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ABSTRACT

The mean of a data set is one trivial representation of data
from one class. Recently, mutual interdependence analysis
(MIA) has been successfully used to extract more involved
representations, or “mutual features”, accounting for samples
in the class. For example a mutual feature is a speaker signa-
ture under varying channel conditions or a face signature un-
der varying illumination conditions. A mutual representation
is a linear regression that is equally correlated with all sam-
ples of the input class. We present the MIA optimization cri-
terion from the perspectives of regression, canonical correla-
tion analysis and Bayesian estimation. This allows us to state
and solve the above criterion concisely, to contrast the MIA
solution to the sample mean, and to infer other properties of
its closed form, unique solution under various statistical as-
sumptions. We define a generalized MIA solution (GMIA)
and apply MIA and GMIA in a text-independent speaker veri-
fication task using the NTIMIT database. Both methods show
competitive performance with equal-error-rates of 7.5 % and
6.5 % respectively over 630 speakers.

Index Terms— Algorithms, Signal Processing, Pattern
Classification, Signal Analysis, Speaker Recognition.

1. INTRODUCTION

Statistical signal processing methods such as Fisher’s linear
discriminant analysis (FLDA) [1], canonical correlation anal-
ysis (CCA) [2] or ridge regression [3] aim to model or ex-
tract the essence of a dataset. The goal is to find a simplified
data representation that retains the information that is neces-
sary for subsequent tasks such as classification or prediction.
Each of the methods uses a different viewpoint and criteria
to find this “optimal” representation. For instance FLDA is
used to reduce the dimensionality of a dataset by project-
ing data points on a space that maximizes the quotient of
the between- and within-class scatter of the training data. In
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this way, FLDA aims to find a simplified data representation
that retains the discriminant characteristics for classification.
On the other hand, CCA assumes one common source in two
datasets. The dimensionality of the data is reduced by retain-
ing the space that is spanned by pairs of projecting directions
in which the datasets are maximally correlated. In contrast to
this, ridge regression finds a linear combination of the inputs
that best fits a known optimal response.

In this paper, we are interested in alternative criteria to
extract an “optimal” dataset representation. We aim to extract
an invariant representation of high dimensional instances of
a single class. An approach that has been designed for this
purpose is mutual interdependence analysis (MIA) ([4], [5]).
We introduce MIA in section 2. In section 3 we relate MIA to
CCA and FLDA to derive a more elegant MIA criterion. Sec-
tion 4 is used to interpret MIA from a Bayesian perspective,
to illustrate similarities and differences from ridge regression,
and to find a generalized MIA solution (GMIA). In section
5 we apply MIA and GMIA to a text independent speaker
verification problem. We achieve equal-error-rates (EERs) of
7.5 % and 6.5 % respectively for the full NTIMIT database
[6] of 630 speakers. The paper concludes with a summary of
our approaches and directions for future work.

2. MUTUAL INTERDEPENDENCE ANALYSIS

Throughout this paper, x(p)
i ∈ RD denotes the ith input vec-

tor, i = 1 . . . N (p) in class p. Furthermore, we use X(p) ⊆ X
to represent a matrix with columns x(p)

i and X to denote
the matrix with columns xi of all classes K. Moreover,
µ = 1

N

∑N
i=1 xi, 1 is a vector of ones, Y = X − µ · 1T and

I represents the identity matrix. The remaining notation will
be clear from the context.

Assume that we wish to find a class representation w(p) of
high dimensional data vectors x(p)

i

(
D ≥ N (p)

)
. A common

first step is to select features and reduce the dimensionality of
the data. However, because of possible loss of information,
this preprocessing is not always desirable. Therefore, we aim
to find a class representation of similar or same dimensional-
ity as the inputs.



The quality of such a representation can be evaluated by
its correlation with the class instances. Our intuition is that
a superior class representation is highly correlated and also
has small variance of the correlations over all instances in the
class. The former condition ensures that most of the energy
in the samples is captured. The latter condition is indicative
of membership in a single class. Note that only vectors in the
span of the class vectors contribute to the cross-correlation
value. Therefore, in the absence of prior knowledge, it is rea-
sonable to constrain the search for a class representation w to
the span of the training vectors w = X(p) · c, where c ∈ RN .
This problem definition is the motivation for the MIA crite-
rion proposed in [4].

The MIA result is defined as a direction w(p)
MIA that mini-

mizes the projection scatter of the class p inputs:

w(p)
MIA = arg min

w,w=X(p)·c

(
wT ·Y(p) ·Y(p)T

·w
)

(1)

Note that the original space of the inputs spans the mean sub-
tracted space plus possibly one additional dimension. By
searching in the span of the original rather than mean sub-
tracted inputs, a closed form solution of (1) can be found [4]:

w(p)
MIA = ζX(p) ·

(
X(p)T

·X(p)
)−1

· 1 (2)

where ζ is a constant. The mathematical structure of this MIA
solution has striking similarity with linear regression. Section
4 shows which assumptions distinguish the two problems.

3. ALTERNATIVE MIA CRITERION

In this section we will motivate the design of an alternative to
(1), an unconstrained MIA criterion.

3.1. CANONICAL CORRELATION ANALYSIS

If two datasets X ∈ RD×N and Z ∈ RK×N , of possibly dif-
ferent dimensionality, are influenced by a common source
s ∈ RN , canonical correlation analysis [2] can be used to
extract this inherent similarity. The goal of CCA is to find
two vectors to project the datasets such that their projection
lengths are maximally correlated. Let CXZ denote the cross
covariance matrix between the datasets X and Z. The CCA
problem is given by maximization of the objective function:

J(a,b) =
aT ·CXZ · b√

aT ·CXX · a ·
√

bT ·CZZ · b
(3)

over the vectors a and b. The intuition is that the maximally
correlated projections XT ·a and ZT ·b represent an estimate
of the common source.

Canonical correlation analysis can be used to extract clas-
sification relevant information from a set of inputs. Indeed, let

X be the union of all data points, Z the table of corresponding
class memberships, k = 1, . . . ,K and i = 1, . . . , N :

Zki =
{

1, if xi ∈ X(k)

0, otherwise.

The intuition is that all classification relevant information is
represented by the classification table. Therefore, this infor-
mation is retained in those input components of X that origi-
nate from a common virtual source with the classification ta-
ble. As shown in [7], [8], [9] and [10], this constrained CCA
problem is equivalent to Fisher’s linear discriminant analysis.

3.2. A NEW VIEW ON MIA

The CCA problem can be modified to extract an invariant sig-
nal from inputs of a single class. One interpretation of CCA
is from the point of view of the cosine angle between the (non
mean subtracted) vectors aT · X and ZT · b. We will use a
modified CCA (MCCA) criterion as follows: First, consider
the original inputs rather than the mean subtracted covariance
matrices; Second, ZT · b = 1, the class membership table
for data from a single class. It can be seen that criterion (3)
becomes independent of b. It represents a solution âMCCA:

âMCCA = arg max
a,a=X(p)·c

aT ·X(p) · 1√
aT ·X(p) ·X(p)T · a

(4)

This criterion is maximized when the correlation of a with
all inputs x(p)

i is as uniform as possible. The solution to this
problem can be shown to be:

a = αX(p) ·
(
X(p)T

·X(p)
)−1

· 1 (5)

with α = aT ·X(p)·X(p)T ·a
aT ·X(p)·1 . Note that α is a scalar that results

in scale independent solutions. As can easily be seen, the
solution (5) of the modified CCA problem in (4) is identical
to the MIA solution in (2). Thus, one can easily argue for the
equivalence of the MCCA and MIA criteria.

The new formulation (4) of MIA highlights its properties:

Corollary 3.1. The MIA problem has no solution if the inputs
are zero mean i.e., if X(p) · 1 = 0.

This is obvious from (4).

Corollary 3.2. Any combination âMCCA + b with b in the
nullspace of X(p) is also a solution to (4).

This means that only the component of a that is in the
span of X(p) contributes to the criterion in (4).

Corollary 3.3. The solution of (4) is not unique if the N in-
puts X(p) do not span the D-dimensional space.

This follows from corollary 3.2. A unique solution can be
found by further constraining (4). One such constraint is that
a be a linear combination of the inputs X(p).



Corollary 3.4. The MIA solution reduces to the mean of the
inputs in the special case when the covariance of the data
CXX has equal eigenvalues.

Indeed, (4) can be rewritten as:

âMCCA = arg max
a,a=X(p)·c

aT · µ(p)√
aT ·C(p)

XX · a +
(
aT · µ(p)

)2 (6)

After normalizing a = X(p)·c
‖X(p)·c‖ and using the spectral de-

composition theorem [11], it can be shown that aT ·C(p)
XX · a

is invariant to a. The function in (6) is monotonically increas-
ing in aT · µ(p). Therefore, the optimum of (6) is obtained
when aT ·µ(p)

‖a‖ is maximum. This means âMCCA = µ(p).

4. A BAYESIAN MIA FRAMEWORK

In this section we motivate and analyze MIA from a Bayesian
point of view. This allows us to find a generalized MIA for-
mulation that can incorporate uncertainties and other prior
knowledge. Furthermore, we show which assumptions dis-
tinguish MIA from linear regression.

The general linear regression model is y = X · β +n. As
discussed in [12], the expected value E {β|y} from the con-
ditional probability p(β|y) can be introduced as a biased es-
timator of β. Let n ∼ N(0,Cn) and β ∼ N(µβ ,Cβ) be in-
dependent Gaussian variables. Also, let p(y) = N(µy,Cy)

and p(y, β) = N
([ µy

µβ

]
,
[

Cy Cyβ

Cβy Cβ

])
. After a few mathe-

matical transformations (see [12]), the posterior expectation
of β given y is found to become:

E {β|y} =

= µβ +
“
XT · C−1

n · X + C−1
β

”−1

· XT · C−1
n · (y − X · µβ)

(7)
Ridge regression follows from this result by further as-

suming µβ = 0, Cβ = σ2
β I and Cn = σ2

n I:

βRIDGE =

(
XT ·X +

σ2
n

σ2
β

I

)−1

·XT · y

Ridge regression is a generalization of the least squares so-
lution to the regression problem and helps when XT · X is
not full rank or where we have numerical instability. Ridge
regression assumes availability of the desired output y to
aid the estimation of a weighting vector β. Thereafter, β
is used to predict future outcomes of y. In contrast to this,
MIA aims to extract y ≡ w such that the expectations of
y’s correlation with the high dimensional inputs are equal
E
{
XT · y

}
= ζ 1. By left-multiplying the linear model with

XT and substituting XT · y with g, X · β with w and XT · n
with f , the model becomes:

g = XT ·w + f (8)

In the following, let us assume that w ∼ N(µw,Cw)
and f ∼ N(0,Cf ) are independent Gaussian variables and
g ∼ N(ζ 1,Cg). Note, the independence of w and f is im-
plied by the previous assumptions on β and n. We can find
a generalized MIA criterion (GMIA) by using an equivalent
derivation to (7) and replacing g with its expectation:

wGMIA =

= µw + Cw · X ·
`
XT · Cw · X + Cf

´−1 ·
`
ζ 1 − XT · µw

´
= µw +

`
X · C−1

f · XT + C−1
w

´−1 · X · C−1
f ·

`
ζ 1 − XT · µw

´
(9)

Equation (9) suggest various properties of MIA. Note that
the first line becomes identical to (2) if Cw = I, µw = 0 and
Cf = 0. In general it is desirable that the MIA representation
be robust to small variations in X (e.g., due to noise). Equa-
tion (9) indicates when small variations in X do not have a
large effect on the GMIA result. Furthermore, (9) allows us
to integrate additional prior knowledge such as smoothness
of wGMIA through the prior Cw, correlation of consecutive
instances xi through the prior Cf etc. Moreover, we can use
the GMIA formulation to define an iterative procedure that
tackles datasets with large N and D. In this case it might be
unfeasible to compute the matrix inverse. By using subsets
of the input data, one can iteratively compute µw as a MIA
representation of the whole dataset from smaller subsets.

5. APPLICATIONS OF MIA

Possible MIA applications include novelty detection, classifi-
cation, dimensionality reduction and feature extraction. MIA
can be used when it is desirable to extract a single represen-
tation from a set of high dimensional data vectors. Such high
dimensional data is common in the fields of audio and image
processing, bioinformatics, spectroscopy etc. The usefulness
of MIA was already shown on challenging real world appli-
cations such as illumination robust face recognition and text
independent speaker verification [5], where performance is
competitive with well studied approaches such as Gaussian
mixture models, kernel PCA and FLDA.

The key to an effective application of MIA is the transfer
of the input data to a space in which the assumed linear model
in (8) holds. For example, as discussed in [5], in speaker ver-
ification this is the case for voiced speech in the logarithmic
Fourier domain. Next, in contrast to previous work, we use
different input feature and preprocessing. It can be argued that
the new feature x(p)

i = log(abs(IFFT(DCF(FFT(s(p)
i )))))

also fits the MIA model for voiced speech s(p). The NTIMIT
database consists of 10 utterances per person that are classi-
fied in three different text types. In contrast to [5], the voiced
segments are extracted for each utterance individually. We
use every other utterance to learn a MIA/GMIA signature
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Fig. 1: Processing chain for text-independent speaker verification
using GMIA

Table 1: MIA and GMIA performance comparison using various
NTIMIT database segments.

Method EER [%] Identification [%] Number of Speakers Comments
6.0 52 168 Only test section used

GMIA 6.9 39 438 Only male speakers used
6.5 37 630 Full database used
6.9 48 168 Only test section used

MIA 8.4 35 438 Only male speakers used
7.5 32 630 Full database used

MIA [5] 6.8 56 168 50-50 partitioning for
training and testing

GMM [13] 7.2 69 168 Similar/dissimilar
speakers excluded

GMM [14] 9.6 N/A 168 Only test section used

GMM [15] 12.4 N/A 168 Only test section used
8.8 630 Full database used

Phoneme 15.7 N/A 438 Only male speakers usedGMM [16]

of each speaker in order to vary the text type composition.
To achieve a high spectral resolution and for improved com-
parability to previous results, we choose a window size of
one second. This induces high dimensional data vectors of
D = 6800. Additionally, we use a background speaker
model to improve our classification performance. For GMIA
we assume µw = 0, Cw = I and Cf = ∆T · ∆ with
∆ ∈ R(N−2)×N being a tridiagonal Toeplitz matrix with
backward shift elements [1,−2, 1]. The procedure that has
been used to extract GMIA speaker signatures is illustrated in
Fig. 1.

The new speaker verification EER results of MIA and
GMIA are presented in Table 1 lines 1 and 2, column 2. These
are competitive with other results from the literature including
state-of-the-art Gaussian mixture model (GMM) approaches
on challenging noisy data (see lines 3-7 in Table 1). The over-
all EER drops lower if the database includes both male and
female speakers. For comparability with previous results in
the literature we also include the identification rates of the
algorithms in column 3. The identification rate of our MIA
and GMIA implementation is below the state-of-the-art GMM
approaches ([13] reported 60.7 % identification rate on the
full 630 speakers of the NTIMIT database). We expect that
this gap between the identification performances can be re-
duced by an improvement of the currently used background
model. Moreover, the performance can be further optimized
as a function of the window size, feature length, design etc.

6. CONCLUSION

The goal of MIA is to compute a unique invariant or charac-
teristic of a dataset that can be used in class recognition prob-
lems. By definition, the MIA invariant is a linear combination
of class examples that has equal correlation with all the train-
ing samples in the class. Another equivalent view is to find
a direction to project the dataset such that projection lengths
are maximally correlated. Both goals have MIA as unique
solution. This paper discusses similarities of MIA with re-
gression, Bayesian estimation and a modified CCA approach.
Each brings insights into the value and properties of MIA.
Furthermore, a general MIA solution (GMIA) is found. The
performance of both MIA and GMIA is shown to be competi-
tive to other modern algorithms. Future work will investigate
statistical properties of MIA for a large number of inputs and
computational tractability in large dimensions.
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