Particle Swarm Optimisation Aided Minimum Bit Error Rate Multiuser Transmission

W. Yao, S. Chen, S. Tan and L. Hanzo

School of Electronics and Computer Science
University of Southampton
Southampton SO17 1BJ, UK
Motivations

- **Multiuser transmission** preprocessing technique is attractive for system with noncooperative mobile receivers
 \[\Rightarrow\] Low-complexity high power-efficiency mobile terminals

- **Minimum mean square error** MUT design has appealing simplicities but is limited in achievable bit error rate

- **Minimum bit error rate** MUT design enhances achievable BER performance
 \[\Rightarrow\] Standard MBER design based on *sequential quadratic programming* imposes high complexity

- **Particle swarm optimisation** aided MBER MUT design to significantly reduce complexity
- N transmit antennas and K mobile users
- Transmit symbol vector $\mathbf{x} = [x_1 \ x_2 \cdots x_K]^T$
- Precoder $\mathbf{P} = [p_1 \cdots p_K]$
- Flat fading MIMO channel $\mathbf{H} = [h_1 \ h_2 \cdots h_K]$

Transmit power constraint $E_T \Rightarrow$ scaling factor $\alpha = \sqrt{E_T/E[\|\mathbf{P}\mathbf{x}\|^2]}$

Receive signal vector $\mathbf{y} = [y_1 \ y_2 \cdots y_K]^T$ is given by

$$\mathbf{y} = \mathbf{H}^T\mathbf{P}\mathbf{x} + \alpha^{-1}\mathbf{n}$$

y_k, $1 \leq k \leq K$, are sufficient statistics for detecting x_k, $1 \leq k \leq K$
Bit Error Rate

- Average **bit error rate** for QPSK signalling is given by

\[P_e(P) = \left(P_{eI}(P) + P_{eQ}(P) \right) / 2 \]

- Average BER of **in-phase** component of \(y \)

\[P_{eI}(P) = \frac{1}{K M^K} \sum_{q=1}^{M^K} \sum_{k=1}^{K} Q \left(\frac{\text{sgn}(\Re[x_k^{(q)}]) \Re[h_k^T P x^{(q)}]}{\sigma_n} \right) \]

where \(M^K = 4^K \) is the number of equiprobable legitimate transmit symbol vectors \(x^{(q)} \) for QPSK signalling, \(x_k^{(q)} \) the \(k \)th element of \(x^{(q)} \), \(1 \leq q \leq M^K \), and \(Q(\bullet) \) the standard Gaussian error function

- Average BER of **quadrature-phase** component of \(y \)

\[P_{eQ}(P) = \frac{1}{K M^K} \sum_{q=1}^{M^K} \sum_{k=1}^{K} Q \left(\frac{\text{sgn}(\Im[x_k^{(q)}]) \Im[h_k^T P x^{(q)}]}{\sigma_n} \right) \]
MBER MUT Design

- MBER MUT solution is defined as

\[
P_{\text{TxMBER}} = \arg \min_P P_e(P)
\]

s.t. \(E[\|Px\|^2] = E_T \)

- Solving this optimisation by SQP algorithm has total complexity

\[
C_{T_{\text{SQP}}} = I_{\text{SQP}} \times C_{1_{\text{SQP}}}
\]

where \(I_{\text{SQP}} \) is number of iterations and \(C_{1_{\text{SQP}}} \) complexity per iteration

Complexity per iteration \(C_{1_{\text{SQP}}} \) of SQP-MBER-MUT for QPSK signalling, where \(N \) is the number of transmit antennas, \(K \) the number of mobile users, \(M = 4 \) is the size of symbol constellation

<table>
<thead>
<tr>
<th>Flops</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K \times (8 \times N^2 \times K^2 + 6 \times N \times K + 6 \times N + 8 \times K + 4) \times M^K + \mathcal{O}(8 \times N^3 \times K^3) + 8 \times N^2 \times K^2 + 16 \times N \times K^2 + 8 \times N^2 \times K + 12 \times N \times K + 6 \times K^2 - 2 \times N^2 + N - 2 \times K + 11)</td>
</tr>
</tbody>
</table>

ICC 2009

School of ECS, University of Southampton, UK
Particle Swarm Optimisation

- **Optimisation** for MBER-MUT
 \[\mathbf{P}_{\text{TxMBER}} = \arg \min_{\mathbf{P} \in S_{N \times K}} F(\mathbf{P}) \]

- **Cost** function
 \[F(\mathbf{P}) = P_e(\mathbf{P}) + G(\mathbf{P}) \]
 with penalty function
 \[G(\mathbf{P}) = 0 \]
 if \(E[\|\mathbf{P}\mathbf{x}\|^2] - E_T \leq 0 \);
 \[G(\mathbf{P}) = \lambda(E[\|\mathbf{P}\mathbf{x}\|^2] - E_T) \]
 if \(E[\|\mathbf{P}\mathbf{x}\|^2] - E_T > 0 \)

- **Search space** \(S_{N \times K} \) with search range for each precoder coefficient
 \[S = [-P_{\text{max}}, P_{\text{max}}] + j[-P_{\text{max}}, P_{\text{max}}] \]
PSO algorithm

PSO is a population based stochastic optimisation method inspired by social behaviour of bird flocking or fish schooling: a swarm of particles \(\{ \hat{P}_i^{(l)} \}_{i=1}^S \) evolves in search space \(S^{N \times K} \), where \(S \) is swarm size and index \(l \) denotes iteration.

- **a) Swarm initialisation** With iteration index \(l = 0 \), set \(\hat{P}_1^{(l)} \) to MMSE solution and randomly generate rest of initial particles, \(\{ \hat{P}_i^{(l)} \}_{i=2}^S \), in search space \(S^{N \times K} \).

- **b) Swarm evaluation** Particle \(\hat{P}_i^{(l)} \) has cost \(F(\hat{P}_i^{(l)}) \), based on which cognitive information \(\text{Pb}_i^{(l)} \), \(1 \leq i \leq S \), and social information \(\text{Gb}_i^{(l)} \) are updated.

- **c) Swarm update** Each particle has a velocity, \(V_i^{(l)} \in V^{N \times K} \), to direct its flying:
 \[
 V_i^{(l+1)} = w \cdot V_i^{(l)} + \text{rand}() \cdot c_1 \cdot (\text{Pb}_i^{(l)} - \hat{P}_i^{(l)}) + \text{rand}() \cdot c_2 \cdot (\text{Gb}_i^{(l)} - \hat{P}_i^{(l)})
 \]
 \[
 \hat{P}_i^{(l+1)} = \hat{P}_i^{(l)} + V_i^{(l+1)}
 \]

- **d) Termination condition check.** If maximum number of iterations, \(I_{\text{PSO}} \), is reached, terminate with solution \(\text{Gb}_{(I_{\text{PSO}})} \); otherwise, \(l = l + 1 \) and go to **b).**
Complexity of PSO Based Design

- There are well-defined rules for choosing PSO algorithmic parameters.
- PSO based MBER-MUT design has total complexity

\[C_{T_{PSO}} = I_{PSO} \times C_{1_{PSO}} \]

where \(I_{PSO} \) is number of iterations and \(C_{1_{PSO}} \) complexity per iteration.

Complexity per iteration \(C_{1_{PSO}} \) of PSO-MBER-MUT for QPSK signalling, where \(N \) is the number of transmit antennas, \(K \) the number of mobile users, \(M = 4 \) is the size of symbol constellation, \(S \) is the swarm size.

<table>
<thead>
<tr>
<th>Flops</th>
</tr>
</thead>
<tbody>
<tr>
<td>(((16 \times N \times K + 7 \times K + 6 \times N + 1) \times M^K + 20 \times N \times K + 2) \times S + 8)</td>
</tr>
</tbody>
</table>

- Since \(C_{1_{PSO}} < C_{1_{SQP}} \) and typically \(I_{PSO} \ll I_{SQP} \), PSO-MBER-MUT design imposes lower complexity than SQP-MBER-MUT design, i.e.

\[C_{T_{PSO}} \ll C_{T_{SQP}} \]
Simulation Results

- BS with $N = 4$ transmit antennas communicated over 4×4 flat Rayleigh fading channels with $K = 4$ single-receive-antenna QPSK mobile users
- $S = 20$ and $I_{PSO} = 20$ to 40, depending on SNR value, which were adequate as PSO algorithm arrived at MBER solution with lowest CT_{PSO}
- Results obtained by averaging over 100 channel realisations
- Channel taps $h_{i,k}$: uncorrelated complex-value Gaussian with $E[|h_{i,k}|^2] = 1$
- In the case of channel estimation error, AWGN with variance 0.01 was added to each tap
Convergence Comparison

- Given SNR=Eb/No=10 dB, PSO-MBER-MUT converged after $I_{PSO} = 20$ iterations while SQP-MBER-MUT converged after $I_{SQP} = 100$ iterations.
- Given SNR=Eb/No=15 dB, PSO-MBER-MUT converged after $I_{PSO} = 40$ iterations while SQP-MBER-MUT converged after $I_{SQP} = 140$ iterations.
Complexity Comparison

- SNR=10 dB: Complexity in terms of (a) total Flops required, and (b) run times recorded, both yielding a complexity ratio $C_{T_{SQP}} : C_{T_{PSO}} \approx 7 : 1$

(a)

- SNR=15 dB: yielding a complexity ratio $C_{T_{SQP}} : C_{T_{PSO}} \approx 5 : 1$

(b)
Swarm size $S = 20$ was found to be appropriate

SNR=15 dB: (a) convergence performance, and (b) total complexity required

(a) (b)

- **Graph (a):** BER vs. iterations for different swarm sizes.
- **Graph (b):** FLOPS vs. swarm size.

![Graph (a): BER vs. iterations](image)

![Graph (b): FLOPS vs. swarm size](image)
Conclusions

We have proposed PSO assisted MBER-MUT algorithm

- Which offers a much lower computational complexity than existing SQP based MBER-MUT algorithm

Simulating system of four transmit antennas and four QPSK mobile users over flat Rayleigh fading channels has confirmed

- PSO-based MBER-MUT imposes approximately five to seven times lower complexity than SQP-based MBER-MUT