

Personalized Experiences for End-User
Programming on the Web

 Abstract

In this position paper we explore current work in

AtomsMasher, an end-user reactive programming

environment for the Web, highlight ongoing work in user

interface design, privacy, and sharing, and look towards

a future of extending end-user programming from

simple tasks to complete experiences.

Introduction

In the past several years, the ubiquity of RSS feeds

(published summaries of updated content) has grown

beyond public web sites and blogs. Web2.0 sites have

encouraged publishing of a wealth of personal, social

and contextual information: facebook actions, twittering,

calendar appointments, music interests, location, etc.

These data sources are of some value individually, for

personal consumption. We hypothesize that these

sources could serve a greater purpose: driving simple

reactive tasks for personal information needs. By this,

we mean easy ways to combine and filter sources that,

given a certain state, trigger an action. For instance,

when I walk past a concert hall, look at mine and my

nearby friends’ music interests, and alert me if there is a

concert soon we may enjoy.

Existing work in mashups enables blending and filtering

for unique views on information, but provides no active

capabilities. Active scripting in end-user programming is

so far limited to closed homogenous models, not

allowing scripting over heterogeneous sources, or

Copyright is held by the author/owner(s).

CHI 2009, April 4 – April 9, 2009, Boston, MA, USA

ACM 978-1-60558-247-4/08/04.

Max Van Kleek

CSAIL, MIT

Cambridge, MA, 02319, USA

max@mit.edu

Paul André

ECS, University of Southampton

SO17 1BJ, UK

pa2@ecs.soton.ac.uk

David Karger

CSAIL, MIT

Cambridge, MA, 02319, USA

karger@mit.edu

m.c. schraefel

ECS, University of Southampton

SO17 1BJ, UK

mc@ecs.soton.ac.uk

 2

personal context from desktop activity. In our

approach, we identify three core challenges that need to

be addressed to deliver effective reactive behaviors that

will let us do more with our information with less effort.

These challenges are: a) interrogating whether current

data feeds have sufficient, timely information to drive

useful reactivity; b) finding a flexible and scalable

method for consolidating and integrating heterogeneous

information from diverse web sources; c) designing a

user interface for end-users that can make the

specification of desired automation easy and error-free.

The result of addressing these challenges is

AtomsMasher, an end-user reactive programming

application/rule based system, driven by web data.

AtomsMasher presents a constrained simplified natural

language (NL) UI to allow users to specify actions they

want done and the conditions under which these actions

should be done. It then determines when these

conditions are met based on a rich internal RDF world

model it has consolidated out of web data feeds and

desktop activity observations. In the following sections

we elaborate on the components of AtomsMasher,

highlight ongoing work in user interface design, privacy

and sharing, and conclude with a look at the future of

end-user programming and book chapter suggestions.

Capturing Data

The availability of even a little bit of structured

information that we can capture and associate

automatically means we enable many new ways to

interrogate and build behaviors over our information.

We have begun to explore context capture possibilities

[9] in order to provide contexts for reuse and

rediscovery. In addition to the social and public data

available, we have a framework to obtain personal

structured information directly from the users’ computer

[7]. In the next section, we discuss how the blending of

these sources of information can automate many of our

current manual information management tasks.

Towards Reactive Behaviors

In this section we briefly discuss the core components of

AtomsMasher: rules to create reactive behaviors, the

rule creation user interface and simulation sandbox, and

a quick look behind the scenes. (A previous description

of AtomsMasher is in [8], with a more up-to-date full

paper in submission to WWW).

Rules in AtomsMasher

Rules constitute the basic unit of AtomsMasher's

reactive behaviors. Like other rule-based systems, each

of AM's rules consist of a set of conditions that

characterise the situation under which a rule should be

executed (known as the antecedent or if-part), and the

set of actions to be carried out when these conditions

are met (known as the consequent, or then-part). The

conditions in the antecedent are expressed as simple

conjunctions of predicates, each of which may take

entities or values as arguments. Rules in AM consist of

one of two types: those that update AM’s internal world

model based on new events arriving externally, and

those that take external action based on updates to the

internal model. Keeping rules separated into these types

decouples knowledge sources from action, making it

easier to scale AM to new sources and actions.

Simplified Natural Language Interface

Previous efforts [6] have discovered several challenges

to having end-users specify rules in situations where

they desired some context-aware automation. Central

to our approach with AM is a guided input simplified

 3

natural language interface that lets users express rules

in a form resembling natural English (inspired by

[2][3]). We apply these ideas to behavior specification,

which requires users to specify the conditions when they

want something done (the rule antecedent, previously

described), and the action(s) they want done

(consequent) when those conditions are satisfied - these

expressions are built incrementally through a sequence

of entity, predicate, actions and value selectors (each an

auto-completing drop-down box) for specifying

components of clauses and actions (fig. 1). We add

several additional features to make this more natural,

including demonstrative pronouns, and a rule simulator

inspired by PigPen [5] to catch erroneous specification of

rule components immediately after they are created.

Architecture and Data Model

Space constraints do not allow for an in-depth

discussion, but one key issue is the use of a single

persistent internal representation containing simple key

representations of people, places, events and

resources. This served three roles: a single

representation avoids the pairwise-alignment problem

that serves as a scalability problem to many mashups; a

single unambiguous world model for the AM rule

chainer; and finally this representation serves as an

important abstraction barrier, allowing information

sources to be exchanged freely (or added for

redundancy) without having to modify user behaviors.

User Interface Design

While end-user programming for the web has enjoyed

some success, we believe the lack of truly end-user

friendly interfaces is a significant barrier to adoption.

Exciting recent work in Yahoo! Pipes still “needs a lot

more work on the user interface to make it easier to

use”1, and a user study of the EUP tool Marmite found it

was only easy to use for “programmers and spreadsheet

users” [10]. While there has been previous work in

visual programming metaphors and programming-by-

demonstration, there is still significant work to be done

to simplify the initiation, understanding and completion

of actions, and scrutability of behaviors. In the

meantime, we hope our user interface (described

previously) and the design and evaluation of the

AtomStasher (next) could help towards this goal.

Extensibility and Sharing

In AtomsMasher, we encourage the re-usability and

sharing of behaviors by shielding variables from direct

access to the information sources, preventing authors

from writing their behavior specific to a particular

source, and allowing the system to scale to new data

sources. As we have elaborated elsewhere [1], the

social community data that inspired AM is part of a

wider social evolution on the Web. By establishing the

"AtomStasher" (similar to the Co-Scripter wiki [4]), we

aim to make actions shareable, encouraging an active

community, and allowing less experienced users to

download more complex rules that others have written.

Privacy

With users publishing increasing amounts of personal

information and interactions on the Web, and user

interfaces doing little to alert users to options or the

potential dangers, privacy is a significant area for future

work. In AtomsMasher, there are obvious concerns in

blending personal and Web data, though by running AM

client-side we hope to retain control over any potential

problems. In a broader sense, AM may create its own

privacy implications. By increasing the ease of

1 http://radar.oreilly.com/archives/2007/02/pipes-and-filte.html

 4

combining multiple sources of data about a friend, AM

highlights how much personal information is being

broadcast to the Web, and enables inference and

reactive behaviors based on that information. It remains

to be studied what users’ major privacy concerns

regarding AM are.

Future of End-User Programming

Beyond completion of specific actions, we see a wider

future for end-user programming in which a user’s

entire Web experience is customized. Take search, for

instance, one of the most popular activities on the Web.

Live Search macros2 allow creation of “your own search

engine”, tailored to a specific topic. The search engine

Viewzi3 provides user-defined views onto specific data

sources, a cookbook user interface for searches within

recipe sites, for instance. These examples indicate the

potential for a completely customizable Web experience,

and it remains to be seen how an entire suite of

applications with a truly end-user interface could provide

such an experience.

Book Chapter Suggestion

Dependent on the space and scope of the book chapter,

we would like to elaborate on our general approach to

end-user programmable definitions of 'reactive

behaviors', our vision of how personal information

management can benefit from reactive behaviors driven

by web data, and results from our first deployment of

AtomsMasher. There are three key attributes to our

approach: easy data alignment, easy definition of

behaviors, and availability of context information to

support these. Overall, there is a compelling user

interaction challenge to be addressed. As examples of

2 http://search.live.com/macros
3 http://www.viewzi.com

how each of these components may be realized, we

would present our thoughts on data unification and RDF,

our Personal Lifetime User Modeling (PLUM) framework,

and how the context it provides allows the unique

reactive behaviors seen in AM. A validation of our user

interface and general approach would ideally be

provided by a deployment we plan for Spring 2009, as

well as allow reporting on the innovative uses we hope

to observe.

Acknowledgements

Our previous and ongoing work in this area has been

developed in conjunction with Michael Bernstein and Rob

Miller (MIT), Daniel Smith and Max Wilson (Southampton),

Mikko Perttunen (Oulu), and Ora Lassila, Mark Adler and

Deepali Khushraj (Nokia Research Center Cambridge).

References
[1] André, P., schraefel, m.c., Wilson, M.L. & Smith, D.A. The
Metadata is the Message. Web Sci Workshop at WWW 2008.

[2] Bernstein, A. & Kaufman, E. GINO - A Guided Input Natural
Language Ontology Editor. ISWC2006.

[3] Kaiser, C. Ginseng - A Natural Language User Interface for
Semantic Web Search. Thesis, University of Zurich.

[4] Leshed, G., Haber, E. M., Matthews, T., and Lau, T. 2008.
CoScripter: automating & sharing how-to knowledge in the
enterprise. CHI 2008.

[5] Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins
A., Pig Latin: A not-so-foreign language for data processing.
SIGMOD 2008.

[6] Sohn, T. and Dey, A. 2003. iCAP: an informal tool for
interactive prototyping of context-aware applications. CHI 2003.

[7] Van Kleek, M. & Shrobe, H. A Practical Activity Capture
Framework for Personal Lifetime User Modeling. UM2007.

[8] Van Kleek, M., André, P., Perttunen, M., Bernstein, M.,
Karger, D., Miller, R. and schraefel, m.c. AtomsMasher:
Personal Reactive Automation for the Web. UIST2008

[9] Van Kleek, M., Bernstein, M., Karger, D. & schraefel, m.c.
Gui – Phooey! The Case for Text Input. UIST 2007.

[10] Wong, J. & Hong, J.I. Making mashups with Marmite:
Towards End-User Programming for the Web. CHI 2007.

 5

 Figure 1. A user creating a reminder rule using AtomsMasher's constrained-input simplified-natural-language (CSNLI) UI (sequence

shown for brevity). The user first specifies when the rule should run (antecedent), then what it should do (the consequent). Input

boxes restrict their values to only valid inputs given the values provided so far.

