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Abstract— This paper presents the University of Southamp-
ton Multi-Biometric Tunnel, a constrained environment that is
designed with airports and other high throughput environments
in mind. It is able to acquire a variety of non-contact biometrics
in a non-intrusive manner. The system uses eight synchronised
IEEE1394 cameras to capture gait and additional cameras to
capture images from the face and one ear, as an individual walks
through the tunnel. We demonstrate that it is possible to achieve
a 99.6% correct classification rate and a 4.3% equal error rate
without feature selection using the gait data collected from
the system; comparing well with state-of-art approaches. The
tunnel acquires data automatically as a subject walks through
it and is designed for the collection of very large gait datasets.

I. INTRODUCTION

With the ever increasing demand for security and identi-
fication systems, the adoption of automatic gait recognition
systems may become widespread in the future. Automatic
gait recognition is attractive because it enables the identi-
fication of a subject from a distance, meaning that it will
find applications in a variety of different environments.
In scenarios such as access control or surveillance where
there is very little control over the environments, complex
computer vision algorithms are often required for analysis.
However, constrained environments such as walkways in
airports, where the surroundings and the path taken by
individuals can be controlled provide an ideal application
for such systems. Figure 1 depicts an idealised constrained
environment. The path taken by the subject is restricted to a
narrow path and once inside is in a volume where lighting
and other conditions are controlled to facilitate gait analysis.
The ability to control the surroundings and the flow of people
greatly simplifies the computer vision task, compared to
typical unconstrained environments.

Even though datasets with greater than one-hundred peo-
ple are increasingly common, there is still very little known
about the inter and intra-subject variation in gait. This
information is essential to estimate the recognition capability
and limits of automatic gait recognition systems. In order
to accurately estimate the inter and intra class variance,
substantially larger datasets are required. Covariates such
as footwear type, surface type and carried items have as
yet received only limited attention; although considering the
potentially large impact on an individual’s gait, large trials
need to be conducted to establish how much variance in gait
results.
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As yet, there are very few demonstrable automatic gait
recognition systems that can be applied to practical scenarios
and performance figures for such a system are still not well
known.

This paper presents the University of Southampton Multi-
Biometric Tunnel; a biometric portal using automatic gait
recognition for identification purposes. The tunnel provides
a constrained environment and is ideal for use in high
throughput security scenarios and for the collection of large
datasets. A prototype design is described and early results
are presented; showing the potential for the system.

II. REVIEW

Automatic gait recognition has many unique advantages,
which means that it is highly suitable for a variety of
applications. An individuals gait can be measured in a non-
invasive manner without explicit cooperation using standard
video equipment. Gait is one of a few biometrics that can
be measured from a distance; unlike many other biometrics
where close contact is required. This also means that the
recognition system can be mounted out of reach, making it
harder to tamper with.

Medical research into gait dates back to 1964, when
Murray et al. [15] used a 20 Hz strobe unit and a long
exposure camera to record the trails formed by a set of
marker strips attached to participant’s legs, from this a basic
biomechanical model was found. A more sophisticated model
was later proposed by Cutting et al. [3]. Gait analysis now
finds widespread use in the medical field, being used for both
diagnosis and patient rehabilitation. The most common gait
analysis systems in the medical field use markers attached

Fig. 1. A controlled environment with fixed cameras provides an ideal
scenario for automatic gait recognition. The subject is constrained to walk
through the middle; controlled lighting and background facilitate analysis.



to the subject, and provide three-dimensional data on the
trajectories of the markers as the subject walks.

Gait has also received interest from researchers in psy-
chology; in 1973 Johannson [6] showed that individuals
could recognise human motion by observing a set of points
attached to the subject on a moving light display. Soon after,
it was shown that humans could distinguish the gender of
the subject when observing the moving light display[7, 12].

While medical, bio-mechanical and psychology research
on human gait has a long history, the use of gait as a
biometric is comparatively new; one of the earliest works
being that of Niyogi and Adelson [18] in 1994. Since then a
variety of analysis techniques have been proposed[16, 17].

Gait analysis techniques can be broadly classified as
those based on anthropomorphic models and those based on
statistical models. The latter using the distribution of the
silhouette and its temporal variation for analysis. One of
the earliest non-model based techniques was that of Little
and Boyd [10], where ellipsoids were used to describe the
variation and distribution of the optical flow in the original
video data of the subject. Murase and Sakai [14] applied
eigenvalue decomposition to silhouettes in order to derive
a new feature space (the eigen-space), and then matched
subjects using their trajectory through the eigen-space over a
gait cycle. Another approach is to describe the shape of the
silhouette by its boundary points; Wang et al. [25] used the
boundary points of the silhouettes to find the Procrustes mean
shape of the silhouette sequence and then achieve recognition
by comparing the Procrustes mean shapes between subjects.
One of most well known gait analysis techniques is the
average silhouette[11, 5, 24], silhouettes are all rescaled to a
fixed size whilst retaining the aspect ratio and all translated
so that the centre of mass is central. The average of the
silhouettes is then calculated, and the resulting image can
be treated as a feature vector and used for recognition. Due
to its simplicity and remarkably good performance[24], the
average silhouette is often used as a benchmark.

The first documented model-based technique was that of
Niyogi and Adelson [18], where a stick model was fitted to
background segmented silhouettes using a novel technique;
the silhouettes were stacked to form an XYT volume and
double helices were fitted each XT slices from the volume;
the stick model was then fitted using the parameters from the
helices. This approach added a good degree of smoothing
and robustness to the analysis technique. Cunado et al. [2]
proposed a simple model-based technique where the Hough
transform was used to fit the model to the video data;
the Hough transform provides a good level of robustness
against noise and occlusion, which leads to more robust
analysis. Another well known method involves fitting seven
ellipses to regions of the silhouette data, then using the
frequency components of the ellipsoid’s parameter variation
for recognition[9].

The vast majority of gait analysis techniques (including
those mentioned above) use video data captured from a single
camera and as a result of this, most exhibit some degree
of viewpoint dependence. This means that the direction

TABLE I
SOME EXISTING GAIT DATASETS

Name Subjects Samples Environment
MoBo[4] 25 600 Indoor, treadmill

Soton HID[23] 114 > 5000 Indoor
Gait Challenge[20] 122 1870 Outdoor

CASIA[26] 124 13640 Indoor

in which subjects walk must be carefully controlled in
order to achieve acceptable recognition performance. The
use of three-dimensional models and/or data can remove
this dependence. Compared to two-dimensional data, it is
possible to achieve a greater level of accuracy when fitting
models to three-dimensional data, which allows the use of
more detailed models and even biomechanical models such
as that of Cutting et al. [3]. The majority of model based gait
analysis techniques make assumptions about the viewpoint
relative to the camera and are essentially two-dimensional.

Attempts have been made at fitting a 3D model with 33
degrees of freedom to silhouette data[1], though this is a
difficult problem as it is likely that there will be many differ-
ent solutions. Using silhouette data from multiple viewpoints
provides a larger number of constraints, which should reduce
the number of possible solutions[19]. Instead of directly ap-
plying gait analysis to the video data from multiple cameras,
it is possible to reconstruct a three-dimensional approxi-
mation of the subject[8]. The resulting three-dimensional
data can then be used to synthesise images from a fixed
viewpoint, enabling the application of a viewpoint-dependant
gait analysis technique[22]. Surprisingly little work has been
done into the use of 3D data for gait analysis, this might be
due to the lack of high quality 3D data available.

There are a variety of gait datasets available; some of
the most notable include MoBo[4], The Gait Challenge[20],
CASIA[26] and Soton HID[23], summarised in Table I. Most
datasets include video data from multiple cameras; apart
from the MoBo dataset, there is no synchronisation between
cameras. Many of the most popular datasets were captured
using camcorders and manually edited, which took a large
amount of time. The MoBo dataset contains only 25 subject
and 600 samples, whilst The Gait Challenge contains 122
subjects with 1870 samples, even larger still is the Soton
HID dataset, containing 114 subjects and over 5000 samples.
The recent CASIA dataset contains 124 subjects and 13640
samples. It has been shown that recognition rates of 100%
can be achieved using the Soton HID dataset[24], excellent
results have also been achieved using the Gait Challenge
data[21].

All four datasets contain a limited amount of covariate
data, such as footwear, surface and carried items; although
there is nowhere near enough to accurately model the vari-
ance in one’s gait. In order to extend state of the art analysis
methods, a larger dataset is required with a wide range of
covariate data.



III. THE MULTI-BIOMETRIC TUNNEL

A. Overview

The Multi-Biometric Tunnel is a unique research fa-
cility situated in the University of Southampton, it has
been specifically designed as a non-contact biometric access
portal[13], providing a constrained environment for people
to walk through, whilst facilitating recognition. The system
has been designed with airports and other high throughput
environments in mind, where contact based biometrics would
prove impractical. Such a system could be setup in a very
unobtrusive manner where individuals might not even be
aware of its presence. It also enables the automated collection
of large amounts of non-contact biometric data in a fast and
efficient manner, allowing very large datasets to be acquired
in a significantly shorter timeframe than previously possible.

B. Configuration

The multi-biometric tunnel is able to detect the entry and
exit of an individual, allowing a high degree of automation.
Whilst a subject is inside the tunnel their gait is recorded
by eight Point Grey Dragonfly cameras, allowing the re-
construction of 3D volumetric data. The gait cameras all
have a resolution of 640 × 480 and capture at a rate of 30
FPS, they are connected together over an IEEE1394 network
employing synchronisation units to ensure accurate timing
between cameras. Figure 3 shows a single frame as captured
by the cameras. Video is also captured of the subject’s
face and upper body using a high resolution 1600 × 1200
IEEE1394 camera, enabling face recognition. A 1600×1200
snapshot is taken of the subject’s side of the head, which
can be used for ear biometrics. As shown in Figure 2, the
facility has a central region that participants walk along, with
the face and ear cameras placed at the end of the walkway
and the gait video cameras positioned around the upper
perimeter of the tunnel. The walls of the tunnel are painted

Fig. 2. Placement of cameras and break-beam sensors in system

Fig. 3. Synchronised images captured by gait cameras

Fig. 4. Intersection of cameras

with a non-repeating rectangular pattern to aid automatic
camera calibration. Saturated colours have been chosen to
ease background/foreground separation. These choices are
mandated by the experimental nature of the facility.

C. Data Processing

There are several stages to processing the video collected
from the gait cameras in the tunnel. First, the raw Bayer
tiled frames from the cameras are converted to colour
frames using bi-linear interpolation. Separate background
and foreground images are used to facilitate background
subtraction and shadow suppression. This is followed by
some post-processing using simple morphological operators
to clean up the silhouette data. The resulting silhouettes
are corrected for radial distortion and then used as the
basis for shape from silhouette reconstruction[8]. Shape from
silhouette reconstruction is simply the calculation of the
intersection of projected silhouettes, see Figure 4, and it can
be expressed mathematically as:

V (x, y, z) =
{

1 if ΣN
i=nIn (Mn (x, y, z)) ≥ k

0 otherwise (1)

Where V is the derived 3D volume, k is the number of
cameras required for a voxel to be marked as valid and N is
the total number of cameras. In is the silhouette image from
camera n where In(u, v) ∈ {0, 1}, and Mn (x, y, z : u, v) is
a function that maps the three-dimensional world coordinates
to the coordinate system of camera n. Mn is calculated
using the calibration information derived for each camera.
In a conventional implementation of shape from silhouette,
a voxel may only be considered valid if all cameras have
silhouette pixels at its location; therefore k = N must be
satisfied. However in this implementation only six out of
eight cameras are required, thus k = 6 and N = 8. This
results in a less selective criteria, which adds a degree of
resilience against background segmentation errors; although
the reconstructed shape is not as accurate. A small amount
of post-processing is carried out on the resulting 3D volumes
using binary morphology to improve the accuracy of the
reconstructed volumes. An example volume created by SFS
reconstruction is shown in Figure 5.

IV. EXPERIMENTAL SETUP

Upon arrival, the experiment’s purpose and procedure was
explained to each potential participant and if they agreed,



Fig. 5. A 3D volumetric frame created by the multi-biometric tunnel using
SFS reconstruction

then they signed a consent form to confirm that they were
willing to participate in the experiment. In order to ensure the
privacy for all participants, the consent forms had no unique
identifiers on them, and as such they are the only record
of the participant’s identity. Each participant was asked to
choose a unique identifier at random, which could then
be associated with any data collected from that individual.
Before commencing the experiment, each subject was asked
to walk through the tunnel as a trial run, this was not recorded
and was watched by the supervisor to ensure that the subject
understood their instructions.

The multi-biometric tunnel was equipped with a status
light mounted outside of the visible area; participants were
asked to wait nearby until it indicated that the system was
ready for them, upon walking through the tunnel the status
light would signal busy until ready for another walk by
the subject. Before each sample the gait and face cameras
captured one second of video footage whilst the tunnel
area was empty; this was used later for the background
estimation and subtraction. Upon entering the tunnel, the
subject would walk through a break-beam sensor, starting the
capture process. Towards the end of the tunnel another break-
beam sensor stopped the capture process. After capture, the
recorded data was saved (unprocessed) to disk.

Each participant was asked to walk through the tunnel
ten times, taking on average five minutes per person. After
walking through the tunnel ten times, the participant was
asked to answer some questions about themselves, these
included questions about gender, age, ethnicity and physical
parameters. The entire process of induction, walking through
the tunnel and answering questions took on average 15
minutes per participant.

The experiment collected gait, face and ear data, although
only the gait data is discussed here. Processing of the
captured data was performed in bulk whilst the tunnel was
not being used. For each sample, an automatic process was
used to locate a complete gait cycle, this was achieved by
analysing the variation in the size of the subject’s bounding
box.

V. GAIT ANALYSIS

Several different variants of the average silhouette gait
analysis technique[11, 5, 24] were used to evaluate the

dataset collected from the multi-biometric tunnel; the nor-
malised side-on average silhouette, the (non-normalised)
side-on average silhouette and the combination of side-on,
front-on and top-down average silhouettes.

The dataset used for analysis comprised of 103 subjects
and contained 1030 samples, of which 1005 were valid.
Of the twenty-five invalid samples, fourteen of the samples
featured clipping from where the subject was outside of the
reconstruction area. The other eleven samples were marked
as invalid because the automatic gait cycle finder was unable
to reliably identify a complete cycle. The database is made
up of 73% male and 27% female subjects and the average
age was 27 years.

All three gait analysis techniques discussed below have
some similarities with the work of Shakhnarovich et al.
[22], in that the 3D volumetric data is used to synthesise
silhouettes from a fixed viewpoint relative to the subject.
The resulting silhouettes are then passed to a standard 2D
gait analysis technique; in this case the average silhouette.
The advantage of using three-dimensional data is that sil-
houettes from any arbitrary viewpoint can be synthesised,
even if the viewpoint is not directly seen by a camera. For
example, silhouettes from an orthogonal side-on viewpoint
can synthesised from the volumetric data by:

Ji (y, z) =
xMAX⋃

x=xMIN

Vi (x, y, z) (2)

In other words, the side-on orthogonal viewpoint Ji for frame
i is synthesised by taking the union of voxels in volume Vi

along the x axis, where the x axis spans left to right, y
spans front to back and z spans from the top to the bottom.
In a similar manner, the front-on and top-down orthogonal
viewpoints can be synthesised by taking the union of the
voxels along the y or z axis respectively.

In the first analysis, silhouettes are taken from a side-on
orthogonal viewpoint. This view is not seen by any camera
and so must be synthesised. The use of a side-on viewpoint
facilitates comparison with previous results. The average
silhouette is calculated in a similar manner to that of Veres
et al. [24], where the centre of mass Ci = (Ci,x, Ci,y) is
found for each frame i. The average silhouette is then found
by summing the centre of mass aligned silhouettes:

A (x, y) =
1
M

ΣM−1
i=0 Ji (x− Ci,x, y − Ci,y) (3)

Where A is the average silhouette and M is the number
of frames in the gait cycle. The derived average silhouette is
scale normalised so that it is 64 pixels high, whilst preserving
the aspect ratio. The average silhouette is treated as the
feature vector and used for leave-one-out recognition, using
nearest-neighbour classification and the euclidean distance
as the distance metric between samples. A recognition rate
of 96.6% was achieved. No feature-set transformation or
selection was performed in this and subsequent analysis. This
result is then similar in performance to current state-of-art
approaches, yet allows other views to be analysed in future.



Because the silhouette data can be synthesised from an
orthogonal viewpoint, the subject’s distance from the view-
point will not affect the silhouette size, thus meaning that
scale normalisation is unnecessary and removes valuable
information. For this reason a second analysis was conducted
using non scale-normalised average silhouettes, the average
silhouettes were downsampled by a factor of four to reduce
the computational workload. The non-normalised average
silhouette retains information such as the subject’s build
and height. The same viewpoint as the previous normalised
variant was used, achieving an improved recognition rate of
98.6%.

The above analysis methods only utilise one viewpoint,
meaning that very little of the additional information con-
tained within the three-dimensional data was exploited.
Therefore one additional analysis technique was performed,
using non-normalised average silhouettes derived from three
orthogonal viewpoints; side-on, front-on and top-down. The
features from the three average silhouettes were simply
concatenated and the resulting feature vector used for recog-
nition, achieving an even better recognition rate of 99.6%.
Again this is comparable with state-of-art approaches.

Several different analysis methods have been carried out
to evaluate the quality of the collected data. The correct
classification rate and equal error rate was found for each
analysis method and a summary of the results is presented in
Table II. The respective cumulative match scores are shown
in Figure 6; it can be seen that the normalised average
signature yields relatively poor performance, most likely due
to the loss of information such as height and build. This is
confirmed by the much improved classification performance
of the non-normalised average silhouette. Classification per-
formance using the concatenated average silhouettes proves
better than both other methods, although the improvement
in the equal error rate is marginal; this suggests that the
additional information contained within three-dimensional
data is useful for recognition.

In addition, ROC (receiver operating characteristic) curves
demonstrating the system’s capability to verify identity are
shown in Figure 7. These confirm that normalised side-on
average silhouettes are clearly inferior. However the situation
is less clear between the other two cases, where the method
using multiple viewpoints proves more selective than that of
a single viewpoint.

VI. CONCLUSIONS
We have shown that the multi-biometric tunnel can be

successfully used for automatic gait recognition; this demon-

TABLE II
PERFORMANCE OF VARIOUS AVERAGE SILHOUETTE SIGNATURES ON

DATASET

Average Silhouette CCR EER
Normalised Side-on 96.6% 9.5%

Side-on 98.6% 4.4%
[Side-on, Front-on, Top-down] 99.6% 4.3%

Fig. 6. Cumulative match score plots for gait analysis techniques

Fig. 7. Receiver operating characteristic plots for gait analysis techniques

strates its validity in non-contact biometric recognition and
verification applications. By applying the simple average
silhouette gait analysis technique without any feature-set se-
lection or transformation, we achieved correct classification
and equal error rates of 99.6% and 4.3% respectively. This
is similar and in some cases better than other state-of-art
analysis techniques on existing datasets.

We have also demonstrated that the process of scale
normalisation usually employed whilst calculating average
silhouettes has a negative impact on recognition perfor-
mance, which is probably due to the loss of information such
as the subject’s height. Also, the improvement in recognition
performance achieved by using average silhouettes from
multiple viewpoints proves that the additional information
contained within three-dimensional data is useful.

We were able to collect a large dataset containing over
100 subjects within a period of three weeks, demonstrating
that we can efficiently acquire and process gait data at a rate
commensurate with collecting a very large gait database.
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