bias region is magnified in the inset.

TABLE 1I
EXTRACTED ¢y, 1, AND Rs OF THE Ni/Ge SCHOTTKY DIODES
WITH 20-pum? CONTACT AREA AS A FUNCTION OF
ANNEALING TEMPERATURE (T')

TCC) | dn(eV) | n | Re(Q)
None 0.52 11| 2132
300 052 | 127 | 1479
400 055 | 113 | 1183
500 0.55 | 1.08 | 1085

current density curves at the various conditions confirms the
full calibration of the simulator tool to both TE and TFE.

To accurately model the SB MOSFET, a fully coupled 2-D
simulation was performed that included physical models, e.g.,
bandgap narrowing effect and dependence of mobility to nor-
mal electric field. The drain current (I;) versus gate voltage
(Vy) characteristics for a bulk SB PMOS with channel length
(Lg) of 30 nm and gate oxide thickness (¢ox) of 0.7 nm are
calculated as a function of various substrate doping densities
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Fig.9. Simulated transfer characteristics of 30-nm Ge channel bulk SB PMOS
devices showing the effect of increasing substrate doping density on leakage
currents.

(NV4) and are shown in Fig. 9. The source-to-drain subthreshold
leakage current can be readily obtained from the curves at
Vy = 0. It is found that for a fixed drain bias (V) of —0.1'V, the
leakage current is 4.5 x 107 A/um when Ge n-type doping
density of 8.7 x 10** cm~ was used. However, the leakage
currents decreased to 2.1 x 107¢ and 8.1 x 10™® A/um when
the substrate doping densities were increased to 1.45 x 10'¢
and 2.9 x 107 cm™3, respectively. Therefore, we propose that
a highly doped Ge substrate could be used for a low-leakage
SB MOSFET. At higher positive gate voltages, the leakage
current is observed to increase for the various substrate doping
densities. This is attributed to the ambipolar behavior typi-
cal of an SB MOSFET that results in a gate-induced-drain-
leakage (GIDL)-like current. For higher drain voltages, e.g.,
Vi = —1V, this leakage current is very high.

There are several methods available to suppress the GIDL-
like leakage in SB MOSFETs. One method uses a field-induced
drain extension [18] located between the channel and the
Schottky drain. This leakage current could also be alleviated by
using a recessed channel and asymmetric source/drain Schottky
contacts [19]. As an alternative to these methods, an offset gate
structure shown in Fig. 10(a) could be used for a 30-nm gate
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Fig. 10. (a) Schematic representation of the SB PMOS structure with gate off-

set. X4 is the length of offset region from the drain. (b) Transfer characteristics
of 30-nm Ge channel bulk SB PMOS devices for various X4 showing the effect
of gate offset on leakage currents.

length device. Here, the effect of the gate bias responsible for
the hole conduction is reduced by increasing the distance (X )
between the edges of the gate and the drain.

Here, we perform numerical simulation to investigate the ef-
fect of the offset gate structure in the bulk SB PMOS. I versus
Vy characteristics, with L, = 30 nm, ¢, = 0.7 nm, and Ny =
2.9 x 10'7 cm™3, are calculated for V; = —0.5 V as a function
of various X4 and are shown in Fig. 10(b). It is observed that
for the highly doped substrate, the leakage current is extremely
high for a conventional bulk SB PMOS (X, = 0). As the gate
offset from the drain is increased, superior p-channel device
performance is realized on the Ge SB MOSFET. It can be seen
that not only the hole conduction is gradually eliminated but
also the OFF-state source—drain subthreshold leakage current
is also decreased with increasing X 4. The parasitic resistance
with increasing X4, however, has not decreased the on current.
This is due to the domination of the source-to-channel tunnel
resistance over the resistances in the current conduction path.
Therefore, by using the offset-gate structure, the off current
of the SB MOSFET could be significantly reduced without
affecting the on current of the device.

V. CONCLUSION

We report that Ni/Ge SBs formed by electrodeposition on
highly doped substrate show high rectification with low leakage
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current in reverse bias. The fabricated Ni/Ge diodes trans-
formed into NiGe/Ge diodes upon annealing at 500 °C. Despite
the compositional change, the SB properties were virtually
unaltered due to Fermi-level pinning. The series resistances of
NiGe decreased with annealing temperature which is important
for high drive current in SB MOSFETs. By numerical simula-
tion, we are able to show that the source-to-drain subthreshold
leakage current could be minimized by using a highly doped Ge
substrate. Therefore, we propose that electrodeposition could
be used for source—drain formation of a highly doped Ge-based
SB MOSFET to achieve low subthreshold leakage current.
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