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ABSTRACT

This paper reports on a novel decentralised technique tomjihg agent
schedules in dynamic task allocation problems. Speciioak use a Markov
game formulation of these problems for tasks with varyingdtdeadlines
and processing requirements. We then introduce a new tpohrior ap-
proximating this game using a series of statitential gamesbefore detail-
ing a decentralised solution method for the approximatiages that uses
the Distributed Stochastic Algorithm. Finally, we disc@ssimplementa-
tion of our approach to a task allocation problem in the Raim®escue
disaster management simulator. Our results show that chnigue per-
forms comparably to a centralised task scheduler (withinddP&average),
and also, unlike its centralised counterpart, it is roboisestrictions on the
agents’ communication and observation range.

Categories and Subject Descriptors

1.2.8 [Problem Solving, Control Methods, and Search Schedul-
ing; 1.2.11 Distributed Artificial Intelligence ]: Multiagent sys-
tems

General Terms
Algorithms, Experimentation

Keywords

Multi-agent planning, Game theory

1. INTRODUCTION

Controlling and managing the allocation of a stochastiobttsks

to a group of agents in real-time is a major challenge in the i
multi—agent systems. Relevant examples include the aitocaf

a city’s emergency response vehicles to unfolding incislenting

a major disaster (our main application focus in this workgjmte-
nance planning problems such as aero—engine overhaulgicizged
[14], and weapon-target assignment problems [1]. In alheke
situations, and many others besides, robustness is a kaiyeaeq
ment of the allocation procedure. This means we want to axoid
centralised allocation mechanism, as this could represeitgle
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point of failure. For this reason, we focus on the use of a dis-
tributed approach in which the individual agents negotititectly
with each other to make the allocations. More specificaligse
autonomous agents can operate on their own when the sceeario
mands this of them, or can collaborate and form teams if ihis i
their mutual benefit.

Now, in many cooperative settings, such as those listedeabov
the system designer can specify the agents’ payoff for msti-
rectly. The designer’s problem, then, is to define the aggais
offs such that their local best choice of action (given tHerima-
tion available to them) is one that produces a high globdityuti
Nonetheless, this can still leave the agents with the veficulit
problem of searching a factorial-sized space for an optstrat-
egy in a stochastic environment containing other agentturily,
this can adversely affect the timeliness of the solutiorsipced.
As such, when defining the agents’ utility functions, theteys
designer is faced with trade—offs between the robustnetheafo-
lution mechanism, the quality of the solutions it producas] its
tractability. Within this space, we aim to develop an altimatech-
nique that is, primarily, robust (i.e. decentralised), aadondly,
tractable, to ensure solutions can be produced in a timehnera
and finally, efficient, in terms of maximising the solutioredjty.

Against this background, the scheduling problems that we ad
dress consist of a set of agents assigning themselves texaad
cuting, a dynamic stream of tasks, without the aid of a césta
manager. Each task has a hard deadline and a particulaispioge
requirement (e.g. a casualty must be taken to hospital [80a6n
and this will take 30 minutes). In particular, the task seljisamic
because it is gradually revealed over time. This, in turramseve
require a practical mechanism that can respond to such ehang
a timely fashion. Now, an agent can attend any task — there are
no subtasks or specialisations — but it can act on only orledas
a time and it performs this task at a fixed rate of processirga A
consequence, some of the tasks cannot be completed by widindi
ual agent before their deadlines, and so must be tackled égma t
working together (additional agents only help completesk ta-
they do not hinder each other). This induces a problem otigar
among competing tasks for limited agents. Moreover, asthe f
set of tasks is not known at the outset, an agent has to catijinu
negotiate with other agents over the sequence of tasks twtxe
with the joint goals of completing as many as possible andhén t
least amount of time. Furthermore, the execution of somlestas
precludes the execution of others, and decisions made akea gi
time affect the structure of the problem facing the agenthérfu-
ture. Consequently, agents must consider the future sftdé¢heir
current actions during their negotiations (e.g. the denisb rescue
a particular casualty now may preclude the rescue of a setond
may not prevent the rescue of a third later).

To achieve all of these objectives, we pursue a decentdalise



game—theoretic approach, in which planning is achievedheia
gotiation between agents. In particular, we tackle thiblem by
first defining a global utility function, which is construdtas if we
were defining it for a centralised Markov decision problen(R).
Then, in order to develop a solution method that provides itls w
the robustness we require, we give control over the vaisadfi¢he

be out of action or damage to infrastructure may remove thityab

to use wide—area broadcast communication. In this veinvakie

ate our technique on the ambulance-to—civilian allocgtiailem

in RoboCup Rescue (RCR), which is an example of a spatial task
allocation problem with hard deadlines and varying prooesee-
quirements. By so doing, we show that our technique performs

problem — the resources used to complete the tasks — to a set ofcomparably to a centralised task scheduler when commimriciat
agents, each of which makes its own independent choices. As anot limited, and that it outperforms the centralised apphcas the

consequence, we use game theory to analyse their joint ioeinav
because it is the natural way to model the interaction of such
tonomous agents. Specifically, if the variables of a MDP are c
trolled by a set of autonomous agents, then we are in the sealm
of Markov gameg8]. In this type of game, self-interested agents
play a multi-stage game, in which the stage game varies pilgha
tically at each time—step as a function of the state andre&taken

in the previous time—step. Here, each stage game corresporad
particular set of tasks to be completed at that time and dtesbf
the agents in the system (their locations, commitment$, Efach
agent has its own private utility function which it aims toxmaise.
However, as discussed above, these are defined such thatyfor
unilateral switch in strategy, an agent’s change in payoéfjual to
the change in the global utility. Consequently, the globakimum

is a Nash equilibrium (i.e. itis a stable solution to the garhethis
way, selfish agents can be used to solve an inherently cdoera
problem, because their self-interest drives them towashigisns
with higher global utility.

Although our problem can be cast elegantly in such a model, it
not practical to solve it at real-world scales, becausetadeve to
consider the utilities of the future tasks present in allilde future
states during the negotiations. In particular, any muitige game
with stochastic state transitions is NEXP-complete [4f ¢t the
factorial growth in the number of state—action—transittombina-
tions. In order to address this concern, we show that the dlark
game can be approximated using a sequence of finite lengti-mul
stage games of complete information. In this context, we@pp
imate the global utility function with a limited horizon \@on of
the same function. This approximation incurs two penalti@s
for truncating the length of the decision window and therefig-
noring payoffs from future states, and (ii) for ignoring thassible
future changes in the state of the world, other than thoseghto
about by the agents’ own actions. Our use of this approxonati
is predicated on the assumption that changes in the worldotio n
significantly affect the long—run payoffs to the agentst ibaall
states arguiescent This assumption makes sense in our setting,
because the effect of scarcity of agents to complete taskeisne
that the introduction of additional tasks into the systerly effects
the agents’ payoffs at the margin, and does not alter thigyuoi
those tasks the agents may have already begun to proces®for ¢
sen not to process). Furthermore, we derive the agent#iedil
from the approximate global utility function such that thgeats
play apotential game9] at each time-step. This is very useful
because, first, the maximum approximate global utility isasiN
equilibrium, and second, it implies that each game can besdol
by a distributed local search algorithm. In particular, vee the
Distributed Stochastic Algorithm [18] to solve each appmating
game (we could equally well use alternative methods, su@iss
tributed Simulated Annealing or Fictitious Play, as show{2]).

Beyond this, we analyse the efficacy of our approach in sitoat
where the agents’ communication and observation rangeseare
stricted. That is, the agents cannot see the entire stale efdrld,
and therefore must make their decision on the basis of int&mp
information. This type of limitation is common in many scens,
particularly those that possess a spatial dimension. Fample,
in a disaster response setting, the central message distriimay

agents’ communication and observation ranges are restrict
Given this context, this work extends the state of the arhe t
following ways:
1. We introduce a new technique for approximating Markov
games using a series of overlapping potential games.

2. We develop a novel distributed solution technique forape
proximating games, based on the Distributed Stochastic Al-
gorithm.

3. We show that our technique is robust to restrictions on the
range over which agents can communicate and observe, re-
strictions which typically cause centralised approachésit

The paper is organised as follows. In the next section wewevi
other approaches to distributed dynamic scheduling, ayukaxhy
they do not meet our requirements. Section 3 then introdilees
game—theoretic background to our model. In Section 4 wederm
late the problem as a Markov game, and describe our apprexima
tion of the global utility function. Building on this, we stvohow

to derive agents’ utilities so that the resulting game is eeptial
game, and describe a local search algorithm that can be ased t
solve it. Finally, we discuss the effects of restricting thege over
which agents can communicate. Then, in Section 5, we eeatwat
technique in the ambulance—civilian allocation problenRi@GR.
This demonstrates the benefit of using a decentralised mhetho
control in settings where communication and observatieniar-

ited. Section 6 concludes.

2. RELATED WORK

Approaches to dynamic task allocation include: (i) domspecific
heuristics, (i) modelling scheduling as a constraint paog and
solving this with either a centralised or decentralisecbatgm,
and (iii) auction allocation mechanisms and more generaketa
based approaches. Each of these will now be dealt with in turn

First, there is a long history of using heuristics to solveestul-
ing problems. In particular, [13] addresses the familyeafliest
deadline firstheuristic algorithms for scheduling in real-time sce-
narios comprising tasks with hard deadlines that compet¢ho
same resources. The problem that we tackle here falls imgo th
general class of problems, and, furthermore, the greedyitigns
we use as experimental benchmarks in Section 5 are also based
such heuristics. However, such algorithms rely on the aéisaition
of information and decision—making, and so are not appatgifor
our application domains.

Second, a number of optimal algorithms for multi—agent dahke
ing problems have been proposed that work by reducing the pro
lem to a constraint program. Examples of constraints ireched
source relationswhich are shared by tasks that compete for the
same resource, amqtecedence relationsvhich are shared by sub-
tasks that need to be completed in a certain order. From tieese
lations, a constraint program is constructed. This can besdo
centrally (as in [15]) or using a decentralised constranogpam-
ming algorithm (such as DPOP [10]). Again, we rule out using
centralised constraint solvers: moreover, the distridbatgorithms
suffer from exponential growth of some aspect of the sotupim-
cess (e.g. the size of the messages passed in DPOP is expbinent
the depth of the communication network it is run on), and smo&a
easily be applied at the scales or on the timeframes we equir



Third, auctions and other market mechanism are beginnibg to
used to add robustness to task allocation by giving ageatuton-
omy to construct their own bids, based on their own privatpasf
tial knowledge [16, 6]. However, such auctions often relysmmif-
icant communication overhead, which can impact on the tivasé
of their solutions, and, to some degree, an auctioneer septe
a single point of failure (just like a central decision mgkedther
market—based allocation methods, such as bargaining @hdege
markets, are similar to our work, as the local search algaoriive
employ to solve each potential game effectively specifiesgon
tiation protocol. However, our method differs from thishature,
because we are able to directly specify agents’ utility fioms?1

From this landscape, the work most similar to ours is [1], in
which an autonomous vehicle—target assignment problend-is a
dressed using a potential game formulation. In their model,
hicles (agents) operate individually to optimise a glohigity The
global utility optimisation is obtained via an appropriaiesign of
the vehicles’ utilities and their negotiation protocol. Wéhwe use
a similar approach, there are two fundamental differen¢esst,
in their work, vehicles are assigned to a single target, adeein
our scenario each agent is required to perform a sequeneskd, t
each of which has a hard deadline. This means that our agents a
required to reason over the order in which they attend tcstasht
just which tasks to attend. Second, their approach assuratalt
tasks are known at the start, while we assume that they at@eon
ually discovered at run—time.

Finally, our approach to approximating the Markov game is mo
tivated by a somewhat similar technique for producing axipnate
solutions to partially—observable stochastic games usisgries of
smaller Bayesian games [3]. In that work, a tractable Bayesi
game is constructed at each time step from the most likekeour
states and state—transitions given an agent’s beliefs. Béyesian
game is then solved to obtain a one—step policy that appaieisn
the globally optimal solution of the original partially-sdrvable
stochastic game. In contrast, we construct a tractablei-atdge
game of complete information at each time step, and bechise t
is a potential game, it can be easily solved using a decesgdahl-
gorithm. The solution to this game is then used as a multié-
policy to approximate the globally optimal solution.

3. PRELIMINARIES

This section introduces the foundations of our model, be@gin
with noncooperative games, extending these ideas to May&kmes,
and finally considering the class of potential games.

3.1 Noncooperative Games

A noncooperative gamé, = (N,{S, Ui }ien), consists of a set of
agentsN = {1,...,n}, and for each ageitc N, a set ofstrategies
S, and autility function y : S— R. A joint strategy profilese S
is referred to as anutcomeof the game, wher&= UN | § is the
set of all possible outcomes. An agent’s utility functiomks its
preferences over outcomes in terms of the payoff it recdimean
outcome, such thak (s) > u;(s) if and only if the agent prefers out-
comes to outcomes’. We will often use the notatios= {s,s_i},
wheres_j is the complimentary set af.

In noncooperative games, an agent’s goal is to maximisenits o
payoff, conditional on the choices of its opponents. Stploliats
in such a system are characterised by the sblash equilibria A
joint strategy,s*, such that no individual agent has an incentive to
change to a different strategy, is a Nash equilibrium, i.e.:

1in contrast, market—based task allocation methods argrms$io
incentivise agents with arbitrary utility functions to &t way that
maximises a social welfare function. Nonetheless, the ections
between our work and mechanism design, in particulaGioves
mechanismare discussed in Section 4.3.

ui(s',s5) —ui(s,85) >0 Vs, Vi @)

In the next subsection, we discuss an extension of this sistptic
game model to stochastic, multi-stage settings.

3.2 Markov Games

Markov games are an extention of standard noncooperativega
for repeated interactions in which the game played by thetage
at each time—step, varies probabilistically as a function of the
state and the choice of strategies in the previous roundrglys
as some environmental process evolves [8]. Formally, a dark
game is a tuplel’ = (N, Q, {{S, ui }ien }weq, 0), comprising a set
of agents N= {1,...,n}, a set ofstate variableao € Q, a set of
stage gameg(w) indexed by elements d2, with each having a
strategy space Sand a set oftility functions (s), defined as
in the standard noncooperative model above, arsfate transi-
tion function w 1|, ). The state transition function gives the
probability that the next period’s state a$11, given the current
statew' and the strategy chosen by the agents at tinse. Al-
though state transitions are stochastic, agents are addorkaow
with certainty the current state. Intuitively, payoffs imetcurrent
stage game depend only on the state and the agents’ cumaet st
gies, while the probability distribution on the followingase is
completely determined by the current state and strateg@gteh.

A strategy in a Markov game comprises a strategy for eacheof th
stage games = {°}yeq; that is, there is a strategy component
for every possible state of the world. Strategies in finiteetistep
Markov games are typically evaluated by their expected teta
ward? E[ui(s,5-i)] = 3{_oU(s,5i).

3.3 Potential Games

Potential games are a subclass of noncooperative gameg afidhe
characterised as those games that admit a potential fanetitch
is a real-valued function on the joint strategy space whoadignt
is the gradient of the constituents’ private utility furets [9]. The
class of finite potential games have long been used to model co
gestion problems on networks [11], and, recently, they Heeen
used to analyse distributed methods of solving target aswgt
problems [1, 7] and job scheduling [18].

Formally, a functiorP : S— R is apotentialfor I" if:

P(s,s-i) —P(d,s-i) = Ui(s,s-i) —Ui(§,s.i) Vs, § € S VieN.

I is called apotential gamef it admits a potential. Intuitively, a
potential is a function of action profiles such that the défece in
its value induced by a unilateral deviation equals the ceanghe
deviating agent’s payoff.

The usefulness of potential games lies in the fact that the ex
istence of a potential means that the game possesses tvio- part
ularly desirable properties. The first is that every finiteepdial
game possesses at least one pure strategy equilibrium @, N
pure strategy Nash equilibria are particularly desirableécen-
tralised agent-based systems, as they imply a stable, eiigt:
come. Mixed strategy equilibria, on the other hand, imply@bp
abilistically stable, but stochastically variable eduilum strategy
profile. The second desirable property possessed by paltgathes
is that they have thdinite improvement propertymeaning that
any sequence of unilaterally improving moves convergesNash
equilibrium in finite time. This property is important as stlised
to guarantee the convergence of many simple adaptive meses
to Nash equilibria in potential games (including the Disited
Stochastic Algorithm, as discussed in Section 4.3).

2This is in contrast to infinite time step Markov games, whigrt
ically use the discounted expected total reward.



4. THE TASK ASSIGNMENT MODEL

We begin this section by defining our task allocation probéesa
Markov game. In 4.2 we describe our finite—horizon approxioma
of the global utility function, and in 4.3 we show how agenifityt

functions are derived so that the agents play a potentiabg&®ac-
tion 4.4 then discusses the Distributed Stochastic Algorjtwhich
we use to solve the approximating potential games. Finall,5

we discuss the effects on our approach of limiting the distaver
which agents can observe or communicate.

4.1 Markov Game Formulation

The full task allocation model is a finite Markov game of coeipl
information: the current state is known, future states aettain,
agents have a finite set of strategies and play for a finite ruimib
time steps. As per Section 3.2, our model comprises:

e A set of statesw € Q, each of which defines a set ta#fsks
X ={xq1,X,...Xj,...}, with each task possessingleadling
t)‘(’i, a number of requiregrrocessing unitsyy;, and atask
utility function, ux (s):S—R,

e Asetofagents N={1,2,...,i,...,n}, each with astrategy
space § with elementss, composed of a sequence of tasks
to attend, and aagent utility function Ys,s_j) : S— R,

o A state transition function(w'*1|w'), and
¢ A global utility function y(s) : S— R.

The problem we face is to design the agents’ utility funciamd

a distributed negotiation protocol such that the systenuyres
high quality solutions. The other elements of the model — the
transition function and the task and global utility functio— come
directly from the problem specification. To begin, the titios
function describes how new tasks are generated and inteddoto

the system. Then, the task utility function represents thof for
completing a task, and in this case itis:

- { ph it (9 < }

0

otherwise,

@)

Uy; (S)

Wheret§§j (s) is the completion time for the task, given the agents’

strategiess, tgj is the hard deadline for successfully completing a
task, and G< B < 1 is a discount factor that incorporates any ben-
efit of completing the task earlier. In more detail, the taskty
function is designed to possess two properties importamtirsce-
nario. First, the conditional statement models the hardlides

so if fewer than the minimum number of agents required to com-
plete the task beforé’i attend to it, the utility is zero, even if some
agents do attend to the task. This is important because risoau
narios, tasks incomplete at deadline are equivalent totemded
tasks. Second, increasing the number of agents beyond thigemu
necessary to complete the task by its deadline improvesthele-
tion time, which raises the task payoff. This captures theefieof
completing tasks earliérFinally, the global utility function ranks
the overall allocation of tasks to agents, and is an aggmyaf

task utilities:
Ug(s) = Ux; (S).
] Xj%( Xj

This preserves the desirable properties of the task utilitgtion.

©)

3The value offf in Equation 2 represents a trade—off between the
number of tasks completed and the timeliness of those caetble

Now that we have defined the task and global utility functifoms
our problem, if we were working directly with the Markov game
model, we would define the agents’ utility functions. Howgve
note that an agent’s strategy space in this model is the safl of
permutations of assignments to tasks each period; a sirpteg
scribes an action for each time step for every contingete sfahe
world. Thus, an agent’s strategy is a set of vectors of asfione
vector for each state of the world, with an agent’s utilitpétion
defined over this set. Given the huge number of possiblessaaig
action vectors of extremely large sizes (factorial on theber of
tasks), evaluating and negotiating a set of joint stratetpe this
problem is clearly a very involved process, that would lkelke a
great deal of time. Furthermore, given that we intend toaeplr
agents in a system where they will be required to make dexsio
over a short time horizon, constructing such a strategyHerfall
set of possible outcomes is practically impossible, dudéduge
number of possible future states and action combinaticatsiged
to be evaluated. For these reasons, we instead derive thésage
utility functions from a tractable approximation of the géd util-
ity function for the stochastic game.

4.2 Approximate Global Utility Function

Rather than attempting to solve the Markov game above, we ap-
proximate it using a series of static potential games of detapn-
formation. Specifically, in this section we approximate ¢hebal
utility function using a technique similar to a look—aheaaligy
commonly used in MDPs (see, for example, [12], Chapter 5). We
can use this type of approximation because, as discusseelcin S
tion 1, we expect all states to be quiesceiftollowing this, in the
next subsection we derive agents’ utilities from this apprate
global utility, such that the agents’ negotiation probleimis a po-
tential game.

In more detail, the global utility is approximated as follwAt
each time step, a game is constructed with each agent'sgyrde-
fined for a fixed decision window of future time steps. In each
of these games, an agent's strategy is a vector of tasksetadaid
during the intervalt,t +w], s = {x{,x*1 ... X*W}. In this way, at
each time step, the Markov game is approximated by a statiega
of complete information defined over the nextime steps. Then,
the task utility functions in each approximating game affinee as
in Equation (2), with the addition that, for tasks not contgteby
t 4+ w, payoffs are calculated as if all agents’ final strategy comp
nentﬁ*"" is repeated until the task in question is completed or its
deadline passes. If we did not assume the continuation skthe
tasks, the utility of all incomplete tasks at tinhe- w would be
zero, potentially leading to an artificial bias against saskh large
processing requirements and/or long completion times.gldieal
utility of this model is of the same form as that for the Markov

game model:
Uy; (5)7

except that the constituent task utilities are defined okerre-
stricted intervalt,t +w].

Before deriving the agents’ utility functions, we discuss types
of errors introduced by our approximation of the globalitytiiunc-
tion. The first is the restriction of strategies to the derisvindow
[t,t +w]. The result of this is that the value of future states beyond
the nextw time steps are not evaluated with the current choice of
strategy. Now, although we only maximisg(t) over the nexiw

4)

U™ (s

4If any state is non—quiescent, then our use of a look-ahgal st

tasks. As we aim to maximise the number of tasks completed, we approximation will suffer from théhorizon problem meaning it

chose a value close to 1, however, if timeliness was our nt@in ¢
cern, we would choose a lower value.

will not be able to avoid entering states that lead, unavwiddo
bad outcomes beyond the length of the decision window used.



time steps, any adverse effects on the fiit) are expected to
be small, because the game puts greater importance on titbks w
closer deadlines. Similarly, if we used the full Markov gamedel,
tasks with earlier deadlines would be processed earlier.s€oond
type of error is caused by not incorporating informationughtbe
exogenous evolution of the world (in our model, the arriviah@w
tasks) into the choice of state. However, as argued eairi¢he
domains we consider, the state of the world moves slow enfargh
us to ignore this effect without introducing any significantors.

Now, because we are working on a problem for which a sequen-
tially optimal solution is intractable, we are faced withrade—
off between the two sources of approximation error. The fifsé
is reduced as the restriction on the sizewofs relaxed. On the
other hand, the second type is mitigated by using a shongthe
window, because the difference in the predicted and actaté s
reached in the future is reduced. Consequently, our chdiagne
dow length reflects the need to balance the effect of thesedwo
cerns. In practice, this means that the valuevdias to be deter-
mined experimentally as it depends on the domain (elakaraien
in Section 5.2).

4.3 Deriving the Agents’ Utility Functions

Given the above approximation of the global utility functifor our
problem, the agent’s payoffs are designed so that any iseliean
agent’s utility corresponds to an increasm@ﬁ"(s). Now, because
the global utility is the sum of task utilities, an agent’s myiaal
contribution to the global utility can be specified in ternfstie
sum of its contributions to individual tasks — that is, thiafience
between the task utility when the agent contributes to thk &ad
when it does not. This type of utility structure is callednderful
life utility by [17]. The marginal contribution of ageinto a taskx;
is given by:

My’ (5,5.1) = U, (1,5-1) — Uy, (S0, 5.1, ®)

wheregy is thenull strategy in which the agent does not contribute
to completing any task. Note that this form of utility furanti is
similar to the Groves mechanism, in which agents in a team are
paid an amount equal to their marginal contribution to thante
utility [5].% In contrast, in our setting we can do away with the
explicit utility transfers that occur in mechanism desigecéuse
the system designer is able to specify each agent’s utilitgtion
directly (recall the discussion in Section 1). In particulay using
the wonderful life utility, a system designer internalisks effect
of an agent’s actions on the global utility.

The relationship between the task utility function and aerda'g
marginal contribution to the task utility is shown in the eyae
in Figure 1. This showsy, (s) and quj (s) for a task requiring 4
units of processing and with a deadline 2. A minimum of 2 agent
are required to complete the task — a constraint capturedhdy t
increase in the task and agents’ utilities as the number effitag
increases from 1 to 2. If more than this number of agentsdttae
task utility continues to increase as the completion timzeses,
however, the marginal contribution of each additional agpeyond
this point decreases.

An agent’s marginal utility values are used to construqgbégoff
for each strategy, which is the sum of its marginal contidng to
all the tasks it attends to in the nexttime steps:

Ui(s,s-i)= Yy my’ (s,s-1) (6)

Xj€S

5In order to make the connections clear, observe that if wewer
trying to incentivise agents, who possess private prefa®ro act

in a certain manner, then a mechanism design procedure,asuch
the Groves mechanism, would be an appropriate choice ofaiont

mechanism.

1 Ux; (S)
Utility —
1/2
,,,,,,, - my'(s)
0 1 2 3 4 5

Number agents attending

Figure 1: An example of task utility and agent marginal utility,
with yx = 4,t9 = 2 andB = 0.9.
Note that the first summation could be taken over all taskswrith
the same result, aaqxj (s,s-i) is zero for all tasks to whichdoes
not contribute. This point is important, as it implies thatteange
in strategy that increases an agent’s utility always cpoeds to
an increase in the global utility restricted to the decisiandow
[t,t +w]. Consider the difference irs utility for switching froms
to §. The following shows that the change in an agent’s own wtilit
is equal to the change in the global utility:

Ui(s,8-i) — Ui(§,5-i)
> (ux,- (s,5-i) — Uy, (50754))— > (ux,- (8,5-1) — Uy (507&0)

Xj€§ Xj E#

; (uxi (8,5-i) — Uy (S0,5-1) — Uy, (§,5-1) + Uy, (SO,&i)>
(8,5~ 05

Thus, a game played between agents with utility functiorgiaen
above is a potential game, with a potential function giverthsy
global utility function over the decision window. There dwo
consequences to this result. First, the globally optimiaication

of tasks to agents in the window resides in the set of Nash equi
libria. To see this, assume that the optimal point is not ahNas
equilibrium. Then there must be some agent that can altstdte

to improve its utility, which, in turn, will improve the gla util-

ity, which contradicts the assumption that the optimal p&@mot

a Nash equilibrium. Despite that, in most cases some suipralpt
Nash equilibria also exist. Second, the game has the finjieave-
ment property (see Section 3.3), implying the convergeridbeo
Distributed Stochastic Algorithm, as we discuss in the sextion.

4.4 The Distributed Stochastic Algorithm

The Distributed Stochastic Algorithm (DSA) is a greedy la=arch
algorithm [18]. We use it here because previous work compari
the performance of simple distributed heuristics in theselp re-
lated class of distributed constraint optimisation praisénas iden-
tified it as an algorithm that can quickly produce good qyadit-
lutions with a low communication overhead [2].

In more detail, DSA is a synchronous algorithm, in that agent
act in step, however, at each time step, an agent has soma-prob
bility p of activation, known as the degree of parallel executions
[18]. Given an opportunity to update its action, an agerg¢aslthe
action with the greatest increase in payoff — its best resper
or if no change improves the payoff, the agent does not chasge
strategy. The algorithm is motivated by observing that wineigh-
bouring agents adapt their strategies at the same timegctrein-
advertently move their joint state to a globally inferiotcame, a
phenomenon known as ‘thrashing’. Although the probaliisly
parallel execution of agents’ updating procedures doegmyent
all thrashing from taking place, by selecting an appropnaiue of
p, thrashing behaviour can be minimised. Importantly, DSA-co
verges to a Nash equilibrium in potential games. Brieflys tisi
because no agent will leave a Nash equilibrium after the tfirs



t: d =[ # §+l §+2 #+W ]
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t+1: &+ = [ §+1 §+2 §+3 §+1+w]
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Figure 2: Recycling solutions: Typically, thiet-1 tot +w strat-
egy components from ganteare used as initial conditions for
DSA in gamet + 1, and so on.

it is played, and for values of @ p < 1, the probability that the
agents play a Nash equilibrium goes to 1 as time progresses, a
consequence of the finite improvement property.

In application domains with short decision horizons, liIKeR a
good initial set of conditions can significantly improve tanver-
gence time of DSA. For this reason, in our model, solutionsni®
approximating game are used as initial conditions, or glastlu-
tions, for DSA in the following game. Specifically, becaube t
t+1 tot +w strategy components of consecutive games overlap,
we can reuse these components as the starting conditioBsSar
in each subsequent game (as shown in Figure 2). This is partic
larly useful for situations where the number of negotiatiteps is
limited by communication restrictions (such as in RCR). kared
issue is that newly arriving tasks with pressing deadliresehthe
potential to induce significant re—coordination by the ageren-
dering the partial solutions negotiated in previous garsieategies
irrelevant. In this way, these new tasks have the potemtidisrupt
the convergence of the algorithm. However, in practice, sipgi
any reasonable value far(i.e. 0< p>> 1) in conjunction with a
long window, the agents are able to deal with such disruption
a graceful manner. That is, as long@énparts significant inertia
on the existing strategy, it will prevent the algorithm frdmaing
significantly disrupted.

4.5 Handling Limited Range Communication

So far in this section, we have showed how to implement a géner
distributed technique for solving a dynamic task allocatwob-
lem. However, as motivated earlier, we also wish to devel@zia-
nigue that is robust in the face of restrictions on the distaover
which agents can communicate. In particular, the technigeide-
velop is a natural extension to the wonderful life utilitysdgbed in
Section 4.3, and is appropriate for any task allocation lpratwith

a spatial dimension. In more detail, we model situationsreshe
an agent can communicate over a limited distamcend is only
aware of some of the tasks that are currently know about isytee
tem. As such, the major changes in the method are that: (ehe
of strategy components available to an agent is restrictezhly
those tasks it is aware af;,® and (i) the agent's utility computa-
tions are carried out using only the strategies of thosetagbat
are currently within its communication ranges N;. This gives us
the following agent utility functions:

u(s,s) = Y my'(s.se)= Y (Ux1(5751\li)—ux1(50751\li)>7 ™
X|c§ =]

wheres is restricted to the set of taskis aware of X;. Now, using
this form for the agents’ utility functions means that thegx-
imate global utility function (Equation 4) need not be a it
function for the game. However, if all agents are aware of¢ho
agents attending to their tasks, then Equation 4 acts aseatfait
function. This is the case when the agents are at (or suffigien
near) the location of their tasks. On the other hand, bectasse

6The way that agents learn about tasks is typically specifibéo
domain, and how this occurs in RCR is discussed in Sectian 5.2

components of an agent’s strategy are restricted to thege ttais
aware of, parts of the global utility function are, in effgictacces-
sible to the agents. Nonetheless, the accessible locahmazofithe
approximate global utility are Nash equilibria of the game.

5. APPLICATION TO ROBOCUP RESCUE

In this section, we describe an application of our techniqQuRCR,
which is a simulation of a disaster response scerfarRCR is
chosen because it is a well-known domain used for benchnearki
multi-agent coordination algorithms. It is a complex peshlin
which teams of agents have to allocate and perform taskg usin
incomplete information in a stochastic environment, in teae.
Thus, it provides an ideal platform for evaluating the efficaf

our model. We begin by mapping from RCR to our generic model,
before discussing the experiments we use to evaluate otwagp

5.1 Ambulance—Civilian Allocation

A major part of the RCR problem is the allocation of injuredilei
ians to ambulances. We characterise this aspect of RCR asing
model, as described in Section 4, where each agettrresponds
to an ambulance and each tagkepresents an injured civilian that
needs rescue. As in our model, each civilian has a hard deadli
tf(’j, by which time it must reach a hospital if it is to survive, and
a processing requiremen;, corresponding to the time it would
take a single ambulance to be in a position to remove it froen th
scene. In RCR, the number of injured civilians is typicallych
greater than the number of ambulances, and not all of them are
known to the ambulances at the start. Rather, they are disedv
over time. This means that an ambulance must negotiate asegu
of civilians to attend to with other ambulances, with thectesof
some civilians requiring more than one ambulance because of
highyy, and/or an imminert .

Given this, the task completion timéi (s) in Equation 2, is the
time it takes a team of ambulances, given by the joint styapeg-
file s, to rescue the civilian. This incorporates both the cinlka
processing requirement (the time needed by the team befkiregt
it to the hospital), as well as estimates of the time it takeslie
team members to travel to the civilian. The global utilig(s) in-
creases with the number of civilians rescued, and for eadlaci,
increases with lower completion times. Regarding an anmoala
marginal utility (Equation 5), becauggis close to 1, the contri-
bution of an ambulance that is critical to the rescue of iawik;
beforetf(’. is greater than the benefit of speeding up the rescue of a
civilian that is already assured of being saved. This effed¢mon-
strated in Figure 1. Following this, an agent’s utility (Edgjon 6) is
then the sum of its contribution to all tasks in the windioyr+w],
and consequently, the approximate global utility functémts as
a potential for the entire game. Thus, the salient featufeki®
problem are captured in our model.

Nonetheless, two small variations to the standard DSA aresie
sary to successfully implement our model in RCR. First, aora-c
ponent of an ambulance’s role is to transport rescued anslito a
hospital, which takes time and can upset the agent’s syratéer
cause of the difficulties of capturing this requirement in model,
we allow the following innovation to DSA: Whenever an ambu-
lance has returned a civilian to a hospital, it computes aobetaly
new best strategy. Second, because agents are not comihging
best strategy at every time step, if others have changeddtnat-
egy, it is possible that an agent’s value for a task compidiime
differs significantly from the true value. This may requine figent
to shift forward many elements of its strategy vector (margren
than illustrated in Figure 2). Now, if too many elements age r

“htt p: / / www. r obocupr escue. or g



moved, the resulting recycling may be counter—productiae.this
reason, if, in recycling past components, an agent’s syatector

is advanced up by less thays components, then with probabilify

the agent computes a completely new strategy, and with piiiga
(1— p) it generates a new strategy for the remaining components
only, as usual. However, if more than thefs components are re-
moved, the agent always computes an entirely new strétegy.

5.2 Experimental Design

We now discuss the evaluation of our overlapping potentaheg
approximation (OPGA) algorithm in RCR. Specifically, we @QRGA
on three standard RCR maps — Kobe, VC (Virtual City) and Falig
each containing 80 civilians and 6 ambulances. Foligno &gel
and less structured map than Kobe or VC, making it harder to de
tect civilians there, while in the Kobe scenario, new casembre
revealed at a quicker rate than in the others. Informatiaugb
casualties is gathered by fire—brigades and police—patratsex-
plore the map and pass it on to the ambulances, thus sinqilatin
dynamic continuous stream of tasks. In the limited rangeate,
police and fire—brigades can only pass on information to an am
bulance when they are within its communication range, tleps r
resenting the limited observation range of the ambulan&sh
simulation is 300 time steps in duration. We implement twapa
eter setting of our method with= 0.5 or 09 — OPGA(0.5) and
OPGA(0.9) — and a decision window af= 30 steps for both. As
our preliminary experiments showed that the results weteeny
sensitive to differenp values between 0.5 and 0.9, we limited our
current results to the two endpoints of this range. The viduev
was narrowed down through experimentation, as it dependkseon
nature of the domain. To achieve statistical significanesu(ts are
shown with 95% confidence intervals), each experiment wa8ou
times. The performance in an experiment is reflected by theesc
obtained at the end of the simulation. This score is a stanoar
vided by the RCR framework and is basically a sum of the health
points of the civilians in the map. The health of an unresaieitt

ian decreases with time until it reaches 0 (which, in factstitutes
the deadline), while that of a rescued civilian improveshwiine.
We also measure the number of civilians saved over time,useca
it gives an insight into how the rate of rescue is affectednigyraite

of discovery of casualties.

We ran two batches of experiments. In the first, the agenta-co
munication range was not restricted. We use these results to
rectly compare the performance of OPGA to a centraliseddygree
(myopic) scheduler as an upper bound and a decentralisedygre
heuristic as a comparable lower benchmark. These bencemark
both use the earliest dealine first heuristic, disusseddtti@e2, to
allocate agents to tasks. The former lists civilians in oafeheir
deadline, centrally allocates free ambulances to theiaivilvith
the earliest deadline up to the point where it is assured wigbe
completed, and then allocates ambulances to the nexiarii its
list, and so forth. Now, because the allocation is performeat
trally, no mis—coordination is possible — neither fewer; mwore
agents than are required will ever be allocated to a civilfesuch,
this scheduler should out perform OPGA. Under the decésdal
greedy heuristic, each ambulance simply attends to thewtibk
the shortest deadline. This approach will typically leadnmver—
allocation of ambulances to civilians with short deadlinasd it
will occasionally allocate ambulances to a civilian everewltheir
efforts to save it are bound to be futile.

In the second batch of experiments, we test the performaihce o
OPGA with restrictions on the range of agents’ communicediod
observations, as discussed in Section 4.5. These restisctire

8Experimental evidence has shown two—thirds to be a realonab
value for this threshold.
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Figure 3: Comparing the methods across three maps.

Virtual City

20% 15%, 10%, and 5% of the maximum distance between two
points on the map in question (so the area covered by an agent’
range decreases quadratically with these values). In ¢gechbwe
compare OPGA(0.9) to the centralised greedy scheduler oty

do this to test our hypothesis that OPGA performs better than
centralised scheduler in scenarios where the communicatial
observation range is restricted.

5.3 Results

To begin with, we discuss the results of the first batch of expe
iments: Figure 3 show the mean performance of OPGA(0.9) and
OPGA(0.5) compared to the centralised and decentralissedgr
methods in the three maps. Although the difference in scere b
tween OPGA and the centralised greedy approach is statlgtic
significant, it is only 6% worse, on average, than the ceistdlap-
proach. Furthermore, OPGA performs significantly bettantthe
decentralised greedy method. When taken together, thestisre
show that our approach, based on overlapping potential gjaisie
a good approximation of the optimal solution to the Markomea
model of the ambulance—to—civilian problem in RCR. In moee d
tail, both versions of OPGA perform better in the Foligno &
scenario than in Kobe. Furthermore, ¥ factorial design test on
the results evaluating the effects of the valuepaind the map on
the score indicates that 95% of the variation of the scorexis e
plained by variation in the map, and less than 1% by variation
p. The cause of the variation in scores between maps is due to th
rate at which new trapped civilians are introduced. In patdr,
civilians are discovered at a quicker rate in the Kobe map tha
Foligno or VC. This is illustrated clearly in Figure 4. Heaeslower
rate of discovery allows OPGA to find good quality solutionsren
regularly than in maps where, at times, the rate of civili@talv-
ery is faster. Thus, OPGA performs better in Foligno and Véhth
in Kobe. Furthermore, this matches with the assumption wieema
that the state of the world moves slow enough for us to igrioge t
effect of the possible changes to the state of the world (itiquéar,
the list of civilians), without inducing significant errofé/hen this
assumption is less warranted, as in the Kobe scenario,ghdtaim
performs relatively worse.

Now we turn to the second batch of experiments (Figure 5). Ob-
serve that the performance of the centralised greedy Higorde-
grades quicker than OPGA, both in terms of its mean score and
the variability in its performance (as seen in the largeorars at
each restriction level). In contrast, OPGA performs betian the
centralised approach whenever the agents’ communicaitgeris
restricted, with the exception of Kobe when restricted tq Bthis
case, the information flowing to the agents is minimal, hethee
performance of any method will tend to be poor. This is pedgis
the effect of restricting the communication and observatange
we expected to see, and justifies our arguments for usinghaipri
pled decentralised algorithm in restricted range enviremts

Furthermore, for moderate restrictions (20-15%), theqraréince
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Figure 5: Comparing the methods as the communication and observaingye is restricted.

of OPGA actually improves in both Kobe and VC. This is a sur-
prising result. It occurs because, under restricted inéion, the
quiescence assumption motivating our choice of approximas
better supported than in the full information case. Thatis,state

of the world, as perceived by each agent, is more stable wien t
communication and observation ranges are moderatelyiatestr

The subsequent degradation in performance of OPGA is due to a
simple lack of information flowing to the agents. This effexchot
reproduced in Foligno because OPGA does well, even in the ful
communication case, as the rate of discovery of casuadtigiew.

6. CONCLUSIONS

This paper defines a game-theoretic technique for decisenlal
planning to address dynamic task allocation problems. &hee
two main aspects to the problem addressed in this papet, &ach
agent has to perform a sequence of tasks over time and oftkes ta
may require more than one agent for their successful cormaplet
Second, the set of tasks is dynamic as new ones are discaxered
time. This leads to a Markov game formulation. However, ahisu
stochastic games are generally intractable, we proposghaitpie
for approximating such games using a sequence of poteatiatg.
Finally, we demonstrate how to apply Distributed Stocltaatgo-
rithm to solve these approximating games. To evaluate fieaey
of our general approach we implement itin RoboCup Rescuso In
doing, we find it performs comparably to a centralised taslede
uler when communication is not limited, and that it outperfe the
centralised approach as the agents’ communication andvaibies
ranges are restricted.

The next step of this work is to extend our model to captureroth
aspects of complex disaster scenarios, such as allowingsage
have differing costs for performing the same task (e.g. &geith
different levels of skill) and representing deadlines byistrdbu-
tion over times (i.e. incomplete information about the skrhe
former necessitates extending the agents reasoning to aihars’
types, while the latter requires an extension of taskstieslifunc-
tions to capture soft deadlines.
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