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ABSTRACT
This paper reports on a novel decentralised technique for planning agent
schedules in dynamic task allocation problems. Specifically, we use a Markov
game formulation of these problems for tasks with varying hard deadlines
and processing requirements. We then introduce a new technique for ap-
proximating this game using a series of staticpotential games, before detail-
ing a decentralised solution method for the approximating games that uses
the Distributed Stochastic Algorithm. Finally, we discussan implementa-
tion of our approach to a task allocation problem in the RoboCup Rescue
disaster management simulator. Our results show that our technique per-
forms comparably to a centralised task scheduler (within 6%on average),
and also, unlike its centralised counterpart, it is robust to restrictions on the
agents’ communication and observation range.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]: Schedul-
ing; I.2.11 [Distributed Artificial Intelligence ]: Multiagent sys-
tems

General Terms
Algorithms, Experimentation

Keywords
Multi-agent planning, Game theory

1. INTRODUCTION
Controlling and managing the allocation of a stochastic setof tasks
to a group of agents in real–time is a major challenge in the field of
multi–agent systems. Relevant examples include the allocation of
a city’s emergency response vehicles to unfolding incidents during
a major disaster (our main application focus in this work), mainte-
nance planning problems such as aero–engine overhaul scheduling
[14], and weapon-target assignment problems [1]. In all of these
situations, and many others besides, robustness is a key require-
ment of the allocation procedure. This means we want to avoida
centralised allocation mechanism, as this could representa single
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point of failure. For this reason, we focus on the use of a dis-
tributed approach in which the individual agents negotiatedirectly
with each other to make the allocations. More specifically, these
autonomous agents can operate on their own when the scenariode-
mands this of them, or can collaborate and form teams if it is in
their mutual benefit.

Now, in many cooperative settings, such as those listed above,
the system designer can specify the agents’ payoff for actions di-
rectly. The designer’s problem, then, is to define the agents’ pay-
offs such that their local best choice of action (given the informa-
tion available to them) is one that produces a high global utility.
Nonetheless, this can still leave the agents with the very difficult
problem of searching a factorial–sized space for an optimalstrat-
egy in a stochastic environment containing other agents. Naturally,
this can adversely affect the timeliness of the solutions produced.
As such, when defining the agents’ utility functions, the system
designer is faced with trade–offs between the robustness ofthe so-
lution mechanism, the quality of the solutions it produces,and its
tractability. Within this space, we aim to develop an allocation tech-
nique that is, primarily, robust (i.e. decentralised), andsecondly,
tractable, to ensure solutions can be produced in a timely manner,
and finally, efficient, in terms of maximising the solution quality.

Against this background, the scheduling problems that we ad-
dress consist of a set of agents assigning themselves to, andexe-
cuting, a dynamic stream of tasks, without the aid of a centralised
manager. Each task has a hard deadline and a particular processing
requirement (e.g. a casualty must be taken to hospital by 10:30am
and this will take 30 minutes). In particular, the task set isdynamic
because it is gradually revealed over time. This, in turn, means we
require a practical mechanism that can respond to such changes in
a timely fashion. Now, an agent can attend any task — there are
no subtasks or specialisations — but it can act on only one task at
a time and it performs this task at a fixed rate of processing. As a
consequence, some of the tasks cannot be completed by an individ-
ual agent before their deadlines, and so must be tackled by a team
working together (additional agents only help complete a task —
they do not hinder each other). This induces a problem of scarcity
among competing tasks for limited agents. Moreover, as the full
set of tasks is not known at the outset, an agent has to continually
negotiate with other agents over the sequence of tasks to execute,
with the joint goals of completing as many as possible and in the
least amount of time. Furthermore, the execution of some tasks
precludes the execution of others, and decisions made at a given
time affect the structure of the problem facing the agents inthe fu-
ture. Consequently, agents must consider the future effects of their
current actions during their negotiations (e.g. the decision to rescue
a particular casualty now may preclude the rescue of a second, but
may not prevent the rescue of a third later).

To achieve all of these objectives, we pursue a decentralised



game–theoretic approach, in which planning is achieved viane-
gotiation between agents. In particular, we tackle this problem by
first defining a global utility function, which is constructed as if we
were defining it for a centralised Markov decision problem (MDP).
Then, in order to develop a solution method that provides us with
the robustness we require, we give control over the variables of the
problem — the resources used to complete the tasks — to a set of
agents, each of which makes its own independent choices. As a
consequence, we use game theory to analyse their joint behaviour,
because it is the natural way to model the interaction of suchau-
tonomous agents. Specifically, if the variables of a MDP are con-
trolled by a set of autonomous agents, then we are in the realms
of Markov games[8]. In this type of game, self–interested agents
play a multi–stage game, in which the stage game varies probabilis-
tically at each time–step as a function of the state and actions taken
in the previous time–step. Here, each stage game corresponds to a
particular set of tasks to be completed at that time and the status of
the agents in the system (their locations, commitments, etc). Each
agent has its own private utility function which it aims to maximise.
However, as discussed above, these are defined such that, forany
unilateral switch in strategy, an agent’s change in payoff is equal to
the change in the global utility. Consequently, the global maximum
is a Nash equilibrium (i.e. it is a stable solution to the game). In this
way, selfish agents can be used to solve an inherently cooperative
problem, because their self–interest drives them towards solutions
with higher global utility.

Although our problem can be cast elegantly in such a model, itis
not practical to solve it at real–world scales, because agents have to
consider the utilities of the future tasks present in all possible future
states during the negotiations. In particular, any multi–stage game
with stochastic state transitions is NEXP-complete [4], due to the
factorial growth in the number of state–action–transitioncombina-
tions. In order to address this concern, we show that the Markov
game can be approximated using a sequence of finite length multi–
stage games of complete information. In this context, we approx-
imate the global utility function with a limited horizon version of
the same function. This approximation incurs two penalties: (i)
for truncating the length of the decision window and therefore ig-
noring payoffs from future states, and (ii) for ignoring thepossible
future changes in the state of the world, other than those brought
about by the agents’ own actions. Our use of this approximation
is predicated on the assumption that changes in the world do not
significantly affect the long–run payoffs to the agents; that is, all
states arequiescent. This assumption makes sense in our setting,
because the effect of scarcity of agents to complete tasks means
that the introduction of additional tasks into the system only effects
the agents’ payoffs at the margin, and does not alter the utility of
those tasks the agents may have already begun to process (or cho-
sen not to process). Furthermore, we derive the agents’ utilities
from the approximate global utility function such that the agents
play a potential game[9] at each time-step. This is very useful
because, first, the maximum approximate global utility is a Nash
equilibrium, and second, it implies that each game can be solved
by a distributed local search algorithm. In particular, we use the
Distributed Stochastic Algorithm [18] to solve each approximating
game (we could equally well use alternative methods, such asDis-
tributed Simulated Annealing or Fictitious Play, as shown in [2]).

Beyond this, we analyse the efficacy of our approach in situations
where the agents’ communication and observation ranges arere-
stricted. That is, the agents cannot see the entire state of the world,
and therefore must make their decision on the basis of incomplete
information. This type of limitation is common in many scenarios,
particularly those that possess a spatial dimension. For example,
in a disaster response setting, the central message distributor may

be out of action or damage to infrastructure may remove the ability
to use wide–area broadcast communication. In this vein, we evalu-
ate our technique on the ambulance–to–civilian allocationproblem
in RoboCup Rescue (RCR), which is an example of a spatial task
allocation problem with hard deadlines and varying processing re-
quirements. By so doing, we show that our technique performs
comparably to a centralised task scheduler when communication is
not limited, and that it outperforms the centralised approach as the
agents’ communication and observation ranges are restricted.

Given this context, this work extends the state of the art in the
following ways:

1. We introduce a new technique for approximating Markov
games using a series of overlapping potential games.

2. We develop a novel distributed solution technique for theap-
proximating games, based on the Distributed Stochastic Al-
gorithm.

3. We show that our technique is robust to restrictions on the
range over which agents can communicate and observe, re-
strictions which typically cause centralised approaches to fail.

The paper is organised as follows. In the next section we review
other approaches to distributed dynamic scheduling, and argue why
they do not meet our requirements. Section 3 then introducesthe
game–theoretic background to our model. In Section 4 we formu-
late the problem as a Markov game, and describe our approxima-
tion of the global utility function. Building on this, we show how
to derive agents’ utilities so that the resulting game is a potential
game, and describe a local search algorithm that can be used to
solve it. Finally, we discuss the effects of restricting therange over
which agents can communicate. Then, in Section 5, we evaluate our
technique in the ambulance–civilian allocation problem inRCR.
This demonstrates the benefit of using a decentralised method of
control in settings where communication and observation are lim-
ited. Section 6 concludes.

2. RELATED WORK
Approaches to dynamic task allocation include: (i) domain–specific
heuristics, (ii) modelling scheduling as a constraint program and
solving this with either a centralised or decentralised algorithm,
and (iii) auction allocation mechanisms and more general market–
based approaches. Each of these will now be dealt with in turn.

First, there is a long history of using heuristics to solve schedul-
ing problems. In particular, [13] addresses the family ofearliest
deadline firstheuristic algorithms for scheduling in real–time sce-
narios comprising tasks with hard deadlines that compete for the
same resources. The problem that we tackle here falls into this
general class of problems, and, furthermore, the greedy algorithms
we use as experimental benchmarks in Section 5 are also basedon
such heuristics. However, such algorithms rely on the centralisation
of information and decision–making, and so are not appropriate for
our application domains.

Second, a number of optimal algorithms for multi–agent schedul-
ing problems have been proposed that work by reducing the prob-
lem to a constraint program. Examples of constraints include re-
source relations, which are shared by tasks that compete for the
same resource, andprecedence relations, which are shared by sub-
tasks that need to be completed in a certain order. From thesere-
lations, a constraint program is constructed. This can be solved
centrally (as in [15]) or using a decentralised constraint program-
ming algorithm (such as DPOP [10]). Again, we rule out using
centralised constraint solvers: moreover, the distributed algorithms
suffer from exponential growth of some aspect of the solution pro-
cess (e.g. the size of the messages passed in DPOP is exponential in
the depth of the communication network it is run on), and so cannot
easily be applied at the scales or on the timeframes we require.



Third, auctions and other market mechanism are beginning tobe
used to add robustness to task allocation by giving agents the auton-
omy to construct their own bids, based on their own private orpar-
tial knowledge [16, 6]. However, such auctions often rely onsignif-
icant communication overhead, which can impact on the timeliness
of their solutions, and, to some degree, an auctioneer represents
a single point of failure (just like a central decision maker). Other
market–based allocation methods, such as bargaining and exchange
markets, are similar to our work, as the local search algorithm we
employ to solve each potential game effectively specifies a nego-
tiation protocol. However, our method differs from this literature,
because we are able to directly specify agents’ utility functions.1

From this landscape, the work most similar to ours is [1], in
which an autonomous vehicle–target assignment problem is ad-
dressed using a potential game formulation. In their model,ve-
hicles (agents) operate individually to optimise a global utility. The
global utility optimisation is obtained via an appropriatedesign of
the vehicles’ utilities and their negotiation protocol. While we use
a similar approach, there are two fundamental differences.First,
in their work, vehicles are assigned to a single target, whereas in
our scenario each agent is required to perform a sequence of tasks,
each of which has a hard deadline. This means that our agents are
required to reason over the order in which they attend to tasks, not
just which tasks to attend. Second, their approach assumes that all
tasks are known at the start, while we assume that they are contin-
ually discovered at run–time.

Finally, our approach to approximating the Markov game is mo-
tivated by a somewhat similar technique for producing approximate
solutions to partially–observable stochastic games usinga series of
smaller Bayesian games [3]. In that work, a tractable Bayesian
game is constructed at each time step from the most likely current
states and state–transitions given an agent’s beliefs. This Bayesian
game is then solved to obtain a one–step policy that approximates
the globally optimal solution of the original partially–observable
stochastic game. In contrast, we construct a tractable multi–stage
game of complete information at each time step, and because this
is a potential game, it can be easily solved using a decentralised al-
gorithm. The solution to this game is then used as a multiple–step
policy to approximate the globally optimal solution.

3. PRELIMINARIES
This section introduces the foundations of our model, beginning
with noncooperative games, extending these ideas to Markovgames,
and finally considering the class of potential games.

3.1 Noncooperative Games
A noncooperative game,Γ = 〈N,{Si ,ui}i∈N〉, consists of a set of
agents, N = {1, . . . ,n}, and for each agenti ∈ N, a set ofstrategies
Si , and autility function ui : S→ R. A joint strategy profiles∈ S
is referred to as anoutcomeof the game, whereS= ∪N

i=1Si is the
set of all possible outcomes. An agent’s utility function ranks its
preferences over outcomes in terms of the payoff it receivesfor an
outcome, such thatui(s)> ui(s′) if and only if the agent prefers out-
comes to outcomes′. We will often use the notations= {si ,s−i},
wheres−i is the complimentary set ofsi .

In noncooperative games, an agent’s goal is to maximise its own
payoff, conditional on the choices of its opponents. Stablepoints
in such a system are characterised by the set ofNash equilibria. A
joint strategy,s∗, such that no individual agent has an incentive to
change to a different strategy, is a Nash equilibrium, i.e.:

1In contrast, market–based task allocation methods are designed to
incentivise agents with arbitrary utility functions to actin a way that
maximises a social welfare function. Nonetheless, the connections
between our work and mechanism design, in particular theGroves
mechanism, are discussed in Section 4.3.

ui(s
∗
i ,s

∗
−i )−ui(si ,s

∗
−i ) ≥ 0 ∀ si , ∀ i. (1)

In the next subsection, we discuss an extension of this simple static
game model to stochastic, multi–stage settings.

3.2 Markov Games
Markov games are an extention of standard noncooperative games,
for repeated interactions in which the game played by the agents
at each time–step,t, varies probabilistically as a function of the
state and the choice of strategies in the previous round, or simply
as some environmental process evolves [8]. Formally, a Markov
game is a tuple,Γ = 〈N,Ω,{{Si ,ui}i∈N}ω∈Ω,q〉, comprising a set
of agents N= {1, . . . ,n}, a set ofstate variablesω ∈ Ω, a set of
stage gamesγ(ω) indexed by elements ofΩ, with each having a
strategy space Sω and a set ofutility functions uωi (s), defined as
in the standard noncooperative model above, and astate transi-
tion function q(ωt+1|ωt ,st). The state transition function gives the
probability that the next period’s state isωt+1, given the current
stateωt and the strategy chosen by the agents at timet, st . Al-
though state transitions are stochastic, agents are assumed to know
with certainty the current state. Intuitively, payoffs in the current
stage game depend only on the state and the agents’ current strate-
gies, while the probability distribution on the following state is
completely determined by the current state and strategy selection.
A strategy in a Markov game comprises a strategy for each of the
stage gamessi = {sω

i }ω∈Ω; that is, there is a strategy component
for every possible state of the world. Strategies in finite time step
Markov games are typically evaluated by their expected total re-
ward:2 E[ui(si ,s−i)] = ∑T

t=0uω
i (si ,s−i).

3.3 Potential Games
Potential games are a subclass of noncooperative games. They are
characterised as those games that admit a potential function, which
is a real-valued function on the joint strategy space whose gradient
is the gradient of the constituents’ private utility functions [9]. The
class of finite potential games have long been used to model con-
gestion problems on networks [11], and, recently, they havebeen
used to analyse distributed methods of solving target assignment
problems [1, 7] and job scheduling [18].

Formally, a functionP : S→ R is apotentialfor Γ if:

P(si ,s−i)−P(s′i ,s−i) = ui(si ,s−i)−ui(s
′
i ,s−i) ∀ si , s′i ∈ Si ∀ i ∈ N.

Γ is called apotential gameif it admits a potential. Intuitively, a
potential is a function of action profiles such that the difference in
its value induced by a unilateral deviation equals the change in the
deviating agent’s payoff.

The usefulness of potential games lies in the fact that the ex-
istence of a potential means that the game possesses two partic-
ularly desirable properties. The first is that every finite potential
game possesses at least one pure strategy equilibrium [9]. Now,
pure strategy Nash equilibria are particularly desirable in decen-
tralised agent-based systems, as they imply a stable, unique out-
come. Mixed strategy equilibria, on the other hand, imply a prob-
abilistically stable, but stochastically variable equilibrium strategy
profile. The second desirable property possessed by potential games
is that they have thefinite improvement property, meaning that
any sequence of unilaterally improving moves converges to aNash
equilibrium in finite time. This property is important as it is used
to guarantee the convergence of many simple adaptive processes
to Nash equilibria in potential games (including the Distributed
Stochastic Algorithm, as discussed in Section 4.3).
2This is in contrast to infinite time step Markov games, which typ-
ically use the discounted expected total reward.



4. THE TASK ASSIGNMENT MODEL
We begin this section by defining our task allocation problemas a
Markov game. In 4.2 we describe our finite–horizon approximation
of the global utility function, and in 4.3 we show how agent utility
functions are derived so that the agents play a potential game. Sec-
tion 4.4 then discusses the Distributed Stochastic Algorithm, which
we use to solve the approximating potential games. Finally,in 4.5
we discuss the effects on our approach of limiting the distance over
which agents can observe or communicate.

4.1 Markov Game Formulation
The full task allocation model is a finite Markov game of complete
information: the current state is known, future states are uncertain,
agents have a finite set of strategies and play for a finite number of
time steps. As per Section 3.2, our model comprises:

• A set of statesω ∈ Ω, each of which defines a set oftasks
X = {x1,x2, . . . x j , . . .}, with each task possessing adeadline,
td
x j

, a number of requiredprocessing units, yx j , and atask
utility function, ux j (s) : S→ R,

• A set ofagents N= {1,2, . . . , i, . . . ,n}, each with astrategy
space Si , with elementssi , composed of a sequence of tasks
to attend, and anagent utility function ui(si ,s−i) : S→ R,

• A state transition functionq(ωt+1|ωt), and

• A global utility function ug(s) : S→ R.

The problem we face is to design the agents’ utility functions and
a distributed negotiation protocol such that the system produces
high quality solutions. The other elements of the model — the
transition function and the task and global utility functions — come
directly from the problem specification. To begin, the transition
function describes how new tasks are generated and introduced into
the system. Then, the task utility function represents the payoff for
completing a task, and in this case it is:

ux j (s) =

{

βtcxj
(s)

if tc
x j

(s) ≤ td
x j

0 otherwise,

}

(2)

wheretc
x j

(s) is the completion time for the task, given the agents’

strategiess, td
x j

is the hard deadline for successfully completing a
task, and 0< β ≤ 1 is a discount factor that incorporates any ben-
efit of completing the task earlier. In more detail, the task utility
function is designed to possess two properties important inour sce-
nario. First, the conditional statement models the hard deadline,
so if fewer than the minimum number of agents required to com-
plete the task beforetd

x j
attend to it, the utility is zero, even if some

agents do attend to the task. This is important because, in our sce-
narios, tasks incomplete at deadline are equivalent to unattended
tasks. Second, increasing the number of agents beyond the number
necessary to complete the task by its deadline improves the comple-
tion time, which raises the task payoff. This captures the benefit of
completing tasks earlier.3 Finally, the global utility function ranks
the overall allocation of tasks to agents, and is an aggregation of
task utilities:

ug(s) = ∑
x j∈X

ux j (s). (3)

This preserves the desirable properties of the task utilityfunction.

3The value ofβ in Equation 2 represents a trade–off between the
number of tasks completed and the timeliness of those completed
tasks. As we aim to maximise the number of tasks completed, we
chose a value close to 1, however, if timeliness was our main con-
cern, we would choose a lower value.

Now that we have defined the task and global utility functionsfor
our problem, if we were working directly with the Markov game
model, we would define the agents’ utility functions. However,
note that an agent’s strategy space in this model is the set ofall
permutations of assignments to tasks each period; a strategy pre-
scribes an action for each time step for every contingent state of the
world. Thus, an agent’s strategy is a set of vectors of actions, one
vector for each state of the world, with an agent’s utility function
defined over this set. Given the huge number of possible states and
action vectors of extremely large sizes (factorial on the number of
tasks), evaluating and negotiating a set of joint strategies for this
problem is clearly a very involved process, that would likely take a
great deal of time. Furthermore, given that we intend to deploy our
agents in a system where they will be required to make decisions
over a short time horizon, constructing such a strategy for the full
set of possible outcomes is practically impossible, due to the huge
number of possible future states and action combinations that need
to be evaluated. For these reasons, we instead derive the agents’
utility functions from a tractable approximation of the global util-
ity function for the stochastic game.

4.2 Approximate Global Utility Function
Rather than attempting to solve the Markov game above, we ap-
proximate it using a series of static potential games of complete in-
formation. Specifically, in this section we approximate theglobal
utility function using a technique similar to a look–ahead policy
commonly used in MDPs (see, for example, [12], Chapter 5). We
can use this type of approximation because, as discussed in Sec-
tion 1, we expect all states to be quiescent.4 Following this, in the
next subsection we derive agents’ utilities from this approximate
global utility, such that the agents’ negotiation problem forms a po-
tential game.

In more detail, the global utility is approximated as follows. At
each time step, a game is constructed with each agent’s strategy de-
fined for a fixed decision window ofw future time steps. In each
of these games, an agent’s strategy is a vector of tasks to attend to
during the interval[t,t +w], si = {xt ,xt+1, . . . ,xt+w}. In this way, at
each time step, the Markov game is approximated by a static game
of complete information defined over the nextw time steps. Then,
the task utility functions in each approximating game are defined as
in Equation (2), with the addition that, for tasks not completed by
t +w, payoffs are calculated as if all agents’ final strategy compo-
nentst+w

i is repeated until the task in question is completed or its
deadline passes. If we did not assume the continuation of these
tasks, the utility of all incomplete tasks at timet + w would be
zero, potentially leading to an artificial bias against tasks with large
processing requirements and/or long completion times. Theglobal
utility of this model is of the same form as that for the Markov
game model:

ut,w
g (s) = ∑

x j∈X
ux j (s), (4)

except that the constituent task utilities are defined over the re-
stricted interval[t,t +w].

Before deriving the agents’ utility functions, we discuss two types
of errors introduced by our approximation of the global utility func-
tion. The first is the restriction of strategies to the decision window
[t,t +w]. The result of this is that the value of future states beyond
the nextw time steps are not evaluated with the current choice of
strategy. Now, although we only maximiseug(t) over the nextw

4If any state is non–quiescent, then our use of a look–ahead style
approximation will suffer from thehorizon problem, meaning it
will not be able to avoid entering states that lead, unavoidably, to
bad outcomes beyond the length of the decision window used.



time steps, any adverse effects on the fullug(t) are expected to
be small, because the game puts greater importance on tasks with
closer deadlines. Similarly, if we used the full Markov gamemodel,
tasks with earlier deadlines would be processed earlier. The second
type of error is caused by not incorporating information about the
exogenous evolution of the world (in our model, the arrival of new
tasks) into the choice of state. However, as argued earlier,in the
domains we consider, the state of the world moves slow enoughfor
us to ignore this effect without introducing any significanterrors.

Now, because we are working on a problem for which a sequen-
tially optimal solution is intractable, we are faced with a trade–
off between the two sources of approximation error. The firsttype
is reduced as the restriction on the size ofw is relaxed. On the
other hand, the second type is mitigated by using a shorter length
window, because the difference in the predicted and actual state
reached in the future is reduced. Consequently, our choice of win-
dow length reflects the need to balance the effect of these twocon-
cerns. In practice, this means that the value ofw has to be deter-
mined experimentally as it depends on the domain (elaborated upon
in Section 5.2).

4.3 Deriving the Agents’ Utility Functions
Given the above approximation of the global utility function for our
problem, the agent’s payoffs are designed so that any increase in an
agent’s utility corresponds to an increase inut,w

g (s). Now, because
the global utility is the sum of task utilities, an agent’s marginal
contribution to the global utility can be specified in terms of the
sum of its contributions to individual tasks — that is, the difference
between the task utility when the agent contributes to the task and
when it does not. This type of utility structure is calledwonderful
life utility by [17]. The marginal contribution of agenti to a taskx j
is given by:

mu
x j

i (si ,s−i) = ux j (si ,s−i)−ux j (s0,s−i), (5)

wheres0 is thenull strategy, in which the agent does not contribute
to completing any task. Note that this form of utility function is
similar to the Groves mechanism, in which agents in a team are
paid an amount equal to their marginal contribution to the team
utility [5]. 5 In contrast, in our setting we can do away with the
explicit utility transfers that occur in mechanism design because
the system designer is able to specify each agent’s utility function
directly (recall the discussion in Section 1). In particular, by using
the wonderful life utility, a system designer internalisesthe effect
of an agent’s actions on the global utility.

The relationship between the task utility function and an agent’s
marginal contribution to the task utility is shown in the example
in Figure 1. This showsux j (s) andmu

x j

i (s) for a task requiring 4
units of processing and with a deadline 2. A minimum of 2 agents
are required to complete the task — a constraint captured by the
increase in the task and agents’ utilities as the number of agents
increases from 1 to 2. If more than this number of agents attend, the
task utility continues to increase as the completion time decreases,
however, the marginal contribution of each additional agent beyond
this point decreases.

An agent’s marginal utility values are used to construct itspayoff
for each strategy, which is the sum of its marginal contributions to
all the tasks it attends to in the nextw time steps:

ui(si ,s−i) = ∑
x j∈si

mu
x j

i (si ,s−i) (6)

5In order to make the connections clear, observe that if we were
trying to incentivise agents, who possess private preferences, to act
in a certain manner, then a mechanism design procedure, suchas
the Groves mechanism, would be an appropriate choice of control
mechanism.

0 1 2 3 4 5
Number agents attendingxj

1/2

1

Utility

ux j (s)

mu
x j
i (s)

Figure 1: An example of task utility and agent marginal utility,
with yx = 4, td

x = 2 andβ = 0.9.

Note that the first summation could be taken over all tasks inX with
the same result, asmu

x j

i (si ,s−i) is zero for all tasks to whichi does
not contribute. This point is important, as it implies that achange
in strategy that increases an agent’s utility always corresponds to
an increase in the global utility restricted to the decisionwindow
[t,t +w]. Consider the difference ini’s utility for switching fromsi
to s′i . The following shows that the change in an agent’s own utility
is equal to the change in the global utility:

ui(si ,s−i )−ui(s′i ,s−i )

= ∑
x j∈si

(

ux j (si ,s−i)−ux j (s0,s−i)
)

− ∑
x j∈s′i

(

ux j (s
′
i ,s−i)−ux j (s0,s−i )

)

= ∑
x j∈X

(

ux j (si ,s−i)−ux j (s0,s−i)−ux j (s
′
i ,s−i )+ux j (s0,s−i )

)

= ut,w
g (si ,s−i )−ut,w

g (s′i ,s−i ).

Thus, a game played between agents with utility functions asgiven
above is a potential game, with a potential function given bythe
global utility function over the decision window. There aretwo
consequences to this result. First, the globally optimal allocation
of tasks to agents in the window resides in the set of Nash equi-
libria. To see this, assume that the optimal point is not a Nash
equilibrium. Then there must be some agent that can alter itsstate
to improve its utility, which, in turn, will improve the global util-
ity, which contradicts the assumption that the optimal point is not
a Nash equilibrium. Despite that, in most cases some sub–optimal
Nash equilibria also exist. Second, the game has the finite improve-
ment property (see Section 3.3), implying the convergence of the
Distributed Stochastic Algorithm, as we discuss in the nextsection.

4.4 The Distributed Stochastic Algorithm
The Distributed Stochastic Algorithm (DSA) is a greedy local search
algorithm [18]. We use it here because previous work comparing
the performance of simple distributed heuristics in the closely re-
lated class of distributed constraint optimisation problems has iden-
tified it as an algorithm that can quickly produce good quality so-
lutions with a low communication overhead [2].

In more detail, DSA is a synchronous algorithm, in that agents
act in step, however, at each time step, an agent has some proba-
bility p of activation, known as the degree of parallel executions
[18]. Given an opportunity to update its action, an agent selects the
action with the greatest increase in payoff — its best response —
or if no change improves the payoff, the agent does not changeits
strategy. The algorithm is motivated by observing that whenneigh-
bouring agents adapt their strategies at the same time, theycan in-
advertently move their joint state to a globally inferior outcome, a
phenomenon known as ‘thrashing’. Although the probabilistically
parallel execution of agents’ updating procedures does notprevent
all thrashing from taking place, by selecting an appropriate value of
p, thrashing behaviour can be minimised. Importantly, DSA con-
verges to a Nash equilibrium in potential games. Briefly, this is
because no agent will leave a Nash equilibrium after the firsttime
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Figure 2: Recycling solutions: Typically, thet +1 tot +w strat-
egy components from gamet are used as initial conditions for
DSA in gamet +1, and so on.

it is played, and for values of 0< p < 1, the probability that the
agents play a Nash equilibrium goes to 1 as time progresses, as a
consequence of the finite improvement property.

In application domains with short decision horizons, like RCR, a
good initial set of conditions can significantly improve theconver-
gence time of DSA. For this reason, in our model, solutions toone
approximating game are used as initial conditions, or partial solu-
tions, for DSA in the following game. Specifically, because the
t + 1 to t + w strategy components of consecutive games overlap,
we can reuse these components as the starting conditions forDSA
in each subsequent game (as shown in Figure 2). This is particu-
larly useful for situations where the number of negotiationsteps is
limited by communication restrictions (such as in RCR). A related
issue is that newly arriving tasks with pressing deadlines have the
potential to induce significant re–coordination by the agents, ren-
dering the partial solutions negotiated in previous game’sstrategies
irrelevant. In this way, these new tasks have the potential to disrupt
the convergence of the algorithm. However, in practice, by using
any reasonable value forp (i.e. 0≪ p≫ 1) in conjunction with a
long window, the agents are able to deal with such disruptions in
a graceful manner. That is, as long asp imparts significant inertia
on the existing strategy, it will prevent the algorithm frombeing
significantly disrupted.

4.5 Handling Limited Range Communication
So far in this section, we have showed how to implement a general
distributed technique for solving a dynamic task allocation prob-
lem. However, as motivated earlier, we also wish to develop atech-
nique that is robust in the face of restrictions on the distance over
which agents can communicate. In particular, the techniquewe de-
velop is a natural extension to the wonderful life utility described in
Section 4.3, and is appropriate for any task allocation problem with
a spatial dimension. In more detail, we model situations where
an agent can communicate over a limited distance,r, and is only
aware of some of the tasks that are currently know about in thesys-
tem. As such, the major changes in the method are that: (i) theset
of strategy components available to an agent is restricted to only
those tasks it is aware of,Xi ,6 and (ii) the agent’s utility computa-
tions are carried out using only the strategies of those agents that
are currently within its communication range,j ∈ Ni . This gives us
the following agent utility functions:

ui(si ,sNi ) = ∑
x j∈si

mu
x j
i (si ,sNi ) = ∑

x j∈si

(

ux j (si ,sNi )−ux j (s0,sNi )
)

, (7)

wheresi is restricted to the set of tasksi is aware of,Xi . Now, using
this form for the agents’ utility functions means that the approx-
imate global utility function (Equation 4) need not be a potential
function for the game. However, if all agents are aware of those
agents attending to their tasks, then Equation 4 acts as a potential
function. This is the case when the agents are at (or sufficiently
near) the location of their tasks. On the other hand, becausethe

6The way that agents learn about tasks is typically specific tothe
domain, and how this occurs in RCR is discussed in Section 5.2.

components of an agent’s strategy are restricted to those tasks it is
aware of, parts of the global utility function are, in effect, inacces-
sible to the agents. Nonetheless, the accessible local maxima of the
approximate global utility are Nash equilibria of the game.

5. APPLICATION TO ROBOCUP RESCUE
In this section, we describe an application of our techniqueto RCR,
which is a simulation of a disaster response scenario.7 RCR is
chosen because it is a well–known domain used for benchmarking
multi-agent coordination algorithms. It is a complex problem in
which teams of agents have to allocate and perform tasks using
incomplete information in a stochastic environment, in real time.
Thus, it provides an ideal platform for evaluating the efficacy of
our model. We begin by mapping from RCR to our generic model,
before discussing the experiments we use to evaluate our approach.

5.1 Ambulance–Civilian Allocation
A major part of the RCR problem is the allocation of injured civil-
ians to ambulances. We characterise this aspect of RCR usingour
model, as described in Section 4, where each agent,i, corresponds
to an ambulance and each taskx j represents an injured civilian that
needs rescue. As in our model, each civilian has a hard deadline,
td
x j

, by which time it must reach a hospital if it is to survive, and
a processing requirement,yx j , corresponding to the time it would
take a single ambulance to be in a position to remove it from the
scene. In RCR, the number of injured civilians is typically much
greater than the number of ambulances, and not all of them are
known to the ambulances at the start. Rather, they are discovered
over time. This means that an ambulance must negotiate a sequence
of civilians to attend to with other ambulances, with the rescue of
some civilians requiring more than one ambulance because ofa
high yx j and/or an imminenttd

x j
.

Given this, the task completion time,tc
x j

(s) in Equation 2, is the
time it takes a team of ambulances, given by the joint strategy pro-
file s, to rescue the civilian. This incorporates both the civilian’s
processing requirement (the time needed by the team before taking
it to the hospital), as well as estimates of the time it takes for the
team members to travel to the civilian. The global utilityug(s) in-
creases with the number of civilians rescued, and for each civilian,
increases with lower completion times. Regarding an ambulance’s
marginal utility (Equation 5), becauseβ is close to 1, the contri-
bution of an ambulance that is critical to the rescue of civilian x j

beforetd
x j

is greater than the benefit of speeding up the rescue of a
civilian that is already assured of being saved. This effectis demon-
strated in Figure 1. Following this, an agent’s utility (Equation 6) is
then the sum of its contribution to all tasks in the window[t,t +w],
and consequently, the approximate global utility functionacts as
a potential for the entire game. Thus, the salient features of this
problem are captured in our model.

Nonetheless, two small variations to the standard DSA are neces-
sary to successfully implement our model in RCR. First, one com-
ponent of an ambulance’s role is to transport rescued civilians to a
hospital, which takes time and can upset the agent’s strategy. Be-
cause of the difficulties of capturing this requirement in our model,
we allow the following innovation to DSA: Whenever an ambu-
lance has returned a civilian to a hospital, it computes a completely
new best strategy. Second, because agents are not computingtheir
best strategy at every time step, if others have changed their strat-
egy, it is possible that an agent’s value for a task completion time
differs significantly from the true value. This may require the agent
to shift forward many elements of its strategy vector (many more
than illustrated in Figure 2). Now, if too many elements are re-

7http://www.robocuprescue.org



moved, the resulting recycling may be counter–productive.For this
reason, if, in recycling past components, an agent’s strategy vector
is advanced up by less thanw/3 components, then with probabilityp
the agent computes a completely new strategy, and with probability
(1− p) it generates a new strategy for the remaining components
only, as usual. However, if more than thanw/3 components are re-
moved, the agent always computes an entirely new strategy.8

5.2 Experimental Design
We now discuss the evaluation of our overlapping potential game
approximation (OPGA) algorithm in RCR. Specifically, we ranOPGA
on three standard RCR maps — Kobe, VC (Virtual City) and Foligno,
each containing 80 civilians and 6 ambulances. Foligno is a larger
and less structured map than Kobe or VC, making it harder to de-
tect civilians there, while in the Kobe scenario, new casualties are
revealed at a quicker rate than in the others. Information about
casualties is gathered by fire–brigades and police–patrolsthat ex-
plore the map and pass it on to the ambulances, thus simulating a
dynamic continuous stream of tasks. In the limited range scenario,
police and fire–brigades can only pass on information to an am-
bulance when they are within its communication range, thus rep-
resenting the limited observation range of the ambulances.Each
simulation is 300 time steps in duration. We implement two param-
eter setting of our method withp = 0.5 or 0.9 — OPGA(0.5) and
OPGA(0.9) — and a decision window ofw= 30 steps for both. As
our preliminary experiments showed that the results were not very
sensitive to differentp values between 0.5 and 0.9, we limited our
current results to the two endpoints of this range. The valuefor w
was narrowed down through experimentation, as it depends onthe
nature of the domain. To achieve statistical significance (results are
shown with 95% confidence intervals), each experiment was run 30
times. The performance in an experiment is reflected by the score
obtained at the end of the simulation. This score is a standard pro-
vided by the RCR framework and is basically a sum of the health
points of the civilians in the map. The health of an unrescuedcivil-
ian decreases with time until it reaches 0 (which, in fact constitutes
the deadline), while that of a rescued civilian improves with time.
We also measure the number of civilians saved over time, because
it gives an insight into how the rate of rescue is affected by the rate
of discovery of casualties.

We ran two batches of experiments. In the first, the agents’ com-
munication range was not restricted. We use these results todi-
rectly compare the performance of OPGA to a centralised greedy
(myopic) scheduler as an upper bound and a decentralised greedy
heuristic as a comparable lower benchmark. These benchmarks
both use the earliest dealine first heuristic, disussed in Section 2, to
allocate agents to tasks. The former lists civilians in order of their
deadline, centrally allocates free ambulances to the civilian with
the earliest deadline up to the point where it is assured of being
completed, and then allocates ambulances to the next civilian on its
list, and so forth. Now, because the allocation is performedcen-
trally, no mis–coordination is possible — neither fewer, nor more
agents than are required will ever be allocated to a civilian. As such,
this scheduler should out perform OPGA. Under the decentralised
greedy heuristic, each ambulance simply attends to the taskwith
the shortest deadline. This approach will typically lead toan over–
allocation of ambulances to civilians with short deadlines, and it
will occasionally allocate ambulances to a civilian even when their
efforts to save it are bound to be futile.

In the second batch of experiments, we test the performance of
OPGA with restrictions on the range of agents’ communication and
observations, as discussed in Section 4.5. These restrictions are

8Experimental evidence has shown two–thirds to be a reasonable
value for this threshold.
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Figure 3: Comparing the methods across three maps.

20% 15%, 10%, and 5% of the maximum distance between two
points on the map in question (so the area covered by an agent’s
range decreases quadratically with these values). In this batch, we
compare OPGA(0.9) to the centralised greedy scheduler only. We
do this to test our hypothesis that OPGA performs better thanthe
centralised scheduler in scenarios where the communication and
observation range is restricted.

5.3 Results
To begin with, we discuss the results of the first batch of exper-
iments: Figure 3 show the mean performance of OPGA(0.9) and
OPGA(0.5) compared to the centralised and decentralised greedy
methods in the three maps. Although the difference in score be-
tween OPGA and the centralised greedy approach is statistically
significant, it is only 6% worse, on average, than the centralised ap-
proach. Furthermore, OPGA performs significantly better than the
decentralised greedy method. When taken together, these results
show that our approach, based on overlapping potential games, is
a good approximation of the optimal solution to the Markov game
model of the ambulance–to–civilian problem in RCR. In more de-
tail, both versions of OPGA perform better in the Foligno andVC
scenario than in Kobe. Furthermore, a 2kr factorial design test on
the results evaluating the effects of the value ofp and the map on
the score indicates that 95% of the variation of the score is ex-
plained by variation in the map, and less than 1% by variations in
p. The cause of the variation in scores between maps is due to the
rate at which new trapped civilians are introduced. In particular,
civilians are discovered at a quicker rate in the Kobe map than in
Foligno or VC. This is illustrated clearly in Figure 4. Here,a slower
rate of discovery allows OPGA to find good quality solutions more
regularly than in maps where, at times, the rate of civilian discov-
ery is faster. Thus, OPGA performs better in Foligno and VC than
in Kobe. Furthermore, this matches with the assumption we make
that the state of the world moves slow enough for us to ignore the
effect of the possible changes to the state of the world (in particular,
the list of civilians), without inducing significant errors. When this
assumption is less warranted, as in the Kobe scenario, the algorithm
performs relatively worse.

Now we turn to the second batch of experiments (Figure 5). Ob-
serve that the performance of the centralised greedy algorithm de-
grades quicker than OPGA, both in terms of its mean score and
the variability in its performance (as seen in the larger error bars at
each restriction level). In contrast, OPGA performs betterthan the
centralised approach whenever the agents’ communication range is
restricted, with the exception of Kobe when restricted to 5%; in this
case, the information flowing to the agents is minimal, hencethe
performance of any method will tend to be poor. This is precisely
the effect of restricting the communication and observation range
we expected to see, and justifies our arguments for using a princi-
pled decentralised algorithm in restricted range environments.

Furthermore, for moderate restrictions (20-15%), the performance
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Figure 4: Comparing the methods on the Kobe, VC and Foligno maps, alongside the number of casualties found.
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Figure 5: Comparing the methods as the communication and observationrange is restricted.

of OPGA actually improves in both Kobe and VC. This is a sur-
prising result. It occurs because, under restricted information, the
quiescence assumption motivating our choice of approximation is
better supported than in the full information case. That is,the state
of the world, as perceived by each agent, is more stable when their
communication and observation ranges are moderately restricted.
The subsequent degradation in performance of OPGA is due to a
simple lack of information flowing to the agents. This effectis not
reproduced in Foligno because OPGA does well, even in the full
communication case, as the rate of discovery of casualties is slow.

6. CONCLUSIONS
This paper defines a game–theoretic technique for decentralised
planning to address dynamic task allocation problems. There are
two main aspects to the problem addressed in this paper. First, each
agent has to perform a sequence of tasks over time and often tasks
may require more than one agent for their successful completion.
Second, the set of tasks is dynamic as new ones are discoveredover
time. This leads to a Markov game formulation. However, as such
stochastic games are generally intractable, we propose a technique
for approximating such games using a sequence of potential games.
Finally, we demonstrate how to apply Distributed Stochastic Algo-
rithm to solve these approximating games. To evaluate the efficacy
of our general approach we implement it in RoboCup Rescue. Inso
doing, we find it performs comparably to a centralised task sched-
uler when communication is not limited, and that it outperforms the
centralised approach as the agents’ communication and observation
ranges are restricted.

The next step of this work is to extend our model to capture other
aspects of complex disaster scenarios, such as allowing agents to
have differing costs for performing the same task (e.g. agents with
different levels of skill) and representing deadlines by a distribu-
tion over times (i.e. incomplete information about the tasks). The
former necessitates extending the agents reasoning to cover others’
types, while the latter requires an extension of tasks utilities func-
tions to capture soft deadlines.
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