

A Controlled Natural Language Interface for Semantic Media Wiki Using the Rabbit Language

Jie Bao, Paul Smart, Dave Braines, Nigel
Shadbolt

International Technology Alliance

THE UNIVERSITY *of* YORK

UCLA

Carnegie Mellon

Cranfield
UNIVERSITY

logicaCMG

IBM

Rensselaer

UNIVERSITY OF
Southampton

Imperial College
London

CUNY
The City
University
of
New York

Web 2.0

- ▶ Advent of Web 2.0 supports greater user participation in the creation of Web content
- ▶ Good way to generate lots of online content
 - e.g. Wikipedia
 - ~3 million (English) articles
- ▶ Can we enable better exploitation of user-generated content?
 - retrieval, filtering, reasoning

flickrTM

WIKIPEDIA
The Free Encyclopedia

 del.icio.us

twitter

facebook

The Semantic Web

- ▶ The conventional web is intended for human consumption
 - content consists largely of natural language text, images, video, etc.
- ▶ Semantic Web seeks to make data more amenable to automated forms of information processing
 - standard data model + explicit semantics
- ▶ Resource Description Framework (RDF)
 - core data model + some semantics
- ▶ Web Ontology Language (OWL)
 - more advanced semantics
 - OWL typically used to create ontologies that describe the conceptual structure of a specific domain of interest

Semantic Web – Benefits

- ▶ Combination of standard data models and explicit semantics supports:
 - information exchange and interoperability
 - data integration
 - improved search and retrieval
 - reasoning and inference

Analysts

Intelligent
Agents/Assistants

Patrols/Field Reports

Remote
Sensors

Unmanned Vehicles

Military Platforms

Non-Military
Organizations

Semantic Web Problems

- ▶ But...
 - limited amounts of high-quality, semantically-enriched data available
 - grounding in formal logic presents a usability barrier to many individuals and organizations
 - establishing consensus during ontology development is often difficult – extensive collaboration is required
- ▶ So...
 - can we learn from Web 2.0
 - greater user participation
 - delivers lots of content
 - easy to use
 - emphasis on collaborative or, at least, collective efforts

Wiki Systems

- ▶ Support multi-user content creation and editing via a Web browser interface
- ▶ Encourages large-scale participation
- ▶ Easy to use
- ▶ Content usually of reasonable quality

- ▶ Problems:
 - natural language text
 - difficult for machines to participate in content generation

Semantic Media Wiki (SMW)

- ▶ Uses Wikipedia engine
- ▶ Perhaps the most popular semantic wiki system
- ▶ Supports the creation of semantically-enriched content
 - uses semantic annotations
- ▶ Combines features of conventional wiki system with semantic technologies

Semantic Media Wiki (SMW)

- ▶ Uses Wikipedia engine
- ▶ Perhaps the most popular semantic wiki system

Semantic Media Wiki

Good basis for developing an online, collaborative knowledge editing system whose content is both structured and semantically-rich.

- ▶ Combines features of conventional wiki system with semantic technologies

Some Problems

- ▶ **Usability**
 - semantic content (esp. ontologies) difficult to create
 - departure from Web 2.0 emphasis on ease-of-use
 - even experienced knowledge engineers can find it difficult to create/edit ontologies
- ▶ **Automatic content integration**
 - sometimes content needs to be automatically imported without user intervention
 - recall the case of sensor feeds
- ▶ **Expressivity constraints**
 - semantic wikis (including SMW) do not always support the full range of OWL modelling formalisms and axioms
- ▶ **Inference constraints**
 - limited support for rule representation and inference

Some Solutions

- ▶ **Usability**
 - use CNLs
 - potential production and comprehension benefits
 - multiple OWL-compliant CNLs are available:
 - e.g. Rabbit, Sydney OWL Syntax, ACE-OWL
- ▶ **Automatic content integration**
 - develop an RDF import mechanism for SMW
 - support the automatic creation of wiki pages and page content from external RDF/OWL models
- ▶ **Expressivity constraints**
 - extend SMW with an OWL meta-model
- ▶ **Inference constraints**
 - implement rule representation and inference capabilities for SMW (reported elsewhere)

Research Aims

- ▶ Extend expressivity of SMW to provide full support for OWL
- ▶ Support the creation of ontologies and ontology content within SMW
- ▶ Explore ways to serialize SMW contents as (multiple) CNLs
- ▶ Investigate mechanisms to support wiki content creation using (multiple) CNLs
- ▶ Develop CNL editors to support content creation

System Architecture

SMW-OWL Meta-Model

- ▶ Required for CNLs, RDF import, ontology development
- ▶ Use wiki templates to create OWL meta-model extensions for SMW
- ▶ Each wiki template is created using the wiki scripting language
- ▶ OWL elements (e.g. classes, subClassOf axioms) are represented using individual wiki templates
- ▶ Instances of the templates encode information about the classes, properties and individuals in a specific ontology

OWL Abstract Syntax:

```
Class(Rabbit partial intersectionOf (Animal
    restriction(eat someValuesFrom(FreshVegetable))))
```

Basic Information

This page is a definition:

A definition gives both sufficient and necessary conditions

Label (English name of Rabbit):

Rabbit

Plural Form (plural form of the name of Rabbit):

Rabbits

In Ontology:

Rabbit Ontology

```
{ { NamedClass
| is_definition=No
| label=Rabbit
| plural=Rabbits
}}
```

Relation to other classes

Rabbit is None subClassOf equivalentClass complementOf disjointWith

the class

[Remove](#)

```
{ { NamedClassRelation
| type=subClassOf
| class=Animal
}}
```

The class must have some property values from

Every Rabbit have some values of the property

from the class

[Remove](#)

```
{ { someValuesFrom
| on_property=eat
| on_class=FreshVegetable
}}
```

OWL Class Templates

NamedClass
+English Label: String
+English Plural: String
+English Comments
+Is definition: boolean = false

AnonClass
+English Label: String
+Is definition: boolean = true

NamedClassRelation
+type: {subClassOf, equivalentClass, complementOf, and disjointWith}
+class: Class

AnonClassRelation
+type: {subClassOf, complementOf}
+class: Class

ClassListRelation
+type: {intersectionOf, unionOf}
+classes: List < Class >

someValuesFrom
+on property: Property
+on class: Class

allValuesFrom
+on property: Property
+on class: Class

hasValue
+on property: Property
+has value: Individual

oneOf
+individuals: List < Individual >

Cardinality
+on property: Property
+cardinality: integer

maxCardinality
+on property: Property
+max cardinality: integer

minCardinality
+on property: Property
+min cardinality: integer

Form-Based Editing Interface

- ▶ Each wiki template is associated with UI components that support the editing of data associated with instances of the template

Relation to other classes

Rabbit is None subClassOf equivalentClass complementOf disjointWith
the class

```
{ { NamedClassRelation
| type=subClassOf
| class=Animal
} }
```

- ▶ Multiple templates can be associated with a wiki page to create an editing interface for ontology elements (i.e. classes, properties and individuals)

CNL Generation

- ▶ Wiki templates are also used to generate CNL
- ▶ Each wiki CNL generation template contains embedded semantic queries to retrieve information from the wiki database
- ▶ The retrieved information is then structured according to the syntax of the target CNL (e.g. Rabbit) – again using wiki script
- ▶ Accommodating new CNLs (e.g. ACE) requires relatively minor changes to the wiki script
 - future work: enable users to create/modify their own CNL generation templates

CNL Generation

<http://tw.rpi.edu/proj/cnl/Template:CNL.Rabbit.getConceptRelationAssertions>

```
 {{#vardefine:label|{{CNL.getLabel|{{{1}}}} }} }
 {{#vardefine:super |
 {{#ask: [:{{{1|{{FULLPAGENAME}}}}}}]}
 |?Category= |mainlabel=-|format=list|link=none
 }} }
```

```
 {{#if: {{#var:super}}
 |{{#arraymap:{{#var:super}}|,|xxx|<li>Every
 [:{{{1}}}{!}{{#var:label}}]} is a kind of
 [:xxx|{{CNL.getLabel|xxx}}]} }}|
```

Category:Rabbit

Category:Rabbit [Edit]

Label:	Rabbit
Plural:	Rabbits
In ontology:	Rabbit Ontology

"Category:Rabbit" in "Rabbit" controlled natural language

- **Rabbit** is a **Animal**.
- **No Rabbit** is a **NonRabbit**.
- **Rabbit** and **Hare** are equivalent.
- **Rabbit** and **Wolf** are mutually exclusive.
- **Every Rabbit** is exactly one of **Bugs Bunny** OR **Peter Rabbit**.
- **Every Rabbit** is a **White Rabbit** or a **Black Rabbit**.
- **Every Rabbit** eats **FreshVegatable**,
- **Every Rabbit** has part **Whisker**.
- **Every Rabbit** has child(ren) only **Rabbit** or nothing.
- **Every Rabbit** has eye color of **Red**.
- **Every Rabbit** has leg(s) exactly 4.
- **Every Rabbit** has head at least 1.
- **Every Rabbit** has parent at most 2.
- **Rabbit** is a concept, plural **Rabbits**.

CNL Editor Requirements

- ▶ Interface to support the creation and editing of wiki content using CNLs
 - light-weight integration with SMW environment
 - language agnosticism – support for multiple CNLs
 - Rabbit, ACE-OWL, etc.
 - requires flexible representation of grammar rules
 - constrain user input to grammatically-correct sentences
 - intellisense / autocompletion capabilities
 - display, sort, filter, search asserted CNL sentences
 - view ‘related’ sentences in other ontologies
 - view inferred CNL sentences
 - display reason why sentence has been inferred
 - provide logical consistency checking, redundancy checking and error diagnosis
 - speech input?
 - enable users to create/modify CNL input grammars?

AceWiki

- ▶ Developed by Tobias Kuhn at the University of Zurich
- ▶ Wiki system based on a subset of ACE
- ▶ Includes predictive editor that constrains user input to ACE-compliant sentences

Karlsruhe

[references](#) [delete](#)

Word

word class: proper name
name: Karlsruhe [edit...](#)

Assignment

▶ Karlsruhe is a city .

- ▶ it is false that Karlsruhe is Zurich .
- ▶ Karlsruhe has a Football-Club .
- ▶ Karlsruhe is a part of Germany .
- ▶ Karlsruhe does not belong-to Schwaben .
- ▶ Karlsruhe is a part of Baden .

[add...](#)

Differences:

- underlying wiki system
- editing interface
- light-weight extensions
- support for multiple CNLs
- customization of target CNLs

Applications

- ▶ Coalition Planning
 - ontology-mediated collaborative planning
 - users
 - brigade staff
- ▶ Human Terrain Analysis
 - cultural profiling
 - cultural analysis and training
 - users
 - cultural anthropologists, psychologists, IO/PSYOP teams, indigenous individuals/organizations
- ▶ Intelligence Gathering/Analysis
 - social network analysis
 - activity monitoring
 - users
 - intelligence analysts, platoon leaders

Summary

- ▶ We have developed an OWL meta-model extension to SMW to support the representation of OWL ontologies
- ▶ We have provided a light-weight form-based interface to support ontology editing
- ▶ We have provided an RDF import mechanism to support the import of existing ontologies
- ▶ We have developed multiple CNL ‘verbalizers’ to support the serialization of semantic wiki content to CNLs
- ▶ Future work:
 - enable users to create/customize CNL output
 - implement wiki-based CNL editing capability

http://tw.rpi.edu/proj/cnl/Main_Page

baojie@cs.rpi.edu