Performing Content-based Retrieval of Humans using Gait Biometrics

Samangooei, Sina and Nixon, Mark (2008) Performing Content-based Retrieval of Humans using Gait Biometrics At SAMT 2008. , pp. 105-120.


[img] PDF fulltext.pdf - Accepted Manuscript
Download (4MB)


In order to analyse surveillance video, we need to efficiently explore large datasets containing videos of walking humans. At survei llance-image resolution, the human walk (their gait) can be determined automatically, and more readily than other features such as the face. Effective analysis of such data relies on retrieval of video data which has been enriched using semantic annotations. A manual annotation process is time-consuming and prone to error due to subject bias. We explore the content-based retrieval of videos containing walking subjects, using semantic queries. We evaluate current biometric research using gait, unique in its effectiveness at recognising people at a distance. We introduce a set of semantic traits discernible by humans at a distance, outlining their psychological validity. Working under the premise that similarity of the chosen gait signature implies similarity of certain semantic traits we perform a set of semantic retrieval experiments using popular latent semantic analysis techniques from the information retrieval community.

Item Type: Conference or Workshop Item (Paper)
Additional Information: Event Dates: 2/12/2008
Venue - Dates: SAMT 2008, 2008-12-02
Keywords: CBIR, gait, biometrics
Organisations: Vision, Learning and Control, Southampton Wireless Group
ePrint ID: 267052
Date :
Date Event
27 November 2008Published
Date Deposited: 22 Jan 2009 11:37
Last Modified: 17 Apr 2017 18:54
Further Information:Google Scholar

Actions (login required)

View Item View Item