Decomposition Structures for Event-B

Michael Butler

School of Electronics and Computer Science
University of Southampton, UK
mjb@ecs.soton.ac.uk

Abstract. Event-B provides a flexible approach to modelling and re-
finement of systems. In this paper we outline two important ways in
which Event-B refinement can be augmented with additional structuring
to support further the management of complex refinements. Firstly we
show how event refinement diagrams can be used to structure refinement
steps involving decomposition of atomicity. Secondly we outline a tech-
nique for decomposing models into sub-models to allow for independent
refinement. We show how these two structuring techniques can be used
together.

1 Introduction

An Event-B machine consists of a collection of variables, invariants on those
variables and a collection of guarded events that may update the machine vari-
ables. An Event-B devlopment consists of a collection of machines linked by
refinement.

Event-B [2] provides a more flexible approach to refinement than found in
Classical B [1] and in related languages such as Z [11] and VDM [10]. One impor-
tant feature is the ability to introduce new events in a refinement step. These new
events correspond to stuttering steps that are not visible at an abstract level. A
very common pattern of Event-B refinement for many types of system, including
sequential, concurrent and distributed systems, is to represent a desired outcome
as an abstract atomic event and then decompose that into smaller (sub-)atomic
steps in refinement. While the Event-B refinement rules are quite comprehensive
and allow for decomposition of event atomicity, they are more general than that.
By identify a pattern and providing additional structure to represent the pat-
tern, we hope to make the application of the standard refinement rules clearer
and more manageable. In this paper we will see how a diagrammatic notation
inspired by the structure diagrams of Jackson System Development (JSD) [9]
can help to structure refinements involving atomicity decomposition.

Another critical structuring mechanism for refinement is the ability to de-
compose machines into sub-machines. Typically these sub-models will represent
separate archtectural components. We will present a technique for syntactically
partitioning an Event-B machine into several sub-machines. This technique has
a sound semantic basis that corresponds to the synchronous parallel composition
of processes as found in process algebra such as CSP [8]. An important property

Machine L
Variables Out
Invariants Out € BOOL
Initialisation Out := FALSE
Event Out =
any v! where
grdl : Out = FALSE

grd2: v!=N
then

actl : Out := TRUFE
end

Fig. 1. Abstraction of model of simple outputting machine.

of the decomposition technique is that the resulting sub-models can be refined
independently of each other.

2 Decomposing Atomicity

In this section we will look at how coarse-grained atomicity can be refined to more
fine-grained atomicity. The approach we take is to treat most of the sub-atomic
events of a decomposed abstract event as hidden events which are required to
refine skip. The new events introduced in a refinement step can be viewed as
hidden events not visible to the environment of a system and are thus outside
the control of the environment. In Event-B, requiring a new event to refine skip
corresponds to the process algebraic principle that the effect of an event is not
observable. Any number of executions of an internal action may occur in between
each execution of a visible action.

Assume we are refining a machine M1 by a machine M2. In Event-B, each
event A of M2 either refines some event R(A) of M1 or it is a new event refining
skip. The proof obligations defined for Event-B refinement are based on the
following proof rule that makes use of a gluing invariant J:

— Each M2.A (data) refines M1.R(A) under J, if R(A) is defined
— Each M2.A refines skip under J, if A is a new event

The machine L of Fig. 1 has a single event Out that simply outputs N and
then disables itself. The machine contains a single variable for modelling the
control of execution of the Out event: Out € BOOL is true when the output
event has occurred. The Out event can occur provided Out has not occured
(grdl). The parameter v! represents the output value produced by the Out event.
Its value is N (grd2).

We wish to refine this machine by a machine modelling a concurrent program
that accumulates a value in a variable x before outputting it. The refinement
models N parallel subprocesses each of which increments the variable = exactly

once. When all N subprocesses have incremented x, the value of x is output.
We view the refined model as breaking the atomicity of the output event by
introducing an I'nc event that models the behavior of the parallel sub-processes.
The decomposition of the atomicity of the simple concurrent program is modelled
as an event refinement diagram in Fig. 2. This diagrammatic notation is based
on JSD structure diagrams by Jackson [9]. The event refinement diagram of
Fig. 2 is a tree structure with root Out(N) representing the abstract output
event. The diagram shows how the root is decomposed into an initialisation,
the parallel composition of multiple parallel instances of Inc(p) and a refined
output event Out(z). The oval with the keyword par represents a quantifier that
replicates the tree below it. In this case it replicates Inc(p) by quantifying over
sub-process identifiers p. An important feature of event refinement diagrams, in
common with JSD structure diagrams, is that the subtrees are read from left
to right and indicate sequential control from left to right. This means that our
diagram indicates that the abstract Out(IN) event is realised in the refinement
by firstly executing the initialisation, then executing the Inc(p) events in parallel
(in an interleaved fashion) and then executing Out(x).

Another important feature of event refinement diagrams is the solid and
dashed lines linking children to their parent. The Init and Inc(p) events are
linked by a dashed line which means it must be proven that they refine skip.
The abstract and refined Out events are linked by a solid line which indicates a
refinement relation. That is, it must be proven that Out(x) refines Out(N).

Fig. 2. Event refinement diagram illustrating atomicity decomposition

The refined machine is shown in Fig. 3. It uses a type PROC representing
the set of sub-process identifiers with the assumption that card(PROC) = N.
In addition to the variable z, machine M contains two variables for modelling
the control of execution of events. Variable Inc C PROC represents the set of
processes for which the increment event has occurred. Variable Out € BOOL
is true when the output event has occurred. In this case the initialisation of
the program is modelled by the standard initialisation clause of the machine M
so we do not need a control variable for the initialisation. The Inc event can
occur for process p provided Imc has not already occurred for process p. This
constraint is modelled by guard grdl of Inc. The action actl of the Inc event

Machine M
Variables z, Inc, Out
Invariants z €N, Inc C PROC, Out € BOOL
Initialisation 2:=0, Inc:={}, Out:= FALSE
Event Inc =
any p where
grdl: p € PROC \ Inc
then
actl : Inc := IncU {p}
act2: x == x+1
end
Event Out =
any v/ where
grdl : Inc = PROC
grd2: Out = FALSE

grd3: vl==x
then

actl : Out := TRUFE
end

Fig. 3. Event-B refinement of a simple output machine.

adds the value p to the set Inc which prevents the event occurring for that value
of p again. The Out event can occur provided Inc has occurred for all processes
(grdl) and Out has not occured (grd2).

Instead of outputting N the refined Out event outputs the value of x (grd3).
The proof of the correctness of this refinement relies on the following invari-
ant stating that the value of x is equal to the number of processes that have
completed their task:

x = card(Inc)

Therefore when all N processes have completed, x will have the value N and
the correct value will be output. This illustrates how control variables (such as
Inc) are useful in gluing invariants, allowing for values of data variables (such
as z) to be related to values of control variables.

Consider the case where we have two subprocesses so that PROC = {p1,p2}
and NV = 2. The event traces of the model are as follows:

(Ime.pl, Inc.p2, Out.2) (Inc.p2, Inc.pl, Out.2)

Each event trace represents a record of a possible execution trace of the model.
Here we are ignoring the initialisation event since it always occurs exactly once at
the beginning of a trace. The parallel execution of the subprocesses is modelled
by interleavings of the atomic steps of the processes. Here the two possible
interleavings of Inc.pl and Inc.p2, represented by the two events traces, model

their concurrent execution. It is instructive to relate the event traces of the
machine L with those of machine M. L has just a single event trace that outputs
N and nothing else. In the case that N = 2, the single event trace of L is

(Out.2)
If we remove the Inc events from the traces of M we get the trace of L:

(Incpl, Inc.p2, Out.2) \ Inc = (Out2)
(Inc.p2, Incpl, Out.2) \ Inc = (Out.2)

Removing events from a trace is the standard way of giving a semantics to hidden
or stuttering events and is used, for example, in CSP. By treating the Inc events
as a hidden, traces of M look like traces of L. This illustrates a semantics of
refinement of Event-B models. Machine M is a refinement of machine L since
any trace of M in which the Inc events are hidden is also a trace of L. This is
treated more precisely in [5].

3 Decomposing File Write

We will study a further example of atomicity refinement which involves more
event interleaving than the simple concurrent program. This is an event for
writing a file to a disk. At the abstract level the entire contents of the file is
written in one atomic step as in the following machine:

Machine Filel
Variables file, dsk
Invariants file CFILE, dske€ file— CONT

Event Write =
any f,c¢ where
grdl : f € file
grd2: ce CONT
then
actl : dsk(f) :=c
end

Here the contents of the disk are represented by the variable dsk which maps file
identifiers to their contents. The Write event has two parameters, the identity
of the file to be written f and the contents to be written c. Other events such
as creating a file and reading a file are not shown.

We assume that file contents are structured as a set of pages of data so that
the type CONT is defined as follows:

CONT = PAGE - DATA

The event refinement diagram of Fig. 4 illustrates the decomposition of the
Write event into sub-events to model the writing of individual pages. In the

refinement, the writing of individual pages will be modelled atomically by the
PageWrite event and the writing of the entire file is no longer atomic. The
writing of a file is initiated by the StartWrite event and ended by the EndWrite
event. We will allow multiple file writes to be taking place simultaneously in an
interleaved fashion. This is indicated by the top level parallel quantification over
f (par(f)). We also assume that the pages of an individual file f can be written
in parallel hence the inner parallel quantification over p (par(p)). Occurrence of
event PageWrite(f,p) models writing of page p of file f.

[StartWrite(f)] [PageWrite(f,p)] [EndWrite(f)]

Fig. 4. Decomposition of the atomiticy of file write

In order to model the event sequencing implied by Fig. 4, we introduce vari-
ables corresponding to the StartWrite and PageWrite events as follows:

Invariants
invl : StartWrite C FILE
inv2: PageWrite C FILE x PAGE
inw3 . dom(PageWrite) C StartWrite

The types of these variables are determined by the parallel quantification in
Fig. 4. StartWrite is a subset of FILFE because it is bound by the quantification
over files f (invl). PageWrite is a subset of FILE x PAGE because it is bound
by the quantification over files f and pages p (inv2). If a page has been written
for a file, then StartWrite will already have occurred for that file (inv3).

When the writing of a file is complete, we will allow the file to be written
to again. Therefore we do not need any variable to model the occurrence of
the EndWrite event for a file, since all the control information for a file will
be cleared when the file write is complete in order to allow the file to be writ-
ten to again later if required. Now, for example, the control behaviour of the
StartWrite and PageWrite events is as follows:

Event StartWrite =
any [where

grdl : f € file
grd2: f & StartWrite
then
actl : StartWrite := StartWrite U {f}
end
Event PageWrite =
any f,p where
grdl : f e StartWrite
grd2: f i p ¢ PageWrite
then
actl : PageWrite := PageWrite U {f — p}
end

This control behaviour on its own is not enough. The pages and their contents
for a particular file need to be determined before we start the process of writing
to a file. We introduce a variable writebuf to act as a buffer for the content to
be written to disk. Rather than writing directly to the abstract variable dsk,
the PageWrite event will write the contents of an indivdual page to a shadow
disk while the writing is in progress. When the writing is complete, the contents
of the shadow disk is transferred to the disk at the end of the writing process.
These variables are defined as follows:

invd . writebuf € StartWrite - CONT
invd : sdsk € StartWrite — CONT

Note that both are defined on files that are currently being written, i.e., files in
the set StartWrite.

Now, as well as initialising the control for the writing process, the StartWrite
event sets the contents to be written to disk in the write buffer for that file (act2)
and sets the shadow disk for that file to be empty (act3):

Event StartWrite =

any f,c¢ where
grdl : f € file
grd2 : f & StartWrite
grd3: ce CONT

then
actl : StartWrite := StartWrite U {f}
act2 : writebuf(f) :=c
actd : sdsk(f) =@

end

The PageWrite event selects a page of a file that has yet to be written (grd2)
and is in the write buffer (grd3). The parameter d represents the data associated
with the page being written to the shadow disk (sdsk):

Event PageWrite =
any f,p,d where

grdl : f e StartWrite
grd2: f i p ¢ PageWrite
grd3: p— d € writebuf(f)
then
actl : PageWrite := PageWrite U {f — p}
act2 : sdsk(f) = sdsk(f) < {p — d}
end

The StartWrite and PageWrite events both refine skip while the EndWrite
event refines the abstract Write event (see the dashed and solid lines in Fig. 4).
The EndWrite event occurs once all pages of a file have been written, a condition
that is captured by grd2 below. The effect of the event is to copy the shadow
disk to the disk (actl). The event also clears all the control, buffer and shadow
information for the file to enable the write process to commence all over again
(act2 to actb).

Event EndWrite Refines Write =

any f,c where
grdl : f € StartWrite
grd2 : PageWrite[{f}] = dom(writebuf(f))
grd3 : ¢ = sdsk(f)

then
actl : dsk(f) := sdsk(f)
act2 : StartWrite := StartWrite \ {f}
act3 : PageWrite := {f} 94 PageWrite
actd : writebuf = {f} Quwritebu f
acth : sdsk := {f} < sdsk

end

It may seem like we have not really achieved much decomposition of atomicity
since the shadow disk is copied to the actual disk in one atomic step (actl of
EndWrite). However our intention is that the disk and the shadow together are
both realised on the real hard disk and that the effect of actl would be achieved
by an update to the page table for the disk (in later refinements). We assume
that updating the page table can reasonably be treated as atomic. Having the
PageWrite event write the individual pages to a shadow disk also allows us to
model fault tolerance quite easily. We add an AbortWrite event that clears all
the control and shadow information for a file write but does not update the disk:

Event AbortWrite =

any [where
grdl : f € StartWrite

then
actl : StartWrite := StartWrite \ {f}
act2 : writebuf = {f} 9 writebuf
actd : sdsk := {f} < sdsk
actd : PageWrite := {f} 94 PageWrite

end

This event refines skip since it does not modify the dsk variable that appears
in the abstract model. Thus the effect of an abort, which can happen after any
number of pages are written, is to leave the disk in the state it was in before the
file write process started (for the file f).

It is instructive to compare an event trace of the abstract file model with a
corresponding trace of the refinement file model. The following trace represents
a behaviour in which the contents ¢2 is written to file f2 and then the contents
cl is written to file f1:

(Write.f2.c2, Write.fl.cl)

Each of these high-level events is realised by several new events (StartWrite,
PageWrite etc). The sub-events of one high-level write may interleave with
those of the other high-level event. For example, the following event trace of the
refined model illustrates this (the events that directly refine an abstract event
are highlighted in bold):

(StartWrite.fl.cl, PageWrite.f1.pl.c1(pl),
StartWrite.f2.c2, PageWrite. f1.p2.c1(p2),

PageWrite. f2.pl.c2(pl), PageWrite.f2.p2.c2(p2),
EndWrite.f2.c2, PageWrite.f1.p3.c1(p3), EndWrite.fl.c1)

This illustrates a scenario in which writing to file f1 is started before writing to
f2 is started but writing of file f2 finishes before writing of file f1.

To recap, we have decomposed the atomicity of the abstract Write event
by introducing the new events StartWrite, PageWrite and AbortWrite and by
refining the Write event with the EndWrite event. Formally, the new events
have no connection to the abstract Write event, only the EndWrite has a for-
mal connection. However, the event refinement diagram of Fig. 4 describes the
intended purpose of the new events which is to represent the intermediate steps
of the file write process that lead to a state where the EndWrite is enabled.
The diagram also plays another role in that it defines the control behaviour of
all the events constituting the write process and this was encoded in Event-B
in a systematic way, i.e., introducing the StartWrite and PageWrite control
variables. The additional modelling elements provided, writebuf and sdsk, were
required in order to model abstractly the effect of the various events and their
introduction was based on modelling judgement.

4 Decomposing machines

In this section, we describe a parallel composition operator for machines. The
parallel composition of machines M and N is written M | N. Machines M
and N must not have any common state variables. Instead they interact by
synchronising over shared events (i.e., events with common names). They may

also pass values on synchronisation. We look first at basic parallel composition
and later look at parallel composition with shared parameters. We show how the
composition operator may be applied in reverse in order to decompose system
models into subsystem models.

In general, an event has the form

any z where G then S end

where z is a list of event parameters, G is a list of guards (implicitly conjoined)
and S is a list of actions on the machine variables (implicitly simultaneous). We
write G A H to join two lists of guards and S || T' to join two lists of actions.

To achieve the synchronisation effect between machines, shared events from
M and N are ‘fused’ using a parallel operator for events. Assume that m (resp.
n) represents the state variables of machine M (resp. V). Variables m and n are
disjoint. The parallel operator for events is defined as follows:

evl = any y where G(y,m) then S(y,m) end
ev2 = any z where H(z,n) then T(z,n) end
evl ||ev2 = any y,z where

G(y,m) N H(z,n)
then

S(y,m) || T(z,n)
end

The parallel operator models simultaneous execution of the actions of the events
and the composite event is enabled exactly when both component events are
enabled. This models synchronisation: the composite system engages in a joint
event when both systems are willing to engage in that event. The parallel com-
position of machines M and N is a machine constructed by fusing shared events
of M and N and leaving independent events independent. The state variables of
the composite system M || N are simply the union of the variables of M and N.

As an illustration of this, consider machines V1 and W1 of Fig. 5. The
machines work on independent variables v and w respectively. Both machines
have an event labelled B and to compose these machines we fuse their respective
B events. The composition of both machines is shown in Fig. 6. The A event and
C event of VW1 come directly from V1 and W1 respectively as they are not
joint events rather they are independent events. The B event is a joint event and
is defined as the fusion of the B-events of V 1 and W 2. The initialisations of V 1
and W 1 are also combined to form the initialisation of VW 1. The joint B event
simultaneously decreases v while increasing w, provided v > 0 and w < N.

We have presented VW I as having been formed from the composition of V1
and W 1. We can view the relationship between these machines in another way.
Let us suppose we had started with VW 1 and decided that we wish to decompose
it into subsystems. The diagram in Fig. 7(a) illustrates the dependencies between
events and variables in the machine VW 1. For example, the line from the box

Machine V1 Machine W1
Variables v Variables w
Invariants v €N Invariants wéeN
Initialisation ov:= N Initialisation 1w :=0
Event B = Event B =
when when
grdl: v>0 grd2: w< M
then then
actl: v == v—1 act2: w = w+1
end end
Event A = Event C =
begin when
actl: v := N grdl: w>0
end then
actl: w = w—1
(a) Machine V1 end

(b) Machine W1

Fig. 5. Machines to be composed in parallel

indicating event A to the oval indicating variable v represents the fact that
event A depends on v, i.e., it may read from and assign to v. The diagram shows
that B is the only event that depends on both v and w suggesting that B needs
to be a shared event if we are to partition v and w into separate subsystems. This
decomposition is illustrated in Fig. 7(b) where variables v and w of VW1 are
partitioned into subsystems V' 1 and W I respectively, A is an event of subsystem
V1, C is an event of subsystem W I and B is an event shared by both subsystems.

The B event of system VW I is partitioned into two parts, one of which will
belong in W1 and the other in W 1. The B event has an important characteristic
that allows it to be partitioned in this way. The guards and actions depend either
on v or on w but not both. So, guard grdl and action actl both depend on v
only, while guard grd2 and action act2 both depend on w. This localisation of
variable dependency allows us to easily partition the guards and actions of the
B event of VW 1 into the separate B events of V' I and W I respectively.

We extend the fusion operator to deal with shared event parameters. Events
to be fused must depend on disjoint machine variables but they may have com-
mon parameters and these common parameters are treated as joint parameters
in the fused event. In the following, = represents parameters that are joint across
events and y and z are local to their respective events:

evl = any z,y where G(z,y,m) then S(z,y,m) end

ev2 = any x,z where H(z,z,n) then T(x,z,n) end

Machine VW1
Variables v, w
Invariants veN, weN
Initialisation v: =N, w:=0
Event A =
begin
actl: v := N
end
Event B =
when
grdl: v>0
grd2: w< M
then
actl : v (= v—1
act2: w = w+1
end
Event C =
when
grdl: w>0
then
actl : w = w—1
end

Fig. 6. Composition of V1 and V2.

evl || ev2 = any =z,y,z where
G(z,y,m) N H(x,z,n)
then
Sz, y,m) || T(x,z,n)
end

We illustrate the use of shared parameters by extending the VW I machine
slightly. Assume that instead of increasing v and decreasing w by 1 in the
B event, we modify both v and w by a value i. To do this we give the B event
a parameter ¢ which is used to modify the variables as follows:

Event B =
any i where
grdl: 0<i:<w

grd2: w< N
then

actl : v = v—1

act2: w = w41

end

Events

Variables

(a) Variable access by events in VIV

V1 WL

) L] L

(b) Split events and variables

Fig. 7. Illustration of decomposition a machine

Now we partition the guards and events of B into those that depend on v
and those that depend on w giving the following events:

Event B = Event B =
any i where any i where
grdl: 0<i<w grdl: ieZ
then grd2: w< N
actl : v := v—1 then
end actl : w = w+1
end

The shared parameter ¢ means that both of these events will agree on the
amount by which v and w are respectively decreased and increased. In the left
hand sub-event, the guard grdl constraints the value of the parameter based in
the state variable v. In the right-hand sub-event, the value of i is not constrained
other than a typing guard (¢ € Z). This means that the left-hand sub-event can
be viewed as outputting the value ¢ while the right-hand sub-event accepts the
value ¢ as an input.

When we decompose a system into parallel subsystems, the subsystems may
be refined and further decomposed independently. This is a major methodolog-
ical benefit, helping to modularise the design and proof effort. The semantic
justification for this is outlined in [5].

5 Incremental development of a distributed file transfer

In this section we outline an incremental development of a simple system for
copying a file from one location to another. The development makes use of event
decomposition and machine decomposition. We start with an abstract model in
which the file copy occurs in one atomic step. We then refine this by a model in
which the contents of the file is copied one page at a time. The refined model
is then decomposed into subsystems. Instead of decomposing into two subsys-
tems that synchronise with each other, we decompose into three subsystems as
illustrated in Fig. 8. In this decomposition the two agents do not synchronise
directly with each other. Instead they interact indirectly through a middleware
subsystem. Each agent synchronises directly and separately with the middleware
and this will be used to model asynchronous communication between the agents.
This form of asynchronous communication via middleware can be used to model
many distributed systems that are based on message passing. In order to be able
to decompose in this way, we will need to apply refinement steps that enable the
agents to be decomposed into asynchronous subsystems.

Agent 1 Middleware Agent 2

R B DD

Fig. 8. Decomposition with asynchronous middleware

5.1 Abstract model

The model makes use of the types PAGFE and D AT A respectively. A file is mod-
elled as a partial function from pages to data. Machine F'1 defines the abstract
behaviour of the file transfer system. It contains two variables fileA, represent-
ing the contents of the file at the sending side, and fileB representing the value
of the file at the receiving side:

Machine F1

Variables fileA , fileB

Invariants
invl : fileA € PAGE +~ DATA
inv2: fileB € PAGE - DATA

The abstract machine has one event that simply copies the contents of fileA to
fileB in one atomic step:

Event CopyFile =
begin
actl : fileB := fileA
end

5.2 Breaking atomicity

CopyFile

-
-
pes
-

[Start] [CopyPage] [Finish]

Fig. 9. Refining atomicity of the CopyF'ile event

The atomicity of the CopyF'ile event is decomposed in the same way in which
the atomicity of the Write event was decomposed in Section 2. This is illustrated
in Fig. 9. We introduce control variables based on this diagram as well as a buffer
buf in which pages are written one at a time by the CopyPage event. Further
details of this refinement may be found in [5].

5.3 Split events to A side and B side

Before decomposing the file transfer system into three subsystems, we must first
split some events into an A-part, representing behaviour on the sending side,
and a B-part, representing behaviour on the receiving side. This is illustrated
by the diagram in Fig. 10 which shows that the Start event is decomposed
into StartA and StartB. The StartA event represents the sending side deciding
to commence the transfer while the subsequent StartB event represents the
receiving side recognising that the transfer has commenced. The StartA event
will set a flag StartA to TRUFE while the StartB event will set a flag StartB
to TRUE provided StartA is true. The CopyPage event is decomposed into
separate A and B parts in a similar way. We assume that the sending side will
send the size of the file at the start so that the receiving side can know when all
the pages have been received. This means that the sending side does not need
to send a finish message so we need a F'inish event on the receiving side only.

The event refinement diagram in Fig. 10 provides a hierarchical overview of
the major refinement steps involved in this development so far. The top level
corresponds to the abstract atomic event, the intermediate level corresponds to
the first refinement where the atomicity of the copy is decomposed and the third
level of the hierarchy shows how events are split into two parts for sender and
receiver.

CopyFile

N i
() (coa) [cwe) (o) (o]

Fig. 10. Splitting events into sender and receiver parts

5.4 Introduce message variables

Now consider again the StartB event just outlined. Our intention is that this
is an event of the receiving side so we wish to make it an event of the receiver
subsystem. This means it should not refer to variables of the sending side directly
since we are aiming at an asynchronous decomposition. However the StartB
event does refer to variables of the sending side: for example it refers to the
StartA control variable.

To break this dependency on variables of the sending side in events of the
receiving side, we introduce variables that duplicate the variables of the sending
side, e.g., StartM and CopyPageM. These duplicate variables will be sepa-
rated into a middleware machine (Fig. 8) and become abstract representations
of messages in transit in the middleware.

5.5 Separate machines

The previous model is decomposed into three separate machines representing
three subsystems as illustrated in Fig. 8. The three machines are:

— machine mAIl representing a model of the sending agent

— machine mB1 representing a model of the receiving agent

— machine mM1 representing a model of the middleware through which the
sender and receiver interact.

The variables of the previous model are partitioned amongst the three machines.
The sender interacts with the middleware through synchronisation over actions
(StartA and CopyPageA). Similarly, the receiver interacts with the middleware
through synchronisation over actions (StartB and CopyPageB). There is no
direct interaction between the sender and receiver - all communication is via the
middleware machine.

Fig. 11 provides an architectural overview of the decomposition illustrating
how the variables and events are distributed amongst the subsystems. The vari-
ables allocated to each subsystem are listed in italic in the relevant box for that

Receiver

Sender
fileA fileB
StartA StartB
bufA bufB
sizeA ... sizeB ...
Middleware
StartA CpPgA StartB CpPgB

StartM, sizeM, bufM, ...

Fig. 11. Architectural illustration of decomposition

subsystem, e.g., the sender subsystem contains the variables fileA, StartA etc.
The smaller labelled boxes indicate the synchronised shared events. For example,
the StartA event is shared between the sender and the middleware representing
a synchronised interaction between these subsystems.

See [5] for further details of how the event specifications are decomposed into
the separate syntactic components in order to decompose the model. [5] also
outlines how the abstract model of the middleware may be refined further so
that more explicit datatypes representing messages are introduced reflecting the
usual interface to a communications middleware.

6 More about Event Refinement Diagrams

In the event refinement diagrams shown so far, the refining event is always the
final step of an event decomposition. For example, in Fig. 2, the refined Out(N)
event is the final step in the decomposition of the abstract Out(N) event. It is
not a requirement that the refining event always be the final event of a decompo-
sition. Fig. 12 shows an event refinement diagram for an update of a replicated
database in which the refining event is followed by further new events. This
diagram is based on the structure of a refinement presented in [12] (although
event refinement diagrams are not used in [12]). The outline of this development
is as follows. The abstract machine models a single database. The refined ma-
chine models a set of sites each of which holds its own copy of the database.
In the abstract machine, an update of the database is a simple atomic event.
The refinement uses a two-phase commit protocol (with precommit then commit
phases) to ensure a consistent distributed update transaction. The phasing is
represented in Fig. 12. Once an update transaction ¢ is started, each site s inde-
pendently precommits to the transaction (which locks all the database objects
involved in the transaction). Once all sites have precommitted, the transaction
is globally committed by a coordinator. The GlobalCommit refines the abstract
Update since a global decision has been made to update all copies of the database.

After the global commit, each site s locally commits its copy of the database
independently (and releases any objects locked by its precommit).

~~o
~~
~~
~

[Start(t)] [PreCommit(t,s)] [CoGrLor:;I(t)] [Conl;(r):;lt S)]

Fig. 12. Event refinement diagram for replicated database update

In this paper we have avoided providing a systematic definition of event
refinement diagrams and their translation to Event-B. The reason for this is
simply that the concepts are not fully mature at the time of writing. It may be
that a complete set of translation rules is not appropriate and that instead a
common set of patterns can be identified and translations provided for those.
The diagrams seem to be a promising way of representing reusable patterns of
event decomposition. They are abstract and visual and humans are good are
recognising visual patterns. This is one reason why we have avoided cluttering
the diagrams too much with, for example, event guard. Too much clutter may
make patterns appear less general.

Our initial exploration of JSD structure diagrams as a means of representing
the structure of atomicity decomposition was influenced by the work of Ball [4]
on the use of KAOS [6] goal diagrams for a similar purpose. Our event refinement
diagrams are different in construction to the refinement diagrams developed by
Back [3]. Back’s diagrams expose the containment and refinement relationships
between general components and subcomponents. In Back’s diagrams, enclosing
components may be replicated in order to simultaneously illustrate refinements
between subcomponents and between enclosing components. In our diagrams
the higher level events can be viewed as enclosing components and these only
appear once at the top level. Back’s diagrams are neutral with respect to the
operator used to compose components. In our diagrams the operators (sequential
and parallel) are built in.

7 Concluding

We have outlined techniques for atomicity decomposition and machine decom-
position. The atomicity decomposition technique uses the standard Event-B re-

finement rule together with event refinement diagrams to provide an explicit
representation of the the sequencing of sub-events and the refinement relation-
ships involved. These diagrams provide a systematic means of introducing control
structure in an incremental manner through diagram hierarchy. They provide a
useful hierarchical overview of multiple refinement steps. They provide a conve-
nient mechanism for exploring several levels of event decomposition in advance
of construction of the appropriate Event-B refinements. They also appear to pro-
vide a convenient way of representing reusable patterns of event refinements. The
machine decomposition technique is based on synchronisation between machines
over shared events with asynchronous decomposition as a special case involv-
ing an explicit representation of an asynchronous communications medium. The
decomposition approach supports independent refinement and decomposition of
sub-machines. Together, the event decomposition and machine decomposition
techniques augment Event-B by making the application of refinement more sys-
tematic and scalable then the standard refinement rules on their own.
Acknowledgements: The work described here is part of the EU research
project ICT 214158 DEPLOY (Industrial deployment of system engineering
methods providing high dependability and productivity) www.deploy-project.eu.

References

1. J.-R. Abrial. The B-Book: Assigning programs to meanings. Cambridge University
Press, 1996.

2. J.-R. Abrial. Modelling in FEvent-B: System and Software Engineering. To be
published by Cambridge University Press, 2008.

3. Ralph-Johan Back. Refinement diagrams. In J. M. Morris and R. C. Shaw, editors,
Proceedings of the 4th Refinement Workshop, pages 125—137, Cambridge, UK, Jan
1991. Springer-Verlag.

4. Elisabeth Ball. An Incremental Process for the Development of Multi-agent Sys-
tems in Event-B, PhD thesis, University of Southampton, http://eprints.ecs.
soton.ac.uk/16575/, August 2008.

5. Michael Butler. Incremental design of distributed systems with Event-B, November
2008. Marktoberdorf Summer School 2008 Lecture Notes.

6. Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed require-
ments acquisition. Sei. Comput. Program., 20(1-2):3-50, 1993.

7. C.A.R. Hoare. Communicating Sequential Processes. Prentice—Hall, 1985.

M.A. Jackson. System Development. Prentice—Hall, 1983.

9. C. B. Jones. Systematic Software Development using VDM. Prentice Hall Inter-
national, second edition, 1990.
10. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science, 2nd edition, 1992.
11. D.S. Yadav and M.J. Butler. Formal development of fault tolerant transactions for
a replicated database using ordered broadcasts. In Methods, Models and Tools for
Fault Tolerance (MeMoT 2007), pages 33-42, May 2007.

o

