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Abstract

Over the last few years, target tracking in wireless sen-
sor networks has become a topic of particular interest. This
paper presents a tracking system intended for deployment in
distributed Wireless Sensor Networks. The approach is in-
spired from the concept of deploying sensor nodes in an ad-
hoc manner and based on the aggregate amount of informa-
tion they provide, perform tracking of mobile objects. Static
sensor nodes, with known locations, act as anchor nodes
providing range-only measurements at each time step. The
proposed system is modeled using a nonlinear state-space
model which reflects a real world tracking scenario. The
batch of range measurements made available at each sam-
pling step, is used to estimate the target’s desired kinematic
properties. In order to infer the state of the target at each
time step, a Particle Filter algorithm has been designed to
approximate the required posterior distribution of the state
vector. The system’s operation was simulated and execution
examples demonstrate the algorithm’s accuracy as well as
the ability to effectively cope with manoeuvring targets.

1. Introduction

The ability to accurately estimate the trajectory of a
ground moving target is of great importance for a number of
application areas. Military surveillance systems, industrial,
personnel and wildlife monitoring systems require tracking
schemes, capable of inferring the kinematic characteristics
(eg. position, velocity, acceleration) of one or more targets
of interest. To infer the target’s kinematic characteristics,
a certain modality must be measured and mathematically
associated to them. An example is the Received Signal
Strength Indication (RSSI) measured in a sensor, which can
be associated with the relative distance between the sensor
and the signal source. Another such modality is the Doppler
effect which is extensively used in RADAR systems.

Wireless Sensor Networks (WSNs), constitute of a num-

ber of low power hardware platforms known as “motes”
[11], capable of performing limited computation, sensing
the environment and communicating through a wireless
link. WSNs are considered to be suitable for a broad spec-
trum of application areas. Typical application examples for
WSNs, include environmental and industrial monitoring,
motion detection and target tracking, smart home environ-
ments and health applications [1].

In recent years, tracking ground mobile targets with
WSN has attracted considerable research interest [10, 17].
In [10] a military surveillance and tracking system, formed
in a large scale (>200 nodes) WSN, is presented. The sys-
tem’s mission is to detect a military target which intrudes
into the monitored area and effectively classify the intruder,
based on readings received by three sensor types. A similar
scenario is considered by Arora et.al in [2], where a pulse
radar among other sensors is incorporated on WSN nodes
to provide classifying measurements.

This paper discusses a novel approach to implementing
target tracking in a WSN. It differs from from other ap-
proaches where the tracking algorithm runs on single node
data [12, 17]. Our algorithm relies on accumulated data
from a small number of nodes. The results obtained reveal
that, very good accuracy can be achieved by employing a
low complexity Particle Filter tracking algorithm and com-
bining data from a number of nodes.

The remainder of the paper is structured as follows. Sec-
tion 2 presents the related work in the area, followed by the
problem formulation in Section 3. Section 4 describes the
range-only tracking algorithm that is proposed in this pa-
per and simulations evaluate its performance in the sequel.
Concluding remarks are discussed in the final section.

2. Background

Particle Filters (PF) are a class of recursive Bayesian es-
timation filters, based on Sequential Monte Carlo methods
[9]. PF have proved, to be able to handle efficiently nonlin-
ear system models which are often utilized in tracking sce-



narios. In several tracking applications PF have performed
substantially better than other known nonlinear filters like
the Extended Kalman Filter (EKF) or Grid Based Methods
[3]. PF approximation of the posterior probability density
function (pdf) is achieved by representing the respective pdf
with a set of particles and their corresponding weights. Par-
ticles are sampled from a proposal density function accord-
ing to the Sequential Importance Sampling (SIS) method.
PF have been investigated for implementation is a vast num-
ber of application areas. From tracking and navigation to
econometric estimation [13]. The flexibility they offer ren-
ders PF an ideal alternative in estimation problems involv-
ing nonlinear models.

As stated earlier, tracking ground mobile targets using a
network of cooperating sensor nodes has attracted substan-
tial research interest. Subsequently, PF have been proposed
in scenarios where tracking is performed by low power, re-
source constrained WSN nodes. One of the most impor-
tant aspects of implementing PF on WSNs hardware is their
computational complexity which sometimes can be pro-
hibitive, for implementation in hardware with limited pro-
cessing ability. The complexity of the PF algorithms in-
creases if complex state space equations are chosen to rep-
resent the system model, or a large number of particles is
chosen to represent the pdf.

Examples of PF algorithms for tracking in WSNs are de-
scribed at [15, 14, 7]. Two distributed PF tracking algo-
rithms for sensor networks are presented in [5, 6]. Each
node maintains a current belief of the posterior distribution
of the state and updates this belief based on data from its
sensors. This candidate state is then forwarded to the next
tracking node. This approach results in a high communica-
tion overhead and requires the execution of complex com-
putations by resource limited nodes. Tracking with a net-
work of range and radar sensors is proposed in [4].

Range-Only Tracking is considered to be a hard prob-
lem, mostly because global system observability may not
exist [16]. Nevertheless, tracking of mobile targets with
range-only measurements can be achieved if more than one
observers provide range estimates. This particular concept
reflects the fundamental concept of WSNs. Multiple nodes
act as observers, providing a range signature of the target.
A single node would be incapable of performing any kind
of tracking with range measurements. On the contrary, a
group of nodes can provide an adequate amount of infor-
mation and ensure observability, for an effective range-only
tracking algorithm to be designed. Recently in [12] a dis-
tributed hybrid tracking algorithm is proposed, which com-
bines a PF and a Probabilistic Data Association Filter. The
complexity of this algorithm is relatively high. The authors
belief is that, similar accuracy can be achieved using lower
complexity algorithms.

3. Problem Formulation

We form our system using a state-space model. An ar-
bitrarily deployed network consisting of Ns sensor nodes is
considered. The state vector contains the object’s planar co-
ordinates (x,y) and velocities (vx,vy) along the x-axis and
the y-axis. Thus:

x = [x vx y vy]T . (1)

The state of the target evolves in time according to the
following discrete time stochastic model:

xk = Fxk−1 + Γwk−1 (2)

The measurements, made available at each time step,
are associated to the state vector via the measurements
equation:

zk = h(xk,vk) (3)

• where time index k is discrete: k = 1, 2 . . . ,K

• the matrices F and Γ are defined as follows:

F =


1 Ts 0 0
0 1 0 0
0 0 1 Ts

0 0 0 1

 (4)

and,

Γ =


T 2

s /2 0
0 T 2

s /2
Ts 0
0 Ts

 (5)

• Ts: is the sampling period

• wk−1: represents the system noise and,
vk: represents the measurements noise. Both noise
sources are assumed to have known distributions

• In our case we consider that range measurements from
a number ofNs static sensors become available at each
time step k = 1 . . .K. Hence, the measurements vec-
tor zn,k, where n = 1, . . . , Ns is given from:

zn,k =



√
(yk − y1)2 + (xk − x1)2√
(yk − y2)2 + (xk − x2)2√
(yk − y3)2 + (xk − x3)2

...√
(yk − yNs

)2 + (xk − xNs
)2

 (6)



where (xk, yk) is the x and y coordinate of the target at
time k.

We denote as Zk the vector of range estimates from all
the available sensors up to time k.

In the above definition of the nonlinear system, only a
single mobile target is considered for monitoring. The pro-
posed system model can easily be extended to include mul-
tiple targets.

The posterior probability density function (pdf) of the
state p(xk|Zk) must be constructed in order to infer the sys-
tem’s state vector, thus the target’s position and velocity.

4. ROT-PF Algorithm

In this section we provide insight into the Particle Filter
algorithm we employ, in order to solve the problem ana-
lyzed in the previous section. Particle Filters produce an
approximation of the required pdf using a set of particles
{xi

k, i = 1, 2, . . . , N} and associated weights {wi
k, i =

1, 2, . . . , N}. Particles are initialized from an initial dis-
tribution which describes the uncertainty regarding the ob-
ject’s initial state. Henceforth, particles are sampled from a
proposal distribution q(xk|xk−1). The importance weights
are given from the following relationship:

wi
k ∝

p(Xi
k|Zk)

q(Xi
k|Zk)

(7)

which yields the weights update equation,

wi
k ∝ wi

k−1

p(zk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

k−1, zk)
(8)

Our choice of proposal distribution is the transitional
prior p(xk|xk−1). In this case, weights are calculated from
the likelihood function.

wi
k = p(zn,k|xi

k) (9)

hence the weights update equation is given by:

wi
k ∝ wi

k−1p(zn,k|xi
k) (10)

With the reception of a new measurement vector at each
sampling time the weights are updated and propagated to
the next time step.

At time k, an approximation of the posterior density of
the state is given by:

p(Xk|Zk) ≈
N∑

i=1

wi
kδ(Xk − Xi

k) (11)

Based on the above representation of the state pdf an esti-
mate for the state at time k according to the MMSE criterion
is:

x̂k =
N∑

i=1

xi
kw

i
k (12)

One common problem that PF algorithms encounter is
the degeneracy problem. In practical terms, this means that
after a certain number of iterations, all but one particles will
have negligible weights. The degeneracy problem causes a
substantial amount of computation, to update particles, to
be devoted to particles that have a negligible contribution
to the approximation of the posterior pdf. Degeneracy can
be identified by introducing the effective sample size Neff

defined as follows:

Neff =
1∑N

i=1(w
i
k)2

(13)

To avoid the degeneracy effect in our ROT-PF algorithm we
compareNeff with a certain resampling thresholdNthr and
if resampling is needed, a residual resampling step is carried
out according to [8]. Resampling alleviates the degener-
acy effect by eliminating particles with negligible weights,
while particles with high importance weights are propa-
gated. We choose to perform resampling at every time step.

An iteration of the ROT - PF algorithm at time k is sum-
marized in Table 1:

Algorithm 1 :ROT-PF Algorithm
Initialize
- Draw Initial Particles
for i = 1 to N do

xi
0 ∼ P0 (where ∼ denotes sampling from)

end for
Sequential Importance Sampling Step
- Sample Particles from Importance Density and Calcu-
late Weights using the likelihood function
for i = 1 to N do

xi
k ∼ p(xk|xk−1)
w̃i

k = p(Zk|xi
k)

end for
- Calculate total weight
t =

∑N
i=1 w̃

i
k

- Normalize weights
for i = 1 to N do
wi

k = t−1w̃i
k

end for
Resampling Step
if Neff < Nthr then

- Resample with replacement to obtain N new parti-
cles distributed according to an approximate discrete
representation of p(xk|Z0:k)

end if

5. Simulations

Simulations have been conducted to illustrate the perfor-
mance of our tracking algorithm. We evaluate the perfor-



mance of our algorithm and predict the accuracy that the
tracking system is capable of achieving. A single mobile
target is the object of interest and four anchor nodes pro-
vide range measurements. Several trajectories were sim-
ulated in order to evaluate the algorithms performance in
different motion patterns. Manoeuvring targets were also
considered. The authors envisage a system where nodes are
spread in an ad-hoc manner, localize themselves and then
initiate tracking whenever this is requested. These exam-
ples simulate only the tracking operation and do not make
any implications regarding the nodes deployment or how
the system became aware of the anchor nodes coordinates.

5.1 A scenario of high initial uncertainty
and heavy clutter

A WSN, deployed in the following way, was consid-
ered in the simulation examples. Four anchor nodes have
been deployed to provide ;range-only measurements at each
time step. The coordinates of the anchor nodes are; s1 =
[20, 20], s2 = [20, 60], s3 = [80, 20], s4 = [80, 60]. It
has to be stated that the position of the anchor nodes should
be known for the tracking process. However this does not
implies that the nodes should be placed at predefined posi-
tions.

A single ground mobile targets is considered in our sce-
nario. The target’s state-vector evolves according to Equa-
tion 2 and the measurement are associated with the state
through Equation 6. The sampling period is set to Ts = 1
and the number of particles used in every iteration of the
algorithm is N = 500. The process and measurement addi-
tive noise sources are presumed to follow zero mean Gaus-
sian distributions. The state noise covariance is q = 0.05I2
and the measurement noise covariance is r = 0.5I4 (where
I denotes the identity matrix). The target’s initial state is
x0 = [10 0.4 15 0.3]. Initial particles are sampled from a
Gaussian distribution with zero mean and covariance matrix
P0 which was defined as;

P0 =


22 0 0 0
0 0.52 0 0
0 0 32 0
0 0 0 0.52

 (14)

The simulation time was T = 75 steps. The system was
simulated for a total of L = 100 times. An exemplar run is
illustrated in Fig.1 - trajectory and Fig2 - velocity.

In order to quantify the accuracy of the ROT-PF algo-
rithm, the root mean square error was calculated for every
run;

RMSE =

√√√√ 1
T

T∑
t=1

(x− xest)2 + (y − yest)2 (15)
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Figure 1. True and Filtered target trajectory

The simulated system presents high uncertainty regard-
ing the target’s initial state. Moreover both the state and
measurement noise sources present high variance. We opted
to choose a system, subjected to high clutter, in order to
demonstrate the ability of the ROT-PF algorithm to effec-
tively track the target’s state, regardless of the initial uncer-
tainty being high and the intense level of noise that corrupts
the system’s state and measurement model.
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Figure 2. Two-axis velocity estimation



Fig. 3(a) illustrates the RMSE for a total of 100 runs of
the system described. In the vast majority of executions
the RMSE remains under 10 at absolutely satisfactory lim-
its. Only in a small fraction (5-6%) of the executions, the
RMSE increases up to unacceptable levels. The high level
of initial uncertainty is responsible for the poor performance
of the ROT-PF algorithm in these runs. Furthermore, when
considering the algorithm’s performance, the small number
of particles (N=500), must be taken under consideration.
By increasing the number of particles we can achieve better
accuracy in terms of RMSE.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

number of iteration

R
M

S
E

Root Mean Square Error

(a) RMSE for 100 simulation runs - µ0 = 0

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

number of iteration

R
M

S
E

Root Mean Square Error

(b) RMSE for 100 simulation runs - µ0 = x0 +N (0, 1.52)

Figure 3. RMSE for 100 simulation runs

In Fig. 3(b) the same system, as previously was sim-
ulated for 100 runs. For this particular set of executions
the uncertainty regarding the initial state was reduced. The
initial particles were sampled from a Gaussian distribution
with µ0 = x0 + N (0, 1.52). From Fig 3(b) it is clear that
the RMSE is drastically improved and kept below 20 in all

executions.

5.2 Manoeuvring Targets

In this section we illustrate the capability of the ROT-PF
tracking algorithm to handle manoeuvring targets, as this is
normally the case for real world scenarios. Fig.4(a) and Fig
4(b) present an example of how accurate the ROT-PF per-
forms in the presence of a manoeuvring target. The results
are quite promising.
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Figure 4. Manoeuvring Target Tracking

6. Conclusions and Future Work

In this paper, a novel target tracking algorithm intended
for implementation in WSNs was presented. The algorithm
is based on Particle Filters and is designed by taking into
consideration a nonlinear system state-space model. The
tracking operation is carried out by considering solely range
measurements to be available from the WSN. The range-
only nature of the systems renders it flexible for deploy-
ment in a broad spectrum of applications. A number of



ranging techniques can provide range measurements with
good accuracy, based on different modalities. Simulations
produced prominent and solid results, revealing good per-
formance in the majority of the scenarios considered. An
important aspect of the system presented is that, good accu-
racy is possible while the number of particles that are sam-
pled is relatively small. Thus, different to other approaches,
the proposed system requires a small number of particles for
estimating the required posterior pdf. The RMSE was cal-
culated over a number of simulations to quantify the level of
accuracy achieved. Similar accuracy, to approaches which
employ more complicated algorithms, was achieved. Ini-
tial uncertainty regarding the targets state, at the beginning
of the tracking operation, has proved to have an effect on
the system’s accuracy. Finally simulations justified the abil-
ity of the system to handle efficiently manoeuvring targets.
Future research includes the investigation of more complex
system models, particularly in order to best describe the tar-
get’s motion. Including targets that manoeuvre in higher
speed without increasing the complexity and the computa-
tional burden of the tracking algorithm, will be the authors
future objective. Ultimately, this system is intended for de-
ployment in actual WSN hardware in order to verify the
simulation results in real world experiments.
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