Agent-Based Distributed Decision Support System for Brain Tumour Diagnosis and Prognosis
Agent-Based Distributed Decision Support System for Brain Tumour Diagnosis and Prognosis
Brain tumours remain an important cause of morbidity and mortality in Europe. Diagnosis using Magnetic Resonance Imaging (MRI) is non-invasive, but only achieves 60-90% accuracy depending on the tumour type and grade. The current gold standard classification of brain tumours by biopsy and histopathological analysis involves invasive surgical procedure and incurs a risk. Nowadays the diagnosis and treatment of brain tumours is typically based on clinical symptoms, radiological appearance and often a histopathological diagnosis of a biopsy. However, treatment response of histologically or radiologically-similar tumours can vary widely, particularly in children. Magnetic Resonance Spectroscopy (MRS) is a non-invasive technique for determining the tissue biochemical composition (metabolomic profile) of a tumour. Additionally, the genomic profile, determined using DNA microarrays, facilitates the classification of tumour grades and types not trivially distinguished by morphologic appearance. Thus, we propose the definition of a decision support system (DSS) which employs MRS and genomic profiles. This DSS will deploy an ad hoc agent-based architecture in order to negotiate a distributed diagnostic tool for brain tumours, implement data mining techniques, transfer clinical data and extract information. The distributed nature of our approach will help the users to observe local centre policies for sharing information whilst allowing them to benefit from the use of distributed data warehouse (d-DWH). Moreover, it will permit the design of local classifiers targeting a specific patient population. We argue that this new information for classifying tumours along with clinical data, should be securely and easy accessible in order to improve the diagnosis and prognosis of tumours. All data will be stored anonymously, and securely through a network of data marts based on all this information acquired and stored at centres throughout Europe. This network will grant bona-fide access to an organisation in return for its contribution of clinical data to a d-DWH/Decision Support System (d-DSS). This rest of this paper is structured as follows. First, we provide some background on the underlying technologies for this project: brain tumour detection and agent technology. Then we provide the architectural specification. Finally, we conclude with our future work.
84-611-3104-5
288-292
Gonzalez-Velz, H
b871e031-6f2c-40fa-abb5-035e61516d3a
Mier, M
6f444bb3-0203-4f7a-808e-b2005de0963a
Arus, C
5a00926c-9364-45af-bcc2-9c7262097fa7
Celda, B
baa5871e-c264-411f-9db1-496cc799c039
van Huffel, S
8cd8cce3-d548-4ad2-8a2f-58cf263ba650
Lewis, Paul
7aa6c6d9-bc69-4e19-b2ac-a6e20558c020
Peet, A
83795548-2184-4000-9aa8-689ccf8ae2d2
Robles, M
3f3dc4fe-a04d-43ad-8957-59a27b49e654
October 2006
Gonzalez-Velz, H
b871e031-6f2c-40fa-abb5-035e61516d3a
Mier, M
6f444bb3-0203-4f7a-808e-b2005de0963a
Arus, C
5a00926c-9364-45af-bcc2-9c7262097fa7
Celda, B
baa5871e-c264-411f-9db1-496cc799c039
van Huffel, S
8cd8cce3-d548-4ad2-8a2f-58cf263ba650
Lewis, Paul
7aa6c6d9-bc69-4e19-b2ac-a6e20558c020
Peet, A
83795548-2184-4000-9aa8-689ccf8ae2d2
Robles, M
3f3dc4fe-a04d-43ad-8957-59a27b49e654
Gonzalez-Velz, H, Mier, M, Arus, C, Celda, B, van Huffel, S, Lewis, Paul, Peet, A and Robles, M
(2006)
Agent-Based Distributed Decision Support System for Brain Tumour Diagnosis and Prognosis.
International Conference on Multidisciplinary Information Sciences and Technologies, Merida, Spain.
.
Record type:
Conference or Workshop Item
(Paper)
Abstract
Brain tumours remain an important cause of morbidity and mortality in Europe. Diagnosis using Magnetic Resonance Imaging (MRI) is non-invasive, but only achieves 60-90% accuracy depending on the tumour type and grade. The current gold standard classification of brain tumours by biopsy and histopathological analysis involves invasive surgical procedure and incurs a risk. Nowadays the diagnosis and treatment of brain tumours is typically based on clinical symptoms, radiological appearance and often a histopathological diagnosis of a biopsy. However, treatment response of histologically or radiologically-similar tumours can vary widely, particularly in children. Magnetic Resonance Spectroscopy (MRS) is a non-invasive technique for determining the tissue biochemical composition (metabolomic profile) of a tumour. Additionally, the genomic profile, determined using DNA microarrays, facilitates the classification of tumour grades and types not trivially distinguished by morphologic appearance. Thus, we propose the definition of a decision support system (DSS) which employs MRS and genomic profiles. This DSS will deploy an ad hoc agent-based architecture in order to negotiate a distributed diagnostic tool for brain tumours, implement data mining techniques, transfer clinical data and extract information. The distributed nature of our approach will help the users to observe local centre policies for sharing information whilst allowing them to benefit from the use of distributed data warehouse (d-DWH). Moreover, it will permit the design of local classifiers targeting a specific patient population. We argue that this new information for classifying tumours along with clinical data, should be securely and easy accessible in order to improve the diagnosis and prognosis of tumours. All data will be stored anonymously, and securely through a network of data marts based on all this information acquired and stored at centres throughout Europe. This network will grant bona-fide access to an organisation in return for its contribution of clinical data to a d-DWH/Decision Support System (d-DSS). This rest of this paper is structured as follows. First, we provide some background on the underlying technologies for this project: brain tumour detection and agent technology. Then we provide the architectural specification. Finally, we conclude with our future work.
Text
Agent_based_distributed_decision_support_system_for_brain_tumour_diagnosis_and_prognosis.pdf
- Other
More information
Published date: October 2006
Additional Information:
Event Dates: October 2006
Venue - Dates:
International Conference on Multidisciplinary Information Sciences and Technologies, Merida, Spain, 2006-10-01
Organisations:
Web & Internet Science
Identifiers
Local EPrints ID: 267044
URI: http://eprints.soton.ac.uk/id/eprint/267044
ISBN: 84-611-3104-5
PURE UUID: 8e4040d8-7856-40dc-9c98-f2d3d474637c
Catalogue record
Date deposited: 20 Jan 2009 11:50
Last modified: 14 Mar 2024 08:41
Export record
Contributors
Author:
H Gonzalez-Velz
Author:
M Mier
Author:
C Arus
Author:
B Celda
Author:
S van Huffel
Author:
Paul Lewis
Author:
A Peet
Author:
M Robles
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics