Clustered TDB: A Clustered Triple Store for Jena

Alisdair Owens Andy Seaborne Nick Gibbins
IAM Group HP Labs Bristol IAM Group
Electronics and Computer Science Stoke Gifford Electronics and Computer Science
University of Southampton, UK Bristol, UK University of Southampton, UK

+44 (0)23 8059 8367
ao@ecs.soton.ac.uk

+44 (0)117 312 8181
andy_seaborne @hp.com

+44 (0)23 8059 8879
nmg@ecs.soton.ac.uk

mc schraefel

IAM Group
Electronics and Computer Science
University of Southampton, UK
+44 (0)23 8059 8372

mc@ecs.soton.ac.uk

ABSTRACT

This paper describes the design of Clustered TDB, a clustered
triple store designed to store and query very large quantities of
Resource Description Framework (RDF) data. It presents an
evaluation of an initial prototype, showing that Clustered TDB
offers excellent scaling characteristics with respect to load times
and query throughput. Design decisions are justified in the
context of a literature review on Database Management System
(DBMS) and RDF store clustering, and it is shown that many
techniques created during the course of DBMS research are
applicable to the problem of storing RDF data.

Categories and Subject Descriptors
C.24 [Computer-Communication Networks]: Distributed
Systems — distributed databases.

H.2.2 [Database Management]: Physical Design — access
methods.

H.2.4 [Database Management]: Systems — distributed databases,
concurrency.

General Terms
Algorithms, Performance, Design, Reliability.

Keywords
RDF, Semantic Web, DBMS, Cluster, Triple Store, Distributed

1. Introduction

RDF stores suffer from well documented issues with both read
and write performance [1, 17]. The semi-structured nature of
RDF makes it ideal for applications where the structure of data
added to a store is not well known in advance, is liable to change
rapidly, or where there are many different structures being linked
together. Unfortunately, this flexibility makes it challenging to
design a high performance catch-all schema to describe the data,
and results in database schemas featuring long, thin tables with
very large index depths, and a requirement for a comprehensive
indexing strategy. This approach results in limited performance

Copyright is held by the author/owner(s).
WWW 2009, April 20-24, 2009, Madrid, Spain.

and poor characteristics when scaling to larger datasets.

Since RDF is a key language for the Semantic Web, and is used as
flexible language for data exchange in both business and large
scale science (for example, the UNIPROT project'), it can be
expected that it will be necessary to store and query very large
volumes of RDF data, and stores featuring improved performance
are thus highly desirable. The most powerful single machine
triple stores are currently capable of storing up to around two
billion triples’, and to realise very large improvements upon this
using current technologies it is necessary to allow RDF stores to
make use of the power of multiple machines.

Traditional Database Management Systems (DBMSs) underwent
a similar evolution, as ever-increasing dataset sizes required the
development of DBMSs with better scaling characteristics.
Modern databases are often clustered over more than one
machine, in an effort to make use of their combined power. RDF
stores are a type of DBMS, and research into prior systems can be
applied to the creation of a highly scalable RDF store. This
document presents the Jena Clustered Tuple Database (Clustered
TDB), a clustered RDF store created using techniques used in
highly scalable relational DBMSs. The paper includes
evaluations of a prototype supporting future work, extended from
the single machine Jena Tuple Database (TDB) described in
section 4.

Our focus in this paper is the creation of a system that is clustered,
that is, the latency between machines is expected to be low due to
their being sited in one geographical location, and the system as a
whole can be administered from a single point: there is no need to
explicitly aggregate content from heterogeneous database
systems, nor expectation that those individual machines will be
able to provide meaningful answers to queries run on them rather
than the system as a whole. This paper describes the creation of a
high performance, scalable storage layer: while distributed query
optimisation is a topic of great importance to this work, it is
largely beyond the scope of this paper.

This paper contains a literature review on distributed DBMSs in
section 2, relating it to existing clustered triple stores in section 3.
It is expected that this review will aid in the design of future
clustered stores. Section 4 describes the single machine Jena

! http://dev.isb-sib.ch/projects/uniprot-rdf/
2 http://esw.w3.org/topic/LargeTripleStores

Tuple Database (TDB) from which an evaluation prototype was
extended. Section 5 details the design for Clustered TDB, and the
prototype of this design is evaluated for scaling characteristics in
section 6.

2. Distributed DBMS

When the workload on a given database becomes too large
(whether this be a result of data size or query load), a traditional
approach in the DBMS world is to split the database across more
than one system. It is hoped that the power of multiple machines
can thus be leveraged to work on the same problem. This section
describes the background information on distributed DBMSs that
informed the development of Clustered TDB, as described in
section 5.

The desired performance improvements in distributed DBMSs can
be categorised as follows [3, 8]:

® Scaleup: An increase in the number of machines leads
to the ability to store more data.

® Speedup: An increase in the number of machines leads
to a reduction in the amount of time taken to serve an
individual query, all other factors being equal.

¢ Throughput Scaleup: An increase in the number of
machines leads to the ability to perform more
transactions in a given time frame.

While ideally both speedup and scaleup will be linear with the
amount of processing power available, this is a practical
impossibility in any database system: some algorithms (such as
sort) do not scale in linear time. There are other significant
barriers to such a perfect level of system scalability[8]:

¢ Startup: the time needed to start a parallel operation - if
a small operation results in lots of processes being
started across a lot of nodes, the cost of startup can
overwhelm any advantages gained through increased
parallelism.

¢ Interference: The slowdown each new process creates
when accessing shared resources.

* Skew: The effect where one part of a parallelised
operation takes much longer to complete than the
others: since the job is limited by the slowest process,
this can seriously affect performance.

Each of these factors can be mitigated by various mechanisms: the
system should be arranged such that small operations are
parallelised to a degree commensurate with their size, reducing
the influence of startup time. Interference can be reduced by
minimising the amount of resource sharing required in the system,
and skew by taking steps to divide workloads at 'hotspots' in the
system.

2.1 Hardware Architectures

A variety of hardware architectures have been utilised to create
parallel database systems. These can be broadly grouped into
three categories: shared memory (SM), shared disk (SD) and
shared nothing (SN) [18]. In SM systems all processors share a
common central memory, in SD they have a private memory but a
common collection of disks, and in SN they share only the ability
to communicate with each other via messages over a network.

Generally speaking, shared nothing systems are favoured today
for their excellent characteristics with regards to resource
contention: the only shared resource is network access, and there

is no need for the complex resource locking methods seen in SM
and SD systems. This means that scaling up SN clusters has
historically been easier than the alternatives [8, 18]. Further, SN
clusters can be built out of commodity parts, as seen in companies
like Google, offering an excellent price/performance profile.

The disadvantage of the SN approach is that there is greater
complexity in deciding where data is placed: it is important to
place data such that each machine undergoes a similar load profile
to enable efficient scaling, and does not require excessive use of
network resources. Ongoing maintenance (whether manual or
automatic) to the distribution of data is necessary to prevent 'hot
spots', or points at which data or query skew has caused a machine
to have too high a workload. When these hot spots occur, they can
usually be eliminated by redistribution of data on the machine.

2.2 Enabling Parallelism

Parallel execution can be enabled through a variety of
strategies. Most obviously, it is possible to partition (or decluster)
information across more than one machine, such that the time
required to retrieve a large block of data is reduced, and the
number of users who can retrieve data at any one time (assuming
they are not both trying to access the same data) is also increased.
It should be noted that typically, when reading or writing very
small amounts of data, it is desirable to perform the work on one
machine. This is because the setup costs will dwarf any
advantages gained from partitioning. The 'Data Partitioning'
section considers the problem of how to decluster data in more
detail.

Another way of parallelising database systems is to cluster the
execution of relational operations, so that for a given operation
each machine processes a defined range of data values out of an
overall dataset. This prevents one machine from doing all the
processing work and becoming a bottleneck.

Pipelining of operations is another way to parallelise: many
relational operators do not need to complete before they start
emitting results. In this sense they can be viewed as a stream. The
output of this stream can be directed to other operations, which
can start processing them in parallel with the first operation. The
benefits of this approach are somewhat limited, however: firstly,
pipelines are usually relatively short, limiting the number of
machines that can work on one, secondly, some relational
operations (such as sort) do not emit results until they complete,
and thirdly, some operations take much longer than others (an
example of skew), thus causing some machines to have to
undertake much more work than others.

Finally, parallelism is supported by simply allowing multiple
users to access a system, and allowing the subqueries that form an
individual query to run in parallel. This is enabled by the
likelihood that different users and subqueries will likely be
accessing different pieces of information, so hardware resources
can be shared between them and the queries run in parallel.

These mechanisms for enabling parallelism can be characterised
as occuring at three levels [14]:

* inter-query: The ability to run more than one query
simultaneously.

* intra-query: The ability to run different subqueries in
parallel and pipeline operations.

* intra-operation: Distributing single operations over
more than one node for concurrent execution.

2.3 Data Partitioning

A standard approach to partitioning data in an RDBMS is
horizontally partitioning (or declustering) each relation in the
system. In these systems, tuples of each relation in the database
are partitioned across the disk storage units attached to each
processing node on the network, allowing multiple machines to
scan a relation in parallel. It also addresses hotspot issues, as the
contents of regularly accessed relations are spread across multiple
machines, and more can be added as necessary.

[8] describes methods for horizontal partitioning of data, dividing
them into three common techniques:

¢ Round Robin: simply distributing the tuples in a round
robin fashion to each server. This approach works well
for sequential scans, but is inefficient if there is a desire
to access tuples based on attribute values, since the
location of a given tuple is unknown.

¢ Hash Partitioning: distribution of tuples by applying a
hash function to an attribute value. The function emits a
number which specifies a machine (and possibly disk
location) on which to store the information. This
approach is effective if tuples are accessed based on a
fully specified attribute, but is much less effective for
range queries: hashing does not do a good job of
clustering related data. Further, hash partitioning
suffers from difficulties with the addition of new
machines to a cluster, and addressing hot spots: in a
naive implementation it is not possible to repartition
data.

¢ Range Partitioning: distribution of tuples by selecting
a range over one attribute. For example, all tuples with a
value of 'surname' between A-C go on one partition, D-
E on another, and so on. This approach clusters data
effectively. The major issue with this is that it risks both
data and data and execution skew: one part of the range
may have a disproportionately large quantity of the
actual data, and one part of the cluster may get accessed
much more frequently than others (this being
particularly likely if it has to store more of the data).

Partitioning improves the response time of sequential scans,
because more processors and disks are used to perform the scan. It
aids associative scans (scanning based on an attribute value)
because the number of tuples stored at each node is reduced, and
hence index sizes are reduced.

It is important to decluster data in a manner appropriate to both
the dataset itself, and the manner in which it will be accessed. In
particular, the following factors have a significant influence:

* Degree of declustering: it is important to decluster to
an appropriate extent. If a very small relation is
partitioned over a very large number of machines,
startup costs and overheads (such as disk seeks) will
overwhelm any advantages gained from parallelism. In
practise, parallel systems such as Bubba[2, 3] have
found that full declustering is often inappropriate.

e Skew: It is important to ensure that each machine
undergoes a comparable workload. A simple
implementation will balance the quantity of information
stored on each server, but it is also important to take
into account the possibility that certain data ranges will
be accessed much more regularly than others, creating
an excessive load on some servers. This type of skew

(execution skew) can be countered by balancing data
distribution not by the amount of volume stored on each
machine in the cluster, but by the frequency with which
each machine has to access data, particularly that which
is uncached.

* Declustering attribute: it is necessary to partition on
an appropriate attribute: the location of tuples is only
known, if it is known at all, based on a function of that
attribute. Queries that reference a relation based on a
different attribute value have to be flooded to all
machines that store a portion of the relevant
relation[13]. This presents no barriers in a store with
comprehensive indexing such as TDB, since each index
can be distributed based on its primary attribute, but is
of interest when considering other strategies.

2.4 Parallel Operations
Parallelising relational operations can be quite a simple process,
requiring the addition of two simple operations:

* merge: If one considers a scan of a relation that has
been distributed into N partitions, a scan of this relation
can be implemented as N scan operations that then send
their output to a common merge operator. This produces
a single output stream that can be used by the next
relational operator.

e split: Split is used to partition an output stream
produced by a relational operator, such that each sub-
stream can be processed by a different machine.

With the aid of these two operations, all that is required is to
decide how many machines will process a given piece of data,
and, using a common split function, partition data processing
across these nodes. This can be performed using partitioning
methods such as those described in the 'Data Partitioning' section.

Performing operations in parallel requires the transmission of data
over the network. This is usually not a significant issue in very
small clusters, but as with growth can become a significant
bottleneck. Typical network structures offer low/no contention
when communicating between machines connected to the same
switch, but (assuming a star or hybrid mesh/star topography)
suffer from significantly higher contention when communicating
across multiple switches (machines that are 'further away'). As a
result of this, modern massively distributed file systems such as
the Google File System (GFS) and the Hadoop Distributed File
System (HDFS) make an effort to site related data in similar areas
of the network [4].

A further result of both limited network bandwidth and the desire
to avoid unnecessary latency is the observation that it is usually
cheaper to move computation to the node where data is situated
than to move the data to a specified computation node. Systems
like Hadoop[4] and MapReduce[7] follow the example of
distributed DBMSs[13] in making an effort to schedule processing
at or near the node that stores the relevant chunk of data.

2.5 Redundancy

On single machine or small cluster systems, the likelhiood of
machine failure is very low, and there is relatively little
requirement for redundancy except in critical systems. As clusters
expand to tens, hundreds or thousands of machines, likelihood of
machine failure becomes nontrivial[7]. It therefore becomes
important to have a strategy for dealing with these failures.

A simple strategy for redundancy is mirroring servers. This not
only provides increased data security, but also improves
performance by allowing two machines to answer a given request.
Unfortunately, using this approach machine failure still has a
significant effect upon performance: failure of one machine
results in a huge increase in load upon its mirror(s), and the
creation of a hot spot. A better strategy for handling redundancy
is to distribute data using more than one function. This results in
the data on any individual machine being mirrored across many
other servers in the network. In this scenario, machine failure
results in the load that machine was undertaking being spread
across the rest of the cluster, rather than one or a few machines.

3. Clustered RDF Stores

This section describes existing clustered RDF stores, in particular
YARS2 and Virtuoso. Federated stores are not considered in this
review, since their objectives are different to our own.

3.1 Virtuoso

Virtuoso's RDF component is a quad store based on an Object-
Relational DBMS heavily optimised for RDF storage. The
recently released clustered variant uses a traditional hash
partitioning scheme to split its data, except that indexes are
partitioned across machines, as well as data. This makes sense for
an RDF store, where the size of indexes can easily overwhelm the
size of the data itself.

Virtuoso's creators[9] emphasise the point that a web scale system
needs to have a means for repartioning data without causing
downtime. As noted in 2.3, hash distribution does not provide an
inherent mechanism for rebalancing: a hash by its very nature
forces a piece of data to a single given point. Virtuoso uses a
common system whereby one pretends that there are (for
example) 50n machines in an n machine cluster. In this example,
each machine is initially responsible for 50 of the virtual
machines. Rebalancing can then be accomplished by moving
responsibility (and relevant data) for certain virtual machines from
one physical machine to another. Rebalancing is a time
consuming process, but one that can be performed on-the-fly.

Virtuoso performs query optimisation without the aid of statistics:
the authors note that traditional SQL statistics are of little use for
triple or quad stores, and that in order to most effectively optimise
such a store it is necessary to have access to a large quantity of
statistical information. Virtuoso performs optimisation not by
precalculating statistics, but by sampling the data directly and
performing estimates on the fly.

3.2 YARS2

YARS2[11] is a heavily read optimised federated repository,
using six different indexes into six data orderings (plus an
inverted index of text), supporting full retrieval of RDF quads.
The index type used is called a ‘sparse’ index, which is an in
memory index into a sorted and blocked data file. To retrieve
data, a binary search is performed upon the index, and the closest
block of data is retrieved. To enable it to stay in memory, the
index gets less specific as the dataset gets larger. This results in
near-constant retrieval time with respect to index size, as disk
seeks are minimised, and the major cost is the disk seek rather
than the amount of data retrieved.

YARS2 uses a hash partitioning over the first attribute of the quad
to distribute its indexes. This mechanism can keep closely related
data clustered on a single machine (which reduces the amount of
time-consuming communication between machines), but can be

disadvantageous when considering data orderings that are
predicate-first. The solution used by YARS2 is to randomly
distribute predicate-first orderings, and flood queries that require
this ordering to all machines. It is not clear how the hash function
will continue to work with addition or removal of machines,
although it can be assumed that a mechanisms such as virtual
servers or consistent hashing are used to ensure that there is not an
excessive amount of data reorganisation required when machines
are added to or removed from the network.

3.3 Summary

Existing clustered triple stores already implement some of the
techniques described in section 2. Hash partitioning is used in
both Virtuoso Cluster and YARS2, and makes sense for RDF
storage systems, where the lexical values of URIs have no bearing
on their meaning. Rebalancing is offered in Virtuoso, but is a
time consuming process, and neither store offers an obvious
solution for the problem of high-cardinality properties. Both
stores, however, have been successful in scaling to larger datasets
than standalone systems, showing the value of shared-nothing
clusters.

4. The Jena Tuple Database

The standalone TDB system is a single-machine graph persistence
mechanism for the Jena Semantic Web framework [5]. Jena
provides an extension point (the Graph interface) that allows
different storage implementations to be used with the common
Jena APIs for RDF, ontologies and SPARQL query.

The first Jena Graph implementation was an SQL-backed system
[19] optimized for API access. A denormalized design stored
RDF terms directly in the triple table, so that matching a single
triple pattern required only a single partial scan of the triple
table. SPARQL [16] introduces a standard way to ask queries
involving more than a single triple pattern, based on the matching
of Basic Graph Patterns [16]. A normalized design, where triples
are stored with fixed length, short identifiers mapped to RDF
terms by a separate table is more efficient for SPARQL query
access, since the identifiers are smaller and much quicker to join
on.

TDB's design goals are to provide the storage layer for both a
single machine usage and also distributed clusters of industry
standard servers, as found in enterprise datacentres. TDB exploits
modern operating system features, primarily memory mapped I/O
on 64 bit hardware rather than relying on its own caching
algorithms. TDB does not provide database-style ACID
transactions. Other variations of the basic TDB design exist (for
example transactions and indexing variations), but are not covered
in this paper. An independent review of standalone TDB's
performance can be found in [6].

4.1 TDB Design Overview

To represent the RDF graph internally, TDB holds three
composite indexes in the form of B+ trees: Subject-Predicate-
Object (SPO), Predicate-Object-Subject (POS), Object-Subject-
Predicate (OSP). There is no "triple table" because each
composite index contains all three fields. The choice of a
comprehensive indexing strategy is made to avoid any full table
scans when performing a triple match, at the cost of increased
load time.

RDF terms (henceforth called "nodes") are represented internally
in TDB by 64 bit node identifiers. RDF triples are stored in the
three triple indexes as a series of three of these identifiers, or

NodelDs. Each NodelD is a unique reference into the node table,
created during the load process. The NodelD itself is, under
normal circumstances, a disk address for retrieving a node
serialization. The placement of the disk address directly in the
NodelD has desirable consequences: it allows the node table to be
written to using simple, fast appending writes, and removes the
requirement for an index over the node table. This elimates an
index lookup on the critical path of NodeID to node conversion.

In order to allow conversion of queries into canonical form, it is
necessary to allow nodes to be converted into NodeIDs. Hence, a
small index from node to NodeID (henceforth called the
Node/NodeID index) is maintained that maps a 64 bit hash of
each node to its NodelD [10].

Since it is desirable to eliminate expensive NodelD to Node
conversions where possible, NodelDs can directly encode (or
inline) literals of certain datatypes. NodelDs are comprised of 8
bits of type information, and 56 bits of disk address, which allows
literals that can be encoded in 56 bits or less to be inlined. XML
Schema Datatypes integer (and derived types), decimal, datetime,
date and boolean are encoded directly into the 56 bit section if
possible. For example, an XSD dateTime with millisecond
resolution can be encoded over a range of 8000 years, including
the timezone. RDF Literals whose values are outside the encoded
range are stored in the node table, as are RDF literals with illegal
lexical forms for the datatype. A consequence of storing values
rather than lexical forms is that TDB does not preserve the
difference between integers "1" and "01", nor between xsd:byte
and xsd:int. This is permitted as D-entailment [12].

4.2 Query processing of Basic Graph Patterns
The SPARQL algebra is built on matching basic graph
patterns. TDB evaluates filtered basic graph patterns, that is, filter
expressions applied to a basic graph pattern matched against the
stored RDF. The rest of the SPARQL algebra is handled by ARQ
(Jena's query system). The procedure substitutes any known
values for variables, and optimizes the evaluation order of the
pattern. This is performed by choosing the triple pattern that is
expected to return the fewest number of solutions, based on
statistics provided by the graph (most importantly, the distribution
of predicates in the data). All variables that this first triple pattern
will return are marked as known, and the process is applied to the
remainder of the basic graph pattern. Once an execution order for
a basic graph pattern has been decided, any filters are placed at
the first point at which all variables in the expression would have
become bound. This execution plan is then evaluated to yield a
stream of results.

Matching a triple pattern is performed by choosing the index that
most closely aligns to the constants of the triple pattern: a triple
pattern with a known S and P, for example, will use the SPO
index. Next, a range scan of the index is performed to find the
NodelDs for the unknown parts of the pattern. The NodelD is
only converted into an RDF term when it is needed in a filter
expression or the application accesses that solution binding.

5. Design

TDB has a simple, extensible design that yields performance
improvements over traditional triple stores, particularly in the area
of read/write performance to the node table. Given these
desirable characteristics, it was decided to use the techniques
described in section 2 to extend it into a cluster store.

This section describes the design of the store, and in particular
how the store preserves the benefits of the existing TDB
system. The key points of interest in this design are:

* Application of existing DBMS clustering techniques to
the problem of RDF storage.

¢ The mechanism by which the data is distributed -
particularly, avoidance of skew.

¢ Extension of TDB's NodelD system: since standalone
TDB's NodelDs reference a location in a file, these will
not be unique in a clustered system. It was necessary to
adjust this system such that NodelDs referenced a
unique location on the network, while still retaining
TDB's fast appending writes to the node table.

5.1 Application of Clusters to RDF Storage
The process of distributing RDF stores is not fundamentally
different to distributing relational DBMSs: the techniques
described in section 2 are all applicable to RDF storage. This is
unsurprising given that RDF can be effectively represented on
relational DBMSs. There are, however, a variety of differences
between distributing RDF data and usual distributed relational
schemas.

The relatively unstructured nature of RDF does not lend itself to
storage in anything but the most broad of data structures, and RDF
stores such as TDB are effectively indexing a very long, thin
single table of data, which is then repeatedly joined to itself to
answer queries. This makes query planning more difficult:
traditional SQL optimisers are expected to work on normalised
multi-table layouts, where a relatively small amount of table-level
statistics are often sufficient to inform optimisation. While there
is little fundamental difference between optimising queries for
SQL and SPARQL [9], the statistics held by traditional SQL
optimisers may not provide the requisite level of detail for dealing
with RDF. In particular, since SPARQL queries often perform
joins over large quantities of data, it is important to be able to
calculate a rough value for how many matches will be found when
performing a given subquery: the consequences of a massively
increased working set can be disastrous. This requires either the
ability to sample data to generate statistics at runtime [9], or the
maintenance of a large body of statistical data.

Since triple stores employ heavy indexing to provide adequate
read performance, the index size of an RDF database often
dominates the size of the data itself. It is thus necessary to
distribute indexes across the cluster along with the data itself. In a
store with covering indexes, the problem of performing attribute
scans on a non-indexed attribute disappears, since an index will be
distributed on each attribute. Further, the indexes are not required
to answer range queries. Since URIs reference discrete concepts,
it makes little sense to perform a restricted range query over them:
it is usually only necessary to retrieve either one or all of a
particular attribute. This makes hash-based partitioning more
attractive.

SPARQL queries are usually of an analytical nature: that is, it is
rare for an operation to request or update a single record in an
RDF database, in contrast to On-Line Transaction Processing
(OLTP) systems. The workload is somewhat closer to On-Line
Analytical Processing (OLAP), except that there are few enough
columns in the schema to maintain a covering index, and there
may be an expectation that there are ongoing rather than simply
bulk updates to the store.

5.2 Overall System Structure
Figure 1 shows an example network topology for clustered
TDB. Within this diagram, there are two types of machine:

* Query Coordinator (QC): Query coordinators are
responsible for receiving queries, transforming them
into a canonical form (including transformation of URIs
and literals to NodelDs), producing a query plan, and
controlling execution on the data nodes. Query
coordinators store the distributed Node/NodelD
mapping table, and any relevant statistical information.

¢ Data Node (DN): Data nodes are responsible for storing
the node table and triple indexes, extracting data as
required from them, and performing operations such as
sorts, joins, and so on.

Query Query
Coordinator Coordinator
Swrtch
Switch
SWItCh Data Node
Data Node
Data Node
Data Node Data Node

Figure 1. Clustered TDB Network Topology

The rationale behind choosing a layout like this is that it is
expected that it will be necessary to maintain a large amount of
statistical data and Node/NodeID mappings. Sharing this between
as few machines as possible reduces latencies since QCs can be
closely colocated, and it is more likely that a given machine will
already have a piece of data.

5.3 Balancing and Fault Tolerance

Allowing rebalancing is a fundamental requirement for this
application. Clustered TDB uses a traditional technique for
allowing easy rebalancing, regardless of distribution method:
Clustered TDB deals with virtual processing nodes (or
vnodes). A given machine can be responsible for a quantity of
vnodes, and a registry of where each is located is stored on every
machine. When it is necessary to rebalance, a vnode's files can
simply be moved from one server to another, and the registry
updated.

Each of the distributed node table, Node/NodelD mapping index,
and triple indexes has a different vnode space. This allows a
greater degree of flexibility in distributing data and eliminating
skew. The use of virtual processing nodes enables a simple
solution for redundancy and fault tolerance: mirroring of
vnodes. This offers a finer grain of replication than simple server
cloning: to prevent the inefficiencies of machine-level cloning,
mirrored vnodes can be distributed in a different manner to the
primary copy.

5.4 NodelDs

NodelDs in TDB are comprised of a byte of type information,
used for storing certain literal values inline, and 7 bytes of index
into the node table file. These IDs are not suitable for a clustered
store without modification, since the cluster will have multiple
node files, and the NodeID will thus not encode a known unique
location. The solution to this is an additional field: the vnode id in
which the node is stored. This is illustrated in Figure 2:

12 bits—p

€8 bits4 44 bit 4

Type Disk location vnode

64 bit:

-~
A 4

Figure 2. NodeID composition

This scheme allows nodes to be unique, yet still act as a direct
index into a node file. Future ID schemes may use a single bit to
indicate whether the ID is an inline literal or not, combined with a
smaller index into the file. This would allow a reduction in
NodelD size, and hence smaller, more cache friendly
indexes. This change would break code compatibility with
standalone TDB, however.

5.5 Distributing the Node/NodelD Index

The proposed mechanism for partitioning the Node/NodelD
mapping index is quite traditional, using a simple hash
distribution scheme. Each entry in the index is comprised of the
hash of a node and a NodeID. A vnode is decided for the entry
based on the node hash modulated by the number of vnodes.

Hash distribution is the obvious choice for this case: the attribute
that is being partitioned on is already a hash value, so any sense of
data clustering has already been removed, eliminating the major
justification for range partitioning. Hash partitioning should give
an even distribution of information, and any hotspots can be
eliminated using vnode rebalancing.

5.6 Distributing the Node Table

The node table has a less conventional distribution method. When
data is being asserted, the Query Coordinator decides a vnode to
send nodes to based on any given distribution mechanism, and
sends the nodes to that vnode. The DN hosting the vnode then
generates IDs for the nodes, returns them to the QC, and stores
them in a node table.

A point of particular interest here is that the DN is not obliged to
use the vnode that the QC decided on: it can add the node to any
one of the vnodes it hosts. If it were limited to the vnode chosen
by the QC, then a DN servicing 20 vnodes would be writing to 20
node tables simultaneously, reducing the benefit of TDB's
appending node table. Instead, the DN can decide which vnode to
write node information to, write blocks, and occasionally switch
to another vnode on a round-robin basis. This produces balanced
data, and allows a DN to write to one node table at a time.

Redistribution of the node table is a simple operation: the node
table file related to the relevant vnode is simply copied to another
server, the vnode tables on all the servers updated, and the file
deleted on the original server.

5.7 Distributing Triple Indexes
Triple indexes are distributed in a conventional manner. The
Query Coordinator distributes each triple three times, based on

hashes of S, P, and O. These three distributions correspond to the
three indexes, SPO, POS, and OSP respectively. When a Data
Node receives a triple, it stores it only in the index upon which it
was distributed: that is, a triple distributed on S is inserted only
into the SPO index, and so on. The effect of this is that the data in
indexes on each machine is inconsistent: each machine will have
different triple data each of its indexes. This means that Data
Nodes cannot be queried meaningfully as an entity independent of
the cluster.

5.8 Exceptions

While the described distribution methods are simple and robust,
they do break down in certain cases. Most particularly, certain
properties, such as rdfs:label, have extremely high
cardinalities. A hash distribution scheme, even with vnode
balancing, provides no mechanism for balancing this out. This
leads to the creation of a large hot spot on whatever machine has
to store the vnode containing all the data on rdfs:label.

YARS2[11] worked around this problem by simply flooding
property-ordered triples to all servers, and flooding property-
oriented subqueries to all servers. While this works, it creates a
large unnecessarily large load when answering property-centric
queries - particularly for properties of low cardinality, which
would ideally be stored on a single server.

Clustered TDB's solution to this is an exception list for each
index. These lists, replicated across all servers, allow data related
to a given NodeID to be partitioned by its first two attributes
(optionally across a list of specified vnodes), rather than just the
primary attribute. Queries specifying, for example, PO can still
be answered on a single server, while queries with just a P are
distributed across all (or several) of the servers.

The exception list is expected to be short, and used only when
absolutely required, since its contents are mirrored on every
server. However, it will prove invaluable for these niche cases.

5.9 Operations

Clustered TDB is expected to use the standard techniques for
parallelising operations: pipelining and partitioning, as described
in sections 2.2 and 2.3. The mechanism for distributing
operations fairly must produce a split function that provides an
equitable division of labour. This can be accomplished by adding
load information to the heartbeat messages that let each machine
in the cluster know that other machines are alive, allowing Query
Coordinators to determine servers that are experiencing the least
load and use them.

6. Evaluation

To test the design, a prototype was produced that implemented a
distributed node table and triple indexes, queried by a non-
distributed Query Coordinator. No attempt has been made at this
stage to compare the design to other clustered stores, since the
code has not been optimised, and there is no query optimiser in
the system: the focus of this evaluation is validation of the scaling
characteristics of Clustered TDB's storage layer.

The following tests were performed on standalone TDB, and
Clustered TDB running on 1, 2, and 3 machines:

¢ Load rates
¢ Individual triple pattern, without node retrieval
¢ Individual triple pattern, with node retrieval

* Join tests, without node retrieval

The tests were performed over a synthetically generated dataset
summing approximately 375 million triples, and containing
approximately 4,000 distinct properties. Since the conversion of
NodelDs to Nodes (node retrieval) can easily dominate other costs
in queries that return even moderate numbers of results, this step
is not always performed: this should provide greater insight into
Clustered TDB's performance. Theoretically, both large joins and
node retrieval should offer useful opportunities for parallelisation,
as they require a large number of subqueries.

6.1 Test Configuration
The hardware configuration for these machines was a cluster of
three identical systems. Each of these was specced as follows:

* Quad AMD 880 processors, total 8 cores running at
2.4GHz (64 bit)

e 32GBRAM

¢ 2x 140GB, 10,000RPM disk drives, in RAID 0
configuration

* Gigabit Ethernet
¢ Ubuntu Linux, running kernel 2.6.24

Machine one ran both the QC and a DN. Machines two and three
(when required) each ran a DN. Prior to load and the start of the
read tests, each machine had its disk cache flushed to ensure
results were not prejudiced by earlier activities. Commands used
were as follows:

sync
echo 3 > /proc/sys/vm/drop caches

Prior to the start of the read tests, the system was subsequently
warmed up with a series of single triple pattern matches over the
SPO, POS, and OSP indexes, each of which performed Node to
NodelD conversion.

6.2 Load Rates

This section analyses the load rates achieved when running
Clustered TDB on a cluster of varying size. It should be noted
that the absolute load rates achieved in this section are
significantly slower than would normally be expected, due to a
flaw in the handling of the data file by the TDB code underlying
the prototype. This section does, however, still serve to illustrate
the scaling effects when increasing the size of the cluster. Table 1
shows the overall load rate for the data file for standalone TDB
and for 1, 2, and 3 machines, referred to as CTDB1, CTDB2, and
CTDB3 respectively.

Table 1. Load rates

System Type Average Load Rate (triples/s)
Standalone 6,946
CTDB1 4,276
CTDB2 8,973
CTDB3 12,536

Figure 3 illustrates loading rate over time. Figure 3 does not
include standalone TDB, as it uses an optimised loading process
that is not directly comparable to Clustered TDB. This process
has not yet been implemented in Clustered TDB, and accounts for

much of the difference in load rate between CTDBI1 and
standalone TDB.

30000

25000

20000 \

15000 %

10000 \ %
M

5000 M
10 0 10 10 210 260 30 360
Triples Asserted x1,000,000

Triplesis

—#— 1 Machine —8— 2 Machines —— 3 Machines

Figure 3. Rates of assertion during Clustered TDB load

These tests indicate that loading on Clustered TDB scales
extremely well over small numbers of machines.

6.3 Read Performance

This section describes the tests of read performance that were run
on Clustered TDB, including an explanation of the results. The
read tests for TDB were performed using a test that simulated a
load of 1 and 5 wusers, giving an indication of throughput
scalability.

6.3.1 Individual Triple Pattern

An individual triple pattern, retrieved without NodeID to Node
translation is the basic unit of a query, and can usually be
retrieved quickly the node will be located on a single file on one
server. It is not necessarily expected that there will be significant
improvements in performance in a non-loaded situation, as only
one machine will be performing work. Tests were performed that
tested each of the subject, predicate, and object indexes, with
Table 2 showing the results for a load of one user, and Table 3
showing the results for five:

Table 2. Reading individual triple patterns (1 user)

Note that, since predicates generally have a much higher
cardinality than subjects or objects, the predicate-centric tests are
slower than subject-or object centric ones. These results show a
general improvement in performance as the number of machines
increases, particularly when the system is under higher throughput
load. The performance of the predicate-centric tests is particularly
notable, since clustered TDB even in a one machine configuration
is much faster than standalone TDB. This is probably due to the
horizontal partitioning effect that the use of vnode partitioning
creates: index depths are lower in Clustered TDB.

6.3.2 Individual Triple Pattern With NodelD to Node

conversion

This test measures NodeID to Node conversion. Since each
NodelD to Node conversion is a separate operation, this test is
highly parallelisable, and it should be expected that performance
will improve significantly as the number of machines increases.
Tables 4 and 5 detail the results.

Table 4. NodelID to Node tests (1 user)

System SPO Index POS Index OSP Index
Type (ms) (ms) (ms)
Standalone 398 122609 349
CTDBI1 700 229453 550
CTDB2 433 172543 312
CTDB3 355 120815 333

Table 5. NodelD to Node tests (5 users)

System SPO Index POS Index OSP Index
Type (ms) (ms) (ms)
Standalone 1715 246026 1006
CTDBI1 3208 813783 2183
CTDB2 1594 372920 762
CTDB3 1312 281082 878

System SPO Index POS Index OSP Index
Type (ms) (ms) (ms)
Standalone 439 21530 512
CTDB1 361 1733 483
CTDB2 187 1958 264
CTDB3 178 1821 363

Table 3. Reading individual triple patterns (5 users)

System SPO Index POS Index OSP Index
Type (ms) (ms) (ms)
Standalone 1904 65602 2205
CTDB1 1784 6648 2053
CTDB2 664 6879 672
CTDB3 647 5617 628

These tests show generally useful scaling within Clustered TDB,
particularly as the throughput load increases. It is noticeable that
standalone TDB often outperforms Clustered TDB in this test. It
is likely that this can be attributed to inefficient netcode within the
Clustered TDB prototype: while some effort is made to batch
process subqueries to make efficient use of network resources,
each vnode is communicated with as a separate entity, even if it is
located on the same server as many vnodes. This results in an
unnecessarily large number of threads of communication, and the
costs associated with these small queries can cause slowdown.

An example of how seriously skew can affect overall system
performance was discovered during this phase of the
evaluation. Initially, Clustered TDB's NodelDs were formed of 8
bits type, followed by 12 bits of vnode id, and 44 bits file
index. Tests showed that queries of the form ?s <p> ?0 were
exhibiting virtually no improvement in performance as the cluster
had more machines added.

The reason for this poor performance was the fact that triple
matches were emitted from the POS index in sorted order. Since
the vnode ID bits were higher order than the disk address, all of
the NodelDs which had mappings stored on vnode ID n would
return before the mappings in vnode ID n+1. This resulted in a

complete lack of parallelism when mapping NodelDs to
Nodes. Since this was the dominant cost in the query, the system
did not improve in performance as the cluster scaled up. This
effect was not as noticeable on subject or object oriented queries,
because these tend to produce fewer results, and thus all the
NodelD to Node conversions necessary could fit inside a single
batch operation. The solution to this problem was to place vnode
IDs after the disk address in the NodelD.

6.3.3 Join tests

This section details the performance of index joins on Clustered
TDB, simulating the joins that are performed during SPARQL
queries.

Join 1 is comprised of queries similar in form to "Select all the
people in the system who like cheddar and live in Southampton",
or:

SELECT ?person WHERE {?person <likes-cheese>
<cheddar> ?person <lives-in> <Southampton>

-}

This test is extremely simple, with the first triple pattern of each
query in the set typically matching 4-10 results, and the join as a
whole processing up to 15 records. The fact that multiple results
are returned from the first triple pattern means that multiple
threads can be launched to answer all the following subqueries
that make up the index join, meaning that this test is typically
somewhat parallelisable. It is, however, small enough that
speedup as the cluster increases in size is limited.

Table 6. Join test 1

SELECT ?book ?p 2?0 WHERE {?book <type>
<book> ?book ?p 20}

This query typically matches around 6,000 results on the first
triple pattern, and around 90,000 overall. This query ought to be
highly parallelisable, but interestingly shows poor results on
mulit-machine systems. This result is a topic for further
investigation.

Table 8. Join test 3

System Type 1 User (ms) 5 users (ms)
Standalone 1579 18414
CTDBI 3066 21082
CTDB2 7055 49108
CTDB3 6287 36051

Join 4 is comprised of queries similar in form to "Who else likes
books that Alisdair likes?", or:

SELECT ?person ?book WHERE {<Alisdair>
<likes-book> ?book ?person <p> ?book .}

This query typically matches 2-10 results on the first triple
pattern, and up to 25 results overall. This query is somewhat
parallelisable, but due to the low cardinality of the first triple
match is not expected to scale to large numbers of machines.

Table 9. Join test 4

System Type 1 User (ms) 5 Users (ms)
Standalone 379 201
CTDBI 297 319
CTDB2 114 135
CTDB3 122 124

System Type 1 User (ms) 5 users (ms)
Standalone 379 1044
CTDBI 297 1115
CTDB2 114 402
CTDB3 122 485

Join 2 is comprised of queries similar in form to "For each person
in the system, find the books that they like, and the interests they
have", or:

SELECT ?person ?some-book ?some-interest
WHERE {?person <likes-book> ?some-book
?person <has-interests> ?some-interest .}

For the given dataset, this query typically matches approximately
50,000 results on the first triple pattern, and returns around 70,000
records overall. The large number of matches in the first triple
pattern make this query highly parallelisable, and this is borne out
by the results detailed in Table 7.

Table 7. Join test 2

Join 5 is comprised of queries similar to "who else feels about
anything the same way Alisdair feels about food?", or:

SELECT ?s ?p 2?0 WHERE {<Alisdair> ?p <food>
?s ?p 70 .}

This query typically matches only a single result in the OSP
index, and 15,000-40,000 in the POS index. It is not expected to
parallelise well because each of the triple patterns can be matched
from a single file on a single machine, and this expectation is
borne out in the results. In a fully-featured prototype, the
exceptions mechanism described in section 5.8 would offer a
mechanism to spread such high cardinality properties across the
cluster, enhancing parallelism.

Table 10. Join test 5

System Type 1 User (ms) 5 users (ms)
Standalone 131273 155147
CTDBI 133023 133963
CTDB2 62756 87676
CTDB3 50883 64518

System Type 1 User (ms) 5 users (ms)
Standalone 3491 4530
CTDBI 696 2446
CTDB2 966 2320
CTDB3 1020 1401

Join 3 is comprised of queries similar in form to "Tell me

everything about every book in the system", or:

7. Future Work

Beyond the full implementation of the design specified in this
paper, we have two major goals for future work: enabling efficient
distributed query optimisation, and exploration of different
indexing techniques. TDB's current comprehensive indexing
strategy is workable for triple storage, but becomes less practical
when considering the additional dimensions required to store
graph names and temporal information.

To mitigate this problem, we propose to investigate single-index
solutions such as space filling curves[15]. Since related data in
these indexes cannot be perfectly contiguous on disk, high latency
disk based systems currently impair the practicability of such
methods. However, as low latency solid state disks become
increasingly practical, indexing mechanisms such as these may
prove extremely worthwhile.

8. Conclusion

RDF stores suffer from issues with poor read and write
performance. This paper has presented a review of techniques to
enable the storage and querying of RDF over multiple machines,
as a means of working with the large volumes of RDF that are
inevitable as more and more information is encoded into semantic
languages.

This paper contributes the design of Clustered TDB, a system that
implements many of the techniques described in this review. The
evaluation of the prototype so far has shown that Clustered TDB
offers near linear scaling characteristics with respect to load times,
and shows expected characteristics with respect to speedup and
scaleup. Further, the design offers many useful characteristics:
fault tolerance through vnode mirroring, a variety of mechanisms
for addressing issues such as skew, and a mechanism to distribute
properties fairly throughout the cluster. Further, Clustered TDB
offers the ability to rebalance more cheaply than other clustered
stores. As the Semantic Web scales up, clustered RDF stores such
as Clustered TDB will make it possible to query very large
volumes of data.

9. REFERENCES

[1] Abadi, D., Marcus, A., Madden, S. and Hollenbach, K.
Scalable Semantic Web Data Management Using Vertical
Partitioning. Proc. VLDB.

[2] Boral, H. Parallelism in Bubba Databases in Parallel and
Distributed Systems, 1988. Proceedings. International
Symposium on, 1988, 68-71.

[3] Boral, H., Alexander, W., Clay, L., Copeland, G., Danforth,
S., Franklin, M., Hart, B., Smith, M. and Valduriez, P.
Prototyping Bubba, a highly parallel database system. IEEE
Transactions on Knowledge and Data Engineering, 2 (1).
4-24.

[4] Borthakur, D. The Hadoop Distributed File System:
Architecture and Design.
http://hadoop.apache.org/core/docs/current/hdfs_design.
html, 2008.

[5] Carroll, J.J., Dickinson, 1., Dollin, C., Reynolds, D.,
Seaborne, A. and Wilkinson, K. Jena: implementing the
semantic web recommendations. International World Wide
Web Conference. 74-83.

[6] Chris Bizer, A.S. Berlin SPARQL Benchmark Results.
http://www4.wiwiss.fu-
berlin.de/bizer/BerlinSPARQLBenchmark/results/index.html
,2008.

[7] Dean, J. and Ghemawat, S. MapReduce: Simplified Data
Processing on Large Clusters.

[8] DeWitt, D.J. and Gray, J. Parallel Database Systems: The
Future of High Performance Database Processing.
University of Wisconsin-Madison, Computer Sciences Dept.,
1992.

[9] Erling, O. and Mikhailov, I. Towards Web Scale RDF,
ISWC2008 submission.
www.openlinksw.com/weblog/oerling/2008iswc_webscale r
df.pdf, 2008.

[10]Harris, S. SPARQL query processing with conventional
relational database systems.

[11]Harth, A., Umbrich, J., Hogan, A. and Decker, S. YARS2: A
Federated Repository for Querying Graph Structured Data
from the Web.

[12]Hayes, P. RDF Semantics, http://www.w3.org/TR/rdf-mt/,
2004.

[13] Hua, K.A. and Lee, C. An adaptive data placement scheme
for parallel database computer systems Proceedings of the
sixteenth international conference on Very Large
Databases, 1990, 493-506.

[14]Khan, M., Paul, R., Ahmed, I. and Ghafoor, A. Intensive
Data Management in Parallel Systems: A Survey.
Distributed and Parallel Databases, 7 (4). 383-414.

[15]Lawder, J.K. and King, P.J.H. Using Space-Filling Curves
for Multi-dimensional Indexing. proceedings of the 17th
British National Conference on Databases (BNCOD 17),
1832.20-35.

[16] Prudhommeaux, E. and Seaborne, A. SPARQL Query
Language for RDF. W3C Candidate Recommendation.
World Wide Web Consortium, April 2008.

[17]Smith, D.A., Owens, A., schraefel, m., Sinclair, P., Andre,
P., Wilson, M., Russell, A., Martinez, K. and Lewis, P.
Challenges in Supporting Faceted Semantic Browsing of
Multimedia Collections.

[18] Stonebraker, M. The Case for Shared Nothing. Database
Engineering Bulletin, 9 (1). 4-9.

[19]Wilkinson, K., Sayers, C., Kuno, H. and Reynolds, D.
Efficient RDF Storage and Retrieval in Jena2. Proceedings
of SWDB, 3. 7-8.

