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ABSTRACT 
This paper describes the design of Clustered TDB, a clustered 
triple store designed to store and query very large quantities of 
Resource Description Framework (RDF) data.  It presents an 
evaluation of an initial prototype, showing that Clustered TDB 
offers excellent scaling characteristics with respect to load times 
and query throughput.  Design decisions are justified in the 
context of a literature review on Database Management System 
(DBMS) and RDF store clustering, and it is shown that many 
techniques created during the course of DBMS research are 
applicable to the problem of storing RDF data. 

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed 
Systems – distributed databases.  

H.2.2 [Database Management]: Physical Design – access 
methods.  

H.2.4 [Database Management]: Systems – distributed databases, 
concurrency.  

General Terms 
Algorithms, Performance, Design, Reliability. 

Keywords 
RDF, Semantic Web, DBMS, Cluster, Triple Store, Distributed 

1. Introduction 
RDF stores suffer from well documented issues with both read 
and write performance [1, 17].  The semi-structured nature of 
RDF makes it ideal for applications where the structure of data 
added to a store is not well known in advance, is liable to change 
rapidly, or where there are many different structures being linked 
together.  Unfortunately, this flexibility makes it challenging to 
design a high performance catch-all schema to describe the data, 
and results in database schemas featuring long, thin tables with 
very large index depths, and a requirement for a comprehensive 
indexing strategy.  This approach results in limited performance 

and poor characteristics when scaling to larger datasets. 

Since RDF is a key language for the Semantic Web, and is used as 
flexible language for data exchange in both business and large 
scale science (for example, the UNIPROT project1), it can be 
expected that it will be necessary to store and query very large 
volumes of RDF data, and stores featuring improved performance 
are thus highly desirable.  The most powerful single machine 
triple stores are currently capable of storing up to around two 
billion triples2, and to realise very large improvements upon this 
using current technologies it is necessary to allow RDF stores to 
make use of the power of multiple machines. 
Traditional Database Management Systems (DBMSs) underwent 
a similar evolution, as ever-increasing dataset sizes required the 
development of DBMSs with better scaling characteristics.  
Modern databases are often clustered over more than one 
machine, in an effort to make use of their combined power.  RDF 
stores are a type of DBMS, and research into prior systems can be 
applied to the creation of a highly scalable RDF store.  This 
document presents the Jena Clustered Tuple Database (Clustered 
TDB), a clustered RDF store created using techniques used in 
highly scalable relational DBMSs.  The paper includes 
evaluations of a prototype supporting future work, extended from 
the single machine Jena Tuple Database (TDB) described in 
section 4. 

Our focus in this paper is the creation of a system that is clustered, 
that is, the latency between machines is expected to be low due to 
their being sited in one geographical location, and the system as a 
whole can be administered from a single point: there is no need to 
explicitly aggregate content from heterogeneous database 
systems, nor expectation that those individual machines will be 
able to provide meaningful answers to queries run on them rather 
than the system as a whole.  This paper describes the creation of a 
high performance, scalable storage layer: while distributed query 
optimisation is a topic of great importance to this work, it is 
largely beyond the scope of this paper. 

This paper contains a literature review on distributed DBMSs in 
section 2, relating it to existing clustered triple stores in section 3.  
It is expected that this review will aid in the design of future 
clustered stores.  Section 4 describes the single machine Jena 
                                                                    
1 http://dev.isb-sib.ch/projects/uniprot-rdf/ 
2 http://esw.w3.org/topic/LargeTripleStores 
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Tuple Database (TDB) from which an evaluation prototype was 
extended.  Section 5 details the design for Clustered TDB, and the 
prototype of this design is evaluated for scaling characteristics in 
section 6. 

2. Distributed DBMS 
When the workload on a given database becomes too large 
(whether this be a result of data size or query load), a traditional 
approach in the DBMS world is to split the database across more 
than one system.  It is hoped that the power of multiple machines 
can thus be leveraged to work on the same problem.  This section 
describes the background information on distributed DBMSs that 
informed the development of Clustered TDB, as described in 
section 5. 

The desired performance improvements in distributed DBMSs can 
be categorised as follows [3, 8]: 

• Scaleup: An increase in the number of machines leads 
to the ability to store more data. 

• Speedup: An increase in the number of machines leads 
to a reduction in the amount of time taken to serve an 
individual query, all other factors being equal. 

• Throughput Scaleup: An increase in the number of 
machines leads to the ability to perform more 
transactions in a given time frame. 

While ideally both speedup and scaleup will be linear with the 
amount of processing power available, this is a practical 
impossibility in any database system: some algorithms (such as 
sort) do not scale in linear time.  There are other significant 
barriers to such a perfect level of system scalability[8]: 

• Startup: the time needed to start a parallel operation - if 
a small operation results in lots of processes being 
started across a lot of nodes, the cost of startup can 
overwhelm any advantages gained through increased 
parallelism. 

• Interference: The slowdown each new process creates 
when accessing shared resources. 

• Skew: The effect where one part of a parallelised 
operation takes much longer to complete than the 
others: since the job is limited by the slowest process, 
this can seriously affect performance.  

Each of these factors can be mitigated by various mechanisms: the 
system should be arranged such that small operations are 
parallelised to a degree commensurate with their size, reducing 
the influence of startup time. Interference can be reduced by 
minimising the amount of resource sharing required in the system, 
and skew by taking steps to divide workloads at 'hotspots' in the 
system.  

2.1 Hardware Architectures 
A variety of hardware architectures have been utilised to create 
parallel database systems. These can be broadly grouped into 
three categories: shared memory (SM), shared disk (SD) and 
shared nothing (SN) [18]. In SM systems all processors share a 
common central memory, in SD they have a private memory but a 
common collection of disks, and in SN they share only the ability 
to communicate with each other via messages over a network.  
Generally speaking, shared nothing systems are favoured today 
for their excellent characteristics with regards to resource 
contention: the only shared resource is network access, and there 

is no need for the complex resource locking methods seen in SM 
and SD systems. This means that scaling up SN clusters has 
historically been easier than the alternatives [8, 18].  Further, SN 
clusters can be built out of commodity parts, as seen in companies 
like Google, offering an excellent price/performance profile. 

The disadvantage of the SN approach is that there is greater 
complexity in deciding where data is placed: it is important to 
place data such that each machine undergoes a similar load profile 
to enable efficient scaling, and does not require excessive use of 
network resources. Ongoing maintenance (whether manual or 
automatic) to the distribution of data is necessary to prevent 'hot 
spots', or points at which data or query skew has caused a machine 
to have too high a workload. When these hot spots occur, they can 
usually be eliminated by redistribution of data on the machine.  

2.2 Enabling Parallelism  
Parallel execution can be enabled through a variety of 
strategies.  Most obviously, it is possible to partition (or decluster) 
information across more than one machine, such that the time 
required to retrieve a large block of data is reduced, and the 
number of users who can retrieve data at any one time (assuming 
they are not both trying to access the same data) is also increased. 
It should be noted that typically, when reading or writing very 
small amounts of data, it is desirable to perform the work on one 
machine.  This is because the setup costs will dwarf any 
advantages gained from partitioning. The 'Data Partitioning' 
section considers the problem of how to decluster data in more 
detail. 

Another way of parallelising database systems is to cluster the 
execution of relational operations, so that for a given operation 
each machine processes a defined range of data values out of an 
overall dataset. This prevents one machine from doing all the 
processing work and becoming a bottleneck.  

Pipelining of operations is another way to parallelise: many 
relational operators do not need to complete before they start 
emitting results. In this sense they can be viewed as a stream. The 
output of this stream can be directed to other operations, which 
can start processing them in parallel with the first operation. The 
benefits of this approach are somewhat limited, however: firstly, 
pipelines are usually relatively short, limiting the number of 
machines that can work on one, secondly, some relational 
operations (such as sort) do not emit results until they complete, 
and thirdly, some operations take much longer than others (an 
example of skew), thus causing some machines to have to 
undertake much more work than others.  

Finally, parallelism is supported by simply allowing multiple 
users to access a system, and allowing the subqueries that form an 
individual query to run in parallel. This is enabled by the 
likelihood that different users and subqueries will likely be 
accessing different pieces of information, so hardware resources 
can be shared between them and the queries run in parallel.  
These mechanisms for enabling parallelism can be characterised 
as occuring at three levels [14]:  

• inter-query: The ability to run more than one query 
simultaneously.  

• intra-query: The ability to run different subqueries in 
parallel and pipeline operations.  

• intra-operation: Distributing single operations over 
more than one node for concurrent execution.  



2.3 Data Partitioning  
A standard approach to partitioning data in an RDBMS is 
horizontally partitioning (or declustering) each relation in the 
system.  In these systems, tuples of each relation in the database 
are partitioned across the disk storage units attached to each 
processing node on the network, allowing multiple machines to 
scan a relation in parallel.  It also addresses hotspot issues, as the 
contents of regularly accessed relations are spread across multiple 
machines, and more can be added as necessary. 

[8] describes methods for horizontal partitioning of data, dividing 
them into three common techniques: 

• Round Robin: simply distributing the tuples in a round 
robin fashion to each server. This approach works well 
for sequential scans, but is inefficient if there is a desire 
to access tuples based on attribute values, since the 
location of a given tuple is unknown.  

• Hash Partitioning: distribution of tuples by applying a 
hash function to an attribute value. The function emits a 
number which specifies a machine (and possibly disk 
location) on which to store the information. This 
approach is effective if tuples are accessed based on a 
fully specified attribute, but is much less effective for 
range queries: hashing does not do a good job of 
clustering related data.  Further, hash partitioning 
suffers from difficulties with the addition of new 
machines to a cluster, and addressing hot spots: in a 
naive implementation it is not possible to repartition 
data. 

• Range Partitioning: distribution of tuples by selecting 
a range over one attribute. For example, all tuples with a 
value of 'surname' between A-C go on one partition, D-
E on another, and so on. This approach clusters data 
effectively. The major issue with this is that it risks both 
data and data and execution skew: one part of the range 
may have a disproportionately large quantity of the 
actual data, and one part of the cluster may get accessed 
much more frequently than others (this being 
particularly likely if it has to store more of the data).  

Partitioning improves the response time of sequential scans, 
because more processors and disks are used to perform the scan. It 
aids associative scans (scanning based on an attribute value) 
because the number of tuples stored at each node is reduced, and 
hence index sizes are reduced. 

It is important to decluster data in a manner appropriate to both 
the dataset itself, and the manner in which it will be accessed. In 
particular, the following factors have a significant influence: 

• Degree of declustering: it is important to decluster to 
an appropriate extent. If a very small relation is 
partitioned over a very large number of machines, 
startup costs and overheads (such as disk seeks) will 
overwhelm any advantages gained from parallelism.  In 
practise, parallel systems such as Bubba[2, 3] have 
found that full declustering is often inappropriate.  

• Skew: It is important to ensure that each machine 
undergoes a comparable workload.  A simple 
implementation will balance the quantity of information 
stored on each server, but it is also important to take 
into account the possibility that certain data ranges will 
be accessed much more regularly than others, creating 
an excessive load on some servers.  This type of skew 

(execution skew) can be countered by balancing data 
distribution not by the amount of volume stored on each 
machine in the cluster, but by the frequency with which 
each machine has to access data, particularly that which 
is uncached.  

• Declustering attribute: it is necessary to partition on 
an appropriate attribute: the location of tuples is only 
known, if it is known at all, based on a function of that 
attribute.  Queries that reference a relation based on a 
different attribute value have to be flooded to all 
machines that store a portion of the relevant 
relation[13].  This presents no barriers in a store with 
comprehensive indexing such as TDB, since each index 
can be distributed based on its primary attribute, but is 
of interest when considering other strategies.  

2.4 Parallel Operations  
Parallelising relational operations can be quite a simple process, 
requiring the addition of two simple operations: 

• merge: If one considers a scan of a relation that has 
been distributed into N partitions, a scan of this relation 
can be implemented as N scan operations that then send 
their output to a common merge operator. This produces 
a single output stream that can be used by the next 
relational operator.  

• split: Split is used to partition an output stream 
produced by a relational operator, such that each sub- 
stream can be processed by a different machine.  

With the aid of these two operations, all that is required is to 
decide how many machines will process a given piece of data, 
and, using a common split function, partition data processing 
across these nodes. This can be performed using partitioning 
methods such as those described in the 'Data Partitioning' section.  

Performing operations in parallel requires the transmission of data 
over the network. This is usually not a significant issue in very 
small clusters, but as with growth can become a significant 
bottleneck. Typical network structures offer low/no contention 
when communicating between machines connected to the same 
switch, but (assuming a star or hybrid mesh/star topography) 
suffer from significantly higher contention when communicating 
across multiple switches (machines that are 'further away'). As a 
result of this, modern massively distributed file systems such as 
the Google File System (GFS) and the Hadoop Distributed File 
System (HDFS) make an effort to site related data in similar areas 
of the network [4]. 
A further result of both limited network bandwidth and the desire 
to avoid unnecessary latency is the observation that it is usually 
cheaper to move computation to the node where data is situated 
than to move the data to a specified computation node. Systems 
like Hadoop[4] and MapReduce[7] follow the example of 
distributed DBMSs[13] in making an effort to schedule processing 
at or near the node that stores the relevant chunk of data.  

2.5 Redundancy  
On single machine or small cluster systems, the likelhiood of 
machine failure is very low, and there is relatively little 
requirement for redundancy except in critical systems. As clusters 
expand to tens, hundreds or thousands of machines, likelihood of 
machine failure becomes nontrivial[7]. It therefore becomes 
important to have a strategy for dealing with these failures. 



A simple strategy for redundancy is mirroring servers. This not 
only provides increased data security, but also improves 
performance by allowing two machines to answer a given request. 
Unfortunately, using this approach machine failure still has a 
significant effect upon performance: failure of one machine 
results in a huge increase in load upon its mirror(s), and the 
creation of a hot spot.  A better strategy for handling redundancy 
is to distribute data using more than one function. This results in 
the data on any individual machine being mirrored across many 
other servers in the network. In this scenario, machine failure 
results in the load that machine was undertaking being spread 
across the rest of the cluster, rather than one or a few machines.  

3. Clustered RDF Stores 
This section describes existing clustered RDF stores, in particular 
YARS2 and Virtuoso.  Federated stores are not considered in this 
review, since their objectives are different to our own.  

3.1 Virtuoso 
Virtuoso's RDF component is a quad store based on an Object-
Relational DBMS heavily optimised for RDF storage.  The 
recently released clustered variant uses a traditional hash 
partitioning scheme to split its data, except that indexes are 
partitioned across machines, as well as data. This makes sense for 
an RDF store, where the size of indexes can easily overwhelm the 
size of the data itself.   

Virtuoso's creators[9] emphasise the point that a web scale system 
needs to have a means for repartioning data without causing 
downtime.  As noted in 2.3, hash distribution does not provide an 
inherent mechanism for rebalancing: a hash by its very nature 
forces a piece of data to a single given point.  Virtuoso uses a 
common system whereby one pretends that there are (for 
example) 50n machines in an n machine cluster.  In this example, 
each machine is initially responsible for 50 of the virtual 
machines.  Rebalancing can then be accomplished by moving 
responsibility (and relevant data) for certain virtual machines from 
one physical machine to another.  Rebalancing is a time 
consuming process, but one that can be performed on-the-fly.  

Virtuoso performs query optimisation without the aid of statistics: 
the authors note that traditional SQL statistics are of little use for 
triple or quad stores, and that in order to most effectively optimise 
such a store it is necessary to have access to a large quantity of 
statistical information.  Virtuoso performs optimisation not by 
precalculating statistics, but by sampling the data directly and 
performing estimates on the fly.  

3.2 YARS2 
YARS2[11] is a heavily read optimised federated repository, 
using six different indexes into six data orderings (plus an 
inverted index of text), supporting full retrieval of RDF quads. 
The index type used is called a ‘sparse’ index, which is an in 
memory index into a sorted and blocked data file. To retrieve 
data, a binary search is performed upon the index, and the closest 
block of data is retrieved. To enable it to stay in memory, the 
index gets less specific as the dataset gets larger. This results in 
near-constant retrieval time with respect to index size, as disk 
seeks are minimised, and the major cost is the disk seek rather 
than the amount of data retrieved. 

YARS2 uses a hash partitioning over the first attribute of the quad 
to distribute its indexes. This mechanism can keep closely related 
data clustered on a single machine (which reduces the amount of 
time-consuming communication between machines), but can be 

disadvantageous when considering data orderings that are 
predicate-first. The solution used by YARS2 is to randomly 
distribute predicate-first orderings, and flood queries that require 
this ordering to all machines. It is not clear how the hash function 
will continue to work with addition or removal of machines, 
although it can be assumed that a mechanisms such as virtual 
servers or consistent hashing are used to ensure that there is not an 
excessive amount of data reorganisation required when machines 
are added to or removed from the network. 

3.3 Summary 
Existing clustered triple stores already implement some of the 
techniques described in section 2.  Hash partitioning is used in 
both Virtuoso Cluster and YARS2, and makes sense for RDF 
storage systems, where the lexical values of URIs have no bearing 
on their meaning.  Rebalancing is offered in Virtuoso, but is a 
time consuming process, and neither store offers an obvious 
solution for the problem of high-cardinality properties.  Both 
stores, however, have been successful in scaling to larger datasets 
than standalone systems, showing the value of shared-nothing 
clusters. 

4. The Jena Tuple Database 
The standalone TDB system is a single-machine graph persistence 
mechanism for the Jena Semantic Web framework [5].  Jena 
provides an extension point (the Graph interface) that allows 
different storage implementations to be used with the common 
Jena APIs for RDF, ontologies and SPARQL query.   

The first Jena Graph implementation was an SQL-backed system 
[19] optimized for API access.  A denormalized design stored 
RDF terms directly in the triple table, so that matching a single 
triple pattern required only a single partial scan of the triple 
table.  SPARQL [16] introduces a standard way to ask queries 
involving more than a single triple pattern, based on the matching 
of Basic Graph Patterns [16].  A normalized design, where triples 
are stored with fixed length, short identifiers mapped to RDF 
terms by a separate table is more efficient for SPARQL query 
access, since the identifiers are smaller and much quicker to join 
on.  

TDB's design goals are to provide the storage layer for both a 
single machine usage and also distributed clusters of industry 
standard servers, as found in enterprise datacentres.  TDB exploits 
modern operating system features, primarily memory mapped I/O 
on 64 bit hardware rather than relying on its own caching 
algorithms.  TDB does not provide database-style ACID 
transactions.  Other variations of the basic TDB design exist (for 
example transactions and indexing variations), but are not covered 
in this paper.  An independent review of standalone TDB's 
performance can be found in [6].  

4.1 TDB Design Overview  
To represent the RDF graph internally, TDB holds three 
composite indexes in the form of B+ trees: Subject-Predicate-
Object (SPO), Predicate-Object-Subject (POS), Object-Subject-
Predicate (OSP).  There is no "triple table" because each 
composite index contains all three fields.  The choice of a 
comprehensive indexing strategy is made to avoid any full table 
scans when performing a triple match, at the cost of increased 
load time.  
RDF terms (henceforth called "nodes") are represented internally 
in TDB by 64 bit node identifiers.  RDF triples are stored in the 
three triple indexes as a series of three of these identifiers, or 



NodeIDs.  Each NodeID is a unique reference into the node table, 
created during the load process.  The NodeID itself is, under 
normal circumstances, a disk address for retrieving a node 
serialization.  The placement of the disk address directly in the 
NodeID has desirable consequences: it allows the node table to be 
written to using simple, fast appending writes, and removes the 
requirement for an index over the node table.  This elimates an 
index lookup on the critical path of NodeID to node conversion.  

In order to allow conversion of queries into canonical form, it is 
necessary to allow nodes to be converted into NodeIDs.  Hence, a 
small index from node to NodeID (henceforth called the 
Node/NodeID index) is maintained that maps a 64 bit hash of 
each node to its NodeID [10].  

Since it is desirable to eliminate expensive NodeID to Node 
conversions where possible, NodeIDs can directly encode (or 
inline) literals of certain datatypes.  NodeIDs are comprised of 8 
bits of type information, and 56 bits of disk address, which allows 
literals that can be encoded in 56 bits or less to be inlined.  XML 
Schema Datatypes integer (and derived types), decimal, datetime, 
date and boolean are encoded directly into the 56 bit section if 
possible.  For example, an XSD dateTime with millisecond 
resolution can be encoded over a range of 8000 years, including 
the timezone.  RDF Literals whose values are outside the encoded 
range are stored in the node table, as are RDF literals with illegal 
lexical forms for the datatype.  A consequence of storing values 
rather than lexical forms is that TDB does not preserve the 
difference between integers "1" and "01", nor between xsd:byte 
and xsd:int. This is permitted as D-entailment [12].  

4.2 Query processing of Basic Graph Patterns  
The SPARQL algebra is built on matching basic graph 
patterns.  TDB evaluates filtered basic graph patterns, that is, filter 
expressions applied to a basic graph pattern matched against the 
stored RDF.  The rest of the SPARQL algebra is handled by ARQ 
(Jena's query system).  The procedure substitutes any known 
values for variables, and optimizes the evaluation order of the 
pattern.  This is performed by choosing the triple pattern that is 
expected to return the fewest number of solutions, based on 
statistics provided by the graph (most importantly, the distribution 
of predicates in the data).  All variables that this first triple pattern 
will return are marked as known, and the process is applied to the 
remainder of the basic graph pattern.  Once an execution order for 
a basic graph pattern has been decided, any filters are placed at 
the first point at which all variables in the expression would have 
become bound.  This execution plan is then evaluated to yield a 
stream of results.  

Matching a triple pattern is performed by choosing the index that 
most closely aligns to the constants of the triple pattern: a triple 
pattern with a known S and P, for example, will use the SPO 
index.  Next, a range scan of the index is performed to find the 
NodeIDs for the unknown parts of the pattern.  The NodeID is 
only converted into an RDF term when it is needed in a filter 
expression or the application accesses that solution binding.  

5. Design 
TDB has a simple, extensible design that yields performance 
improvements over traditional triple stores, particularly in the area 
of read/write performance to the node table.  Given these 
desirable characteristics, it was decided to use the techniques 
described in section 2 to extend it into a cluster store. 

This section describes the design of the store, and in particular 
how the store preserves the benefits of the existing TDB 
system.  The key points of interest in this design are:  

• Application of existing DBMS clustering techniques to 
the problem of RDF storage. 

• The mechanism by which the data is distributed - 
particularly, avoidance of skew. 

• Extension of TDB's NodeID system: since standalone 
TDB's NodeIDs reference a location in a file, these will 
not be unique in a clustered system.  It was necessary to 
adjust this system such that NodeIDs referenced a 
unique location on the network, while still retaining 
TDB's fast appending writes to the node table.  

5.1 Application of Clusters to RDF Storage  
The process of distributing RDF stores is not fundamentally 
different to distributing relational DBMSs: the techniques 
described in section 2 are all applicable to RDF storage. This is 
unsurprising given that RDF can be effectively represented on 
relational DBMSs.  There are, however, a variety of differences 
between distributing RDF data and usual distributed relational 
schemas. 

The relatively unstructured nature of RDF does not lend itself to 
storage in anything but the most broad of data structures, and RDF 
stores such as TDB are effectively indexing a very long, thin 
single table of data, which is then repeatedly joined to itself to 
answer queries.  This makes query planning more difficult: 
traditional SQL optimisers are expected to work on normalised 
multi-table layouts, where a relatively small amount of table-level 
statistics are often sufficient to inform optimisation.  While there 
is little fundamental difference between optimising queries for 
SQL and SPARQL [9], the statistics held by traditional SQL 
optimisers may not provide the requisite level of detail for dealing 
with RDF.  In particular, since SPARQL queries often perform 
joins over large quantities of data, it is important to be able to 
calculate a rough value for how many matches will be found when 
performing a given subquery: the consequences of a massively 
increased working set can be disastrous. This requires either the 
ability to sample data to generate statistics at runtime [9], or the 
maintenance of a large body of statistical data.   

Since triple stores employ heavy indexing to provide adequate 
read performance, the index size of an RDF database often 
dominates the size of the data itself.  It is thus necessary to 
distribute indexes across the cluster along with the data itself.  In a 
store with covering indexes, the problem of performing attribute 
scans on a non-indexed attribute disappears, since an index will be 
distributed on each attribute.  Further, the indexes are not required 
to answer range queries.  Since URIs reference discrete concepts, 
it makes little sense to perform a restricted range query over them: 
it is usually only necessary to retrieve either one or all of a 
particular attribute.  This makes hash-based partitioning more 
attractive. 

SPARQL queries are usually of an analytical nature: that is, it is 
rare for an operation to request or update a single record in an 
RDF database, in contrast to On-Line Transaction Processing 
(OLTP) systems. The workload is somewhat closer to On-Line 
Analytical Processing (OLAP), except that there are few enough 
columns in the schema to maintain a covering index, and there 
may be an expectation that there are ongoing rather than simply 
bulk updates to the store. 



5.2 Overall System Structure  
Figure 1 shows an example network topology for clustered 
TDB.  Within this diagram, there are two types of machine:   

• Query Coordinator (QC): Query coordinators are 
responsible for receiving queries, transforming them 
into a canonical form (including transformation of URIs 
and literals to NodeIDs), producing a query plan, and 
controlling execution on the data nodes.  Query 
coordinators store the distributed Node/NodeID 
mapping table, and any relevant statistical information. 

• Data Node (DN): Data nodes are responsible for storing 
the node table and triple indexes, extracting data as 
required from them, and performing operations such as 
sorts, joins, and so on. 

 

 
Figure 1. Clustered TDB Network Topology 

The rationale behind choosing a layout like this is that it is 
expected that it will be necessary to maintain a large amount of 
statistical data and Node/NodeID mappings.  Sharing this between 
as few machines as possible reduces latencies since QCs can be 
closely colocated, and it is more likely that a given machine will 
already have a piece of data.  

5.3 Balancing and Fault Tolerance 
Allowing rebalancing is a fundamental requirement for this 
application.  Clustered TDB uses a traditional technique for 
allowing easy rebalancing, regardless of distribution method: 
Clustered TDB deals with virtual processing nodes (or 
vnodes).  A given machine can be responsible for a quantity of 
vnodes, and a registry of where each is located is stored on every 
machine.  When it is necessary to rebalance, a vnode's files can 
simply be moved from one server to another, and the registry 
updated. 

Each of the distributed node table, Node/NodeID mapping index, 
and triple indexes has a different vnode space.  This allows a 
greater degree of flexibility in distributing data and eliminating 
skew.  The use of virtual processing nodes enables a simple 
solution for redundancy and fault tolerance: mirroring of 
vnodes.  This offers a finer grain of replication than simple server 
cloning: to prevent the inefficiencies of machine-level cloning, 
mirrored vnodes can be distributed in a different manner to the 
primary copy.  

5.4 NodeIDs  
NodeIDs in TDB are comprised of a byte of type information, 
used for storing certain literal values inline, and 7 bytes of index 
into the node table file.  These IDs are not suitable for a clustered 
store without modification, since the cluster will have multiple 
node files, and the NodeID will thus not encode a known unique 
location.  The solution to this is an additional field: the vnode id in 
which the node is stored.  This is illustrated in Figure 2:  
 

 
Figure 2. NodeID composition 

This scheme allows nodes to be unique, yet still act as a direct 
index into a node file.  Future ID schemes may use a single bit to 
indicate whether the ID is an inline literal or not, combined with a 
smaller index into the file.  This would allow a reduction in 
NodeID size, and hence smaller, more cache friendly 
indexes.  This change would break code compatibility with 
standalone TDB, however. 

5.5 Distributing the Node/NodeID Index  
The proposed mechanism for partitioning the Node/NodeID 
mapping index is quite traditional, using a simple hash 
distribution scheme.  Each entry in the index is comprised of the 
hash of a node and a NodeID.  A vnode is decided for the entry 
based on the node hash modulated by the number of vnodes.  

Hash distribution is the obvious choice for this case: the attribute 
that is being partitioned on is already a hash value, so any sense of 
data clustering has already been removed, eliminating the major 
justification for range partitioning.  Hash partitioning should give 
an even distribution of information, and any hotspots can be 
eliminated using vnode rebalancing.  

5.6 Distributing the Node Table  
The node table has a less conventional distribution method.  When 
data is being asserted, the Query Coordinator decides a vnode to 
send nodes to based on any given distribution mechanism, and 
sends the nodes to that vnode.  The DN hosting the vnode then 
generates IDs for the nodes, returns them to the QC, and stores 
them in a node table. 

A point of particular interest here is that the DN is not obliged to 
use the vnode that the QC decided on: it can add the node to any 
one of the vnodes it hosts.  If it were limited to the vnode chosen 
by the QC, then a DN servicing 20 vnodes would be writing to 20 
node tables simultaneously, reducing the benefit of TDB's 
appending node table.  Instead, the DN can decide which vnode to 
write node information to, write blocks, and occasionally switch 
to another vnode on a round-robin basis.  This produces balanced 
data, and allows a DN to write to one node table at a time.   

Redistribution of the node table is a simple operation: the node 
table file related to the relevant vnode is simply copied to another 
server, the vnode tables on all the servers updated, and the file 
deleted on the original server.  

5.7 Distributing Triple Indexes  
Triple indexes are distributed in a conventional manner.  The 
Query Coordinator distributes each triple three times, based on 



hashes of S, P, and O.  These three distributions correspond to the 
three indexes, SPO, POS, and OSP respectively.   When a Data 
Node receives a triple, it stores it only in the index upon which it 
was distributed:  that is, a triple distributed on S is inserted only 
into the SPO index, and so on.  The effect of this is that the data in 
indexes on each machine is inconsistent: each machine will have 
different triple data each of its indexes.  This means that Data 
Nodes cannot be queried meaningfully as an entity independent of 
the cluster.  

5.8 Exceptions  
While the described distribution methods are simple and robust, 
they do break down in certain cases.  Most particularly, certain 
properties, such as rdfs:label, have extremely high 
cardinalities.  A hash distribution scheme, even with vnode 
balancing, provides no mechanism for balancing this out.  This 
leads to the creation of a large hot spot on whatever machine has 
to store the vnode containing all the data on rdfs:label. 

YARS2[11] worked around this problem by simply flooding 
property-ordered triples to all servers, and flooding property-
oriented subqueries to all servers.  While this works, it creates a 
large unnecessarily large load when answering property-centric 
queries - particularly for properties of low cardinality, which 
would ideally be stored on a single server. 

Clustered TDB's solution to this is an exception list for each 
index.  These lists, replicated across all servers, allow data related 
to a given NodeID to be partitioned by its first two attributes 
(optionally across a list of specified vnodes), rather than just the 
primary attribute.  Queries specifying, for example, PO can still 
be answered on a single server, while queries with just a P are 
distributed across all (or several) of the servers.  

The exception list is expected to be short, and used only when 
absolutely required, since its contents are mirrored on every 
server.  However, it will prove invaluable for these niche cases.  

5.9 Operations  
Clustered TDB is expected to use the standard techniques for 
parallelising operations: pipelining and partitioning, as described 
in sections 2.2 and 2.3.  The mechanism for distributing 
operations fairly must produce a split function that provides an 
equitable division of labour.  This can be accomplished by adding 
load information to the heartbeat messages that let each machine 
in the cluster know that other machines are alive, allowing Query 
Coordinators to determine servers that are experiencing the least 
load and use them. 

6. Evaluation 
To test the design, a prototype was produced that implemented a 
distributed node table and triple indexes, queried by a non-
distributed Query Coordinator.  No attempt has been made at this 
stage to compare the design to other clustered stores, since the 
code has not been optimised, and there is no query optimiser in 
the system: the focus of this evaluation is validation of the scaling 
characteristics of Clustered TDB's storage layer. 

The following tests were performed on standalone TDB, and 
Clustered TDB running on 1, 2, and 3 machines: 

• Load rates  
• Individual triple pattern, without node retrieval 
• Individual triple pattern, with node retrieval 
• Join tests, without node retrieval 

The tests were performed over a synthetically generated dataset 
summing approximately 375 million triples, and containing 
approximately 4,000 distinct properties.  Since the conversion of 
NodeIDs to Nodes (node retrieval) can easily dominate other costs 
in queries that return even moderate numbers of results, this step 
is not always performed: this should provide greater insight into 
Clustered TDB's performance.  Theoretically, both large joins and 
node retrieval should offer useful opportunities for parallelisation, 
as they require a large number of subqueries. 

6.1 Test Configuration 
The hardware configuration for these machines was a cluster of 
three identical systems.  Each of these was specced as follows: 

• Quad AMD 880 processors, total 8 cores running at 
2.4GHz (64 bit)  

• 32 GB RAM  

• 2x 140GB, 10,000RPM disk drives, in RAID 0 
configuration 

• Gigabit Ethernet 
• Ubuntu Linux, running kernel 2.6.24 

 
Machine one ran both the QC and a DN.  Machines two and three 
(when required) each ran a DN.  Prior to load and the start of the 
read tests, each machine had its disk cache flushed to ensure 
results were not prejudiced by earlier activities.  Commands used 
were as follows: 
sync 

echo 3 > /proc/sys/vm/drop_caches 

Prior to the start of the read tests, the system was subsequently 
warmed up with a series of single triple pattern matches over the 
SPO, POS, and OSP indexes, each of which performed Node to 
NodeID conversion. 

6.2 Load Rates 
This section analyses the load rates achieved when running 
Clustered TDB on a cluster of varying size.  It should be noted 
that the absolute load rates achieved in this section are 
significantly slower than would normally be expected, due to a 
flaw in the handling of the data file by the TDB code underlying 
the prototype.  This section does, however, still serve to illustrate 
the scaling effects when increasing the size of the cluster.  Table 1 
shows the overall load rate for the data file for standalone TDB 
and for 1, 2, and 3 machines, referred to as CTDB1, CTDB2, and 
CTDB3 respectively. 

Table 1. Load rates 

System Type Average Load Rate (triples/s) 

Standalone 6,946 

CTDB1 4,276 

CTDB2 8,973 

CTDB3 12,536 
 

Figure 3 illustrates loading rate over time.  Figure 3 does not 
include standalone TDB, as it uses an optimised loading process 
that is not directly comparable to Clustered TDB.  This process 
has not yet been implemented in Clustered TDB, and accounts for 



much of the difference in load rate between CTDB1 and 
standalone TDB. 

 

 
Figure 3. Rates of assertion during Clustered TDB load 

 
 
These tests indicate that loading on Clustered TDB scales 
extremely well over small numbers of machines. 

6.3 Read Performance 
This section describes the tests of read performance that were run 
on Clustered TDB, including an explanation of the results.  The 
read tests for TDB were performed using a test that simulated a 
load of 1 and 5 users, giving an indication of throughput 
scalability. 

6.3.1 Individual Triple Pattern 
An individual triple pattern, retrieved without NodeID to Node 
translation is the basic unit of a query, and can usually be 
retrieved quickly the node will be located on a single file on one 
server.  It is not necessarily expected that there will be significant 
improvements in performance in a non-loaded situation, as only 
one machine will be performing work.  Tests were performed that 
tested each of the subject, predicate, and object indexes, with 
Table 2 showing the results for a load of one user, and Table 3 
showing the results for five: 

Table 2. Reading individual triple patterns (1 user) 

System 
Type 

SPO Index 
(ms) 

POS Index 
(ms) 

OSP Index 
(ms) 

Standalone 439 21530 512 

CTDB1 361 1733 483 

CTDB2 187 1958 264 

CTDB3 178 1821 363 
 

Table 3. Reading individual triple patterns (5 users) 
System 
Type 

SPO Index 
(ms) 

POS Index 
(ms) 

OSP Index 
(ms) 

Standalone 1904 65602 2205 

CTDB1 1784 6648 2053 

CTDB2 664 6879 672 

CTDB3 647 5617 628 
 

Note that, since predicates generally have a much higher 
cardinality than subjects or objects, the predicate-centric tests are 
slower than subject-or object centric ones.  These results show a 
general improvement in performance as the number of machines 
increases, particularly when the system is under higher throughput 
load.  The performance of the predicate-centric tests is particularly 
notable, since clustered TDB even in a one machine configuration 
is much faster than standalone TDB.  This is probably due to the 
horizontal partitioning effect that the use of vnode partitioning 
creates: index depths are lower in Clustered TDB. 

6.3.2 Individual Triple Pattern With NodeID to Node 
conversion 
This test measures NodeID to Node conversion.  Since each 
NodeID to Node conversion is a separate operation, this test is 
highly parallelisable, and it should be expected that performance 
will improve significantly as the number of machines increases.  
Tables 4 and 5 detail the results. 

Table 4. NodeID to Node tests (1 user) 
System 
Type 

SPO Index 
(ms) 

POS Index 
(ms) 

OSP Index 
(ms) 

Standalone 398 122609 349 

CTDB1 700 229453 550 

CTDB2 433 172543 312 

CTDB3 355 120815 333 
 

Table 5. NodeID to Node tests (5 users) 

System 
Type 

SPO Index 
(ms) 

POS Index 
(ms) 

OSP Index 
(ms) 

Standalone 1715 246026 1006 

CTDB1 3208 813783 2183 

CTDB2 1594 372920 762 

CTDB3 1312 281082 878 
 

These tests show generally useful scaling within Clustered TDB, 
particularly as the throughput load increases.  It is noticeable that 
standalone TDB often outperforms Clustered TDB in this test.  It 
is likely that this can be attributed to inefficient netcode within the 
Clustered TDB prototype: while some effort is made to batch 
process subqueries to make efficient use of network resources, 
each vnode is communicated with as a separate entity, even if it is 
located on the same server as many vnodes.  This results in an 
unnecessarily large number of threads of communication, and the 
costs associated with these small queries can cause slowdown. 

An example of how seriously skew can affect overall system 
performance was discovered during this phase of the 
evaluation.  Initially, Clustered TDB's NodeIDs were formed of 8 
bits type, followed by 12 bits of vnode id, and 44 bits file 
index.  Tests showed that queries of the form ?s <p> ?o were 
exhibiting virtually no improvement in performance as the cluster 
had more machines added.  

The reason for this poor performance was the fact that triple 
matches were emitted from the POS index in sorted order.  Since 
the vnode ID bits were higher order than the disk address, all of 
the NodeIDs which had mappings stored on vnode ID n would 
return before the mappings in vnode ID n+1.  This resulted in a 



complete lack of parallelism when mapping NodeIDs to 
Nodes.  Since this was the dominant cost in the query, the system 
did not improve in performance as the cluster scaled up.  This 
effect was not as noticeable on subject or object oriented queries, 
because these tend to produce fewer results, and thus all the 
NodeID to Node conversions necessary could fit inside a single 
batch operation.  The solution to this problem was to place vnode 
IDs after the disk address in the NodeID.  

6.3.3 Join tests 
This section details the performance of index joins on Clustered 
TDB, simulating the joins that are performed during SPARQL 
queries. 
Join 1 is comprised of queries similar in form to "Select all the 
people in the system who like cheddar and live in Southampton", 
or: 
SELECT ?person WHERE {?person <likes-cheese> 
<cheddar> . ?person <lives-in> <Southampton> 
.} 

This test is extremely simple, with the first triple pattern of each 
query in the set typically matching 4-10 results, and the join as a 
whole processing up to 15 records.  The fact that multiple results 
are returned from the first triple pattern means that multiple 
threads can be launched to answer all the following subqueries 
that make up the index join, meaning that this test is typically 
somewhat parallelisable.  It is, however, small enough that 
speedup as the cluster increases in size is limited. 

Table 6. Join test 1 

System Type 1 User (ms) 5 Users (ms) 

Standalone 379 201 

CTDB1 297 319 

CTDB2 114 135 

CTDB3 122 124 
 

Join 2 is comprised of queries similar in form to "For each person 
in the system, find the books that they like, and the interests they 
have", or: 
SELECT ?person ?some-book ?some-interest 
WHERE {?person <likes-book> ?some-book . 
?person <has-interests> ?some-interest .} 

For the given dataset, this query typically matches approximately 
50,000 results on the first triple pattern, and returns around 70,000 
records overall.  The large number of matches in the first triple 
pattern make this query highly parallelisable, and this is borne out 
by the results detailed in Table 7. 

Table 7. Join test 2 

System Type 1 User (ms) 5 users (ms) 

Standalone 131273 155147 

CTDB1 133023 133963 

CTDB2 62756 87676 

CTDB3 50883 64518 
 
Join 3 is comprised of queries similar in form to "Tell me 
everything about every book in the system", or: 

SELECT ?book ?p ?o WHERE {?book <type> 
<book> . ?book ?p ?o} 

This query typically matches around 6,000 results on the first 
triple pattern, and around 90,000 overall.  This query ought to be 
highly parallelisable, but interestingly shows poor results on 
mulit-machine systems.  This result is a topic for further 
investigation. 

Table 8. Join test 3 

System Type 1 User (ms) 5 users (ms) 

Standalone 1579 18414 

CTDB1 3066 21082 

CTDB2 7055 49108 

CTDB3 6287 36051 
 

Join 4 is comprised of queries similar in form to "Who else likes 
books that Alisdair likes?", or: 
SELECT ?person ?book WHERE {<Alisdair> 
<likes-book> ?book . ?person <p> ?book .} 

This query typically matches 2-10 results on the first triple 
pattern, and up to 25 results overall.  This query is somewhat 
parallelisable, but due to the low cardinality of the first triple 
match is not expected to scale to large numbers of machines. 

Table 9. Join test 4 

System Type 1 User (ms) 5 users (ms) 

Standalone 379 1044 

CTDB1 297 1115 

CTDB2 114 402 

CTDB3 122 485 
 
Join 5 is comprised of queries similar to "who else feels about 
anything the same way Alisdair feels about food?", or: 
SELECT ?s ?p ?o WHERE {<Alisdair> ?p <food> 
. ?s ?p ?o .} 

This query typically matches only a single result in the OSP 
index, and 15,000-40,000 in the POS index.  It is not expected to 
parallelise well because each of the triple patterns can be matched 
from a single file on a single machine, and this expectation is 
borne out in the results.   In a fully-featured prototype, the 
exceptions mechanism described in section 5.8 would offer a 
mechanism to spread such high cardinality properties across the 
cluster, enhancing parallelism. 

Table 10. Join test 5 

System Type 1 User (ms) 5 users (ms) 

Standalone 3491 4530 

CTDB1 696 2446 

CTDB2 966 2320 

CTDB3 1020 1401 
 
 
 



7. Future Work  
Beyond the full implementation of the design specified in this 
paper, we have two major goals for future work: enabling efficient 
distributed query optimisation, and exploration of different 
indexing techniques.  TDB's current comprehensive indexing 
strategy is workable for triple storage, but becomes less practical 
when considering the additional dimensions required to store 
graph names and temporal information.   

To mitigate this problem, we propose to investigate single-index 
solutions such as space filling curves[15].  Since related data in 
these indexes cannot be perfectly contiguous on disk, high latency 
disk based systems currently impair the practicability of such 
methods.  However, as low latency solid state disks become 
increasingly practical, indexing mechanisms such as these may 
prove extremely worthwhile.   

8. Conclusion  
RDF stores suffer from issues with poor read and write 
performance.  This paper has presented a review of techniques to 
enable the storage and querying of RDF over multiple machines, 
as a means of working with the large volumes of RDF that are 
inevitable as more and more information is encoded into semantic 
languages. 

This paper contributes the design of Clustered TDB, a system that 
implements many of the techniques described in this review.  The 
evaluation of the prototype so far has shown that Clustered TDB 
offers near linear scaling characteristics with respect to load times, 
and shows expected characteristics with respect to speedup and 
scaleup.  Further, the design offers many useful characteristics: 
fault tolerance through vnode mirroring, a variety of mechanisms 
for addressing issues such as skew, and a mechanism to distribute 
properties fairly throughout the cluster.  Further, Clustered TDB 
offers the ability to rebalance more cheaply than other clustered 
stores.  As the Semantic Web scales up, clustered RDF stores such 
as Clustered TDB will make it possible to query very large 
volumes of data. 
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