A Controlled Natural Language Interface for Semantic Media Wiki Using the Rabbit Language

Jie Bao, Paul Smart, Dave Braines, Nigel Shadbolt
Web 2.0

- Advent of Web 2.0 supports greater user participation in the creation of Web content
- Good way to generate lots of online content
 - e.g. Wikipedia
 - ~3 million (English) articles
- Can we enable better exploitation of user-generated content?
 - retrieval, filtering, reasoning
The conventional web is intended for human consumption
- content consists largely of natural language text, images, video, etc.

Semantic Web seeks to make data more amenable to automated forms of information processing
- standard data model + explicit semantics

Resource Description Framework (RDF)
- core data model + some semantics

Web Ontology Language (OWL)
- more advanced semantics
- OWL typically used to create ontologies that describe the conceptual structure of a specific domain of interest
Combination of standard data models and explicit semantics supports:
- information exchange and interoperability
- data integration
- improved search and retrieval
- reasoning and inference
Shared Repository

Intelligent Agents/Assistants

Analysts

Unmanned Vehicles

Military Platforms

Patrols/Field Reports

Remote Sensors

Multinational Planning Teams

Non-Military Organizations

Demining
Semantic Web Problems

But...

- limited amounts of high-quality, semantically-enriched data available
- grounding in formal logic presents a usability barrier to many individuals and organizations
- establishing consensus during ontology development is often difficult – extensive collaboration is required

So...

- can we learn from Web 2.0
 - greater user participation
 - delivers lots of content
 - easy to use
 - emphasis on collaborative or, at least, collective efforts
Wiki Systems

- Support multi-user content creation and editing via a Web browser interface
- Encourages large-scale participation
- Easy to use
- Content usually of reasonable quality

Problems:
- Natural language text
- Difficult for machines to participate in content generation
Semantic Media Wiki (SMW)

- Uses Wikipedia engine
- Perhaps the most popular semantic wiki system
- Supports the creation of semantically-enriched content
 - uses semantic annotations
- Combines features of conventional wiki system with semantic technologies
Good basis for developing an online, collaborative knowledge editing system whose content is both structured and semantically-rich.
Some Problems

- **Usability**
 - semantic content (esp. ontologies) difficult to create
 - departure from Web 2.0 emphasis on ease-of-use
 - even experienced knowledge engineers can find it difficult to create/edit ontologies

- **Automatic content integration**
 - sometimes content needs to be automatically imported without user intervention
 - recall the case of sensor feeds

- **Expressivity constraints**
 - semantic wikis (including SMW) do not always support the full range of OWL modelling formalisms and axioms

- **Inference constraints**
 - limited support for rule representation and inference
Some Solutions

- **Usability**
 - use CNLs
 - potential production and comprehension benefits
 - multiple OWL–compliant CNLs are available:
 - e.g. Rabbit, Sydney OWL Syntax, ACE–OWL

- **Automatic content integration**
 - develop an RDF import mechanism for SMW
 - support the automatic creation of wiki pages and page content from external RDF/OWL models

- **Expressivity constraints**
 - extend SMW with an OWL meta–model

- **Inference constraints**
 - implement rule representation and inference capabilities for SMW (reported elsewhere)
Research Aims

- Extend expressivity of SMW to provide full support for OWL
- Support the creation of ontologies and ontology content within SMW
- Explore ways to serialize SMW contents as (multiple) CNLs
- Investigate mechanisms to support wiki content creation using (multiple) CNLs
- Develop CNL editors to support content creation
System Architecture

Wiki Database

Form Editor Interface

CNL Interface

CNL Editing Interface

RDF Export Interface

RDF Export

RDF Import

RDF Model

Semantic Query Interface

SELECT ?x
WHERE
{
 ?x rdf:type owl:Class
}
SMW–OWL Meta–Model

- Required for CNLs, RDF import, ontology development
- Use wiki templates to create OWL meta–model extensions for SMW
- Each wiki template is created using the wiki scripting language
- OWL elements (e.g. classes, subClassOf axioms) are represented using individual wiki templates
-Instances of the templates encode information about the classes, properties and individuals in a specific ontology
OWL Abstract Syntax:
Class(Rabbit partial intersectionOf (Animal restriction(eat someValuesFrom(FreshVegatable)))))

{{NamedClass
 | is definition=No
 | label=Rabbit
 | plural=Rabbits
}}

{{NamedClassRelation
 | type=subClassOf
 | class=Animal
}}

{{someValuesFrom
 | on property=eat
 | on class=FreshVegatable
}}
Each wiki template is associated with UI components that support the editing of data associated with instances of the template.

Multiple templates can be associated with a wiki page to create an editing interface for ontology elements (i.e. classes, properties and individuals).
Wiki templates are also used to generate CNL.

Each wiki CNL generation template contains embedded semantic queries to retrieve information from the wiki database.

The retrieved information is then structured according to the syntax of the target CNL (e.g. Rabbit) – again using wiki script.

Accommodating new CNLs (e.g. ACE) requires relatively minor changes to the wiki script.

- future work: enable users to create/modify their own CNL generation templates.
Every \[
\text{[[:{{{1}}}{{!}}{{#var:label}}]}\]
\] is a kind of \[
\text{[[:xxx|{{CNL.getLabel|xxx}}]}\]}
\]
Category: Rabbit

Category: Rabbit

<table>
<thead>
<tr>
<th>Label:</th>
<th>Rabbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plural:</td>
<td>Rabbits</td>
</tr>
<tr>
<td>In ontology:</td>
<td>Rabbit Ontology</td>
</tr>
</tbody>
</table>

"Category: Rabbit" in "Rabbit" controlled natural language

- Rabbit is a Animal.
- No Rabbit is a NonRabbit.
- Rabbit and Hare are equivalent.
- Rabbit and Wolf are mutually exclusive.
- Every Rabbit is exactly one of Bugs Bunny OR Peter Rabbit.
- Every Rabbit is a White Rabbit or a Black Rabbit.
- Every Rabbit eats FreshVegatable,
- Every Rabbit has part Whisker.
- Every Rabbit has child(ren) only Rabbit or nothing.
- Every Rabbit has eye color of Red.
- Every Rabbit has leg(s) exactly 4.
- Every Rabbit has head at least 1.
- Every Rabbit has parent at most 2.
- Rabbit is a concept, plural Rabbits.
CNL Editor Requirements

- Interface to support the creation and editing of wiki content using CNLs
 - Light-weight integration with SMW environment
 - Language agnosticism – support for multiple CNLs
 - Rabbit, ACE–OWL, etc.
 - Requires flexible representation of grammar rules
 - Constrain user input to grammatically-correct sentences
 - Intellisense / autocompletion capabilities
 - Display, sort, filter, search asserted CNL sentences
 - View ‘related’ sentences in other ontologies
 - View inferred CNL sentences
 - Display reason why sentence has been inferred
 - Provide logical consistency checking, redundancy checking and error diagnosis
 - Speech input?
 - Enable users to create/modify CNL input grammars?
AceWiki

- Developed by Tobias Kuhn at the University of Zurich
- Wiki system based on a subset of ACE
- Includes predictive editor that constrains user input to ACE-compliant sentences

Differences:
- underlying wiki system
- editing interface
- light-weight extensions
- support for multiple CNLs
- customization of target CNLs
Applications

- Coalition Planning
 - ontology-mediated collaborative planning
 - users
 - brigade staff

- Human Terrain Analysis
 - cultural profiling
 - cultural analysis and training
 - users
 - cultural anthropologists, psychologists, IO/PSYOP teams, indigenous individuals/organizations

- Intelligence Gathering/Analysis
 - social network analysis
 - activity monitoring
 - users
 - intelligence analysts, platoon leaders
Summary

- We have developed an OWL meta-model extension to SMW to support the representation of OWL ontologies
- We have provided a light-weight form-based interface to support ontology editing
- We have provided an RDF import mechanism to support the import of existing ontologies
- We have developed multiple CNL ‘verbalizers’ to support the serialization of semantic wiki content to CNLs
- Future work:
 - enable users to create/customize CNL output
 - implement wiki-based CNL editing capability

http://tw.rpi.edu/proj/cnl/Main_Page

baojie@cs.rpi.edu