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networks consist of small, battery-powered devices 
that are physically distributed over a wide area and 
connected through a wireless communication net-
work. Since these networks often must collect data 
over extended periods of time and are deployed in 
inhospitable environments where replacing batteries 
is inconvenient or impossible, much of the research 
in this domain addresses the challenge of minimiz-
ing each sensor’s energy needs. To this end, research-
ers have developed a wide range of energy-effi cient 
sensor nodes and wireless communication protocols 
and demonstrated them in varied applications.

In addition to the immediate concerns of energy 
effi ciency and reliable wireless communication, 
which are normally the concerns of electronics en-
gineers, the distributed nature of such networks and 
the autonomous behavior expected of them pres-
ent several more generic challenges. Specifi cally, 
the individual sensors in these networks must typi-
cally coordinate their sensing actions with nearby 
sensors to achieve systemwide goals (for example, 
varying their sense/sleep duty cycles to maximize 
battery life while reducing the redundant sensing 
of overlapping areas). Furthermore, the network 
must autonomously adapt its responses in a dy-
namically changing environment such that it can 
achieve the long-term systemwide goals without di-
rect human intervention. Such problems have long 
been the domain of computer scientists, particularly 
those researching multiagent systems. As such, the 
multiagent systems community would seem to have 
an extensive set of formalisms, algorithms, and 
methodologies in place to address these challenges.

However, the mapping from sensor to agent isn’t 
trivial. Research in the multiagent systems domain 
typically doesn’t address the constrained computa-
tional and communication resources of low-pow-
ered sensor nodes. Moreover, research often fails 
to consider that communication might be slow and 
intermittent, hardware might be unreliable and 
failure prone, and environments might be highly 
dynamic. As such, although existing agent technol-
ogies are extremely valuable, they cannot be used 
directly. Rather, to address the specifi c constraints 
and challenges posed by this application setting, we 
need a new synthesis that adapts and extends tra-
ditional technologies using approaches from other 
disciplines such as electronic engineering.

Against this background, this article describes 
three examples where this synthesis has succeeded. 
One showcases the development of communica-
tion and computationally effi cient decentralized co-
ordination algorithms to coordinate the behavior 
of physically distributed sensors. The second ad-
dresses the real-world challenges of using sensor-
agent platforms in the fi eld. Finally, we describe 
intelligent agents that can autonomously acquire 
data from these networks and perform information-
processing tasks such as fusion, inference, and pre-
diction. In each case, researchers have demonstrated 
the work in the wild, implemented it on real sensor 
hardware, deployed it in real, hostile environments, 
and evaluated it on real sensor data.

Agent-Based 
Decentralized Coordination
As we mentioned, coordinating the activities of physi-
cally distributed devices to achieve good systemwide 
performance is a fundamental challenge. Such coor-
dination might include routing data through the net-
work, choosing the appropriate sampling rates of sen-
sors that exhibit spatial correlations, or determining 
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the scheduling of each sensor’s sleep/
sense cycle. In each case, we must con-
sider the specific constraints of each de-
vice (its limited power, communication, 
and computational resources) and the 
fact that each device typically can com-
municate only with a few other local 
devices. Furthermore, we should per-
form this coordination in a decentral-
ized manner so that 

no central point of failure or com-•	
munication bottleneck exists, 
the computation required for coor-•	
dination is shared over the distrib-
uted resources, and
the solution scales well as the •	
number of devices in the network 
increases.

The multiagent systems literature 
often represents such challenges as dis-
tributed constraint optimization prob-
lems (DCOPs), and researchers have 
proposed several algorithms that gen-
erate optimal solutions to them. Ex-
amples include Adopt (Asynchronous 
Distributed Constraint Optimization), 
DPOP (Dynamic Programming Opti-
mality Principle), and OptAPO (Op-
timal Asynchronous Partial Overlay). 
However, optimality demands that 
some aspect of these algorithms (either 
the computational cost or the number 
or size of messages exchanged) must 
increase exponentially with the prob-

lem size. So, such algorithms are gen-
erally unsuitable for sensors that ex-
hibit constrained computational and 
communication resources. In addi-
tion to these optimal algorithms, nu-
merous approximate stochastic algo-
rithms have been proposed for solving 
DCOPs. These algorithms are typi-
cally based on entirely local computa-
tion. They maximize a global utility 
function by having each agent update 
its state on the basis of the commu-
nicated (or observed) states of local 
neighbors that influence its individual 
utility. These approaches scale well 
and are thus well suited to large-scale 
distributed applications, but they of-
ten converge to poor-quality solutions 
because agents typically communi-
cate only their preferred state, fail-
ing to explicitly communicate utility 
information.

To address this shortcoming, the 
University of Southampton’s Adaptive 
Energy-Aware Sensor Networks proj-
ect recently proposed an approximate, 
decentralized solution that can maxi-
mize the social welfare of a group of 
agents (maximizing the sum of each 
agent’s utilities) when any individual 
agent’s utility depends on its own state 
and the state of a small number of in-
teracting neighbors.1 This solution is 
based on the max-sum algorithm, a 
message-passing technique that’s of-
ten used to decompose complex com-

putations on single processors but had 
never previously been used for multi-
agent coordination. In particular, this 
approach exploits extensive empirical 
evidence that the max-sum algorithm 
generates good approximate solutions 
when applied to cyclic graphs. It op-
erates by representing agents’ interac-
tions as a factor graph in which each 
agent—represented by a variable node 
(representing its state) and a function 
node (representing its utility)—itera-
tively passes messages between con-
nected nodes.

An empirical evaluation on a suite 
of graph-coloring problems (a canoni-
cal coordination problem used to eval-
uate many such algorithms) indicates 
that this algorithm produces better 
solutions than approximate stochas-
tic algorithms (such as the Distributed 
Stochastic Algorithm), that it requires 
significantly less computational and 
communication resources than com-
plete algorithms (such as DPOP), and 
that it’s robust to message loss.1 The 
researchers at the University of South-
ampton have implemented the algo-
rithm in a simulated sensor network 
for wide-area surveillance in an urban 
environment (see Figure 1 for a screen-
shot and http://users.ecs.soton.ac.uk/
acr/wideareasurveillancedemo for a 
video of this in operation).

To prove the algorithm’s practical  
applicability, researchers have also im
plemented it in hardware using the Texas 
Instruments CC2430 system-on-chip 
to solve the graph-coloring benchmark 
problem. The CC2430, an extremely low-
power device incorporating a 32-MHz 
8-bit 8051 microcontroller and 8 Kbytes 
of RAM, is intended to form the core 
of future low-power sensor nodes.  
Figure 2 shows a simple example in 
which three graph-coloring sensors have  

Figure 1. Agent-based decentralized 
coordination algorithm implemented 
in a simulated sensor network for 
wide-area surveillance. The max-sum 
algorithm enables the coordination 
of the sense/sleep cycles of energy-
constrained sensors.
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successfully coordinated to 
avoid a color clash (a video 
of the sensor nodes in op-
eration is available at http://
users.ecs.soton.ac.uk/acr/
graphcolouringdemo).

Deploying Sensor  
Agents in the Field
Developing these results fur-
ther into sensor-agent plat-
forms for field deployment 
presents significant addi-
tional challenges in adapt-
ing to hardware, communi-
cation, and environmental 
limitations. In addressing 
these challenges, the Col-
laborative Network for At-
mospheric Sensing (CNAS) 
demonstration project at 
the University of Massachu-
setts Amherst has created a 
rapidly deployable, agent-
based, power-aware sensor 
network for ground-level 
atmospheric monitoring.2  
Each CNAS sensor agent 
(see Figure 3 on the next 
page) uses DARPA’s 
Pasta (Power-Aware Sensing, Track-
ing, and Analysis) microsensor plat-
form (see http://pasta.east.isi.edu). 
Despite this platform’s relatively low-
powered Intel PXA255 processor, spe-
cialized Linux operating system, and 
64-Mbyte total address-space limit, 
each sensor agent can run GBBopen 
(http://GBBopen.org), an open source 
blackboard system that provides oppor-
tunistic AI reasoning at each CNAS sen-
sor agent.

In addition to the Pasta platform, 
each CNAS sensor agent contains a 
weather sensor providing temperature, 
relative humidity, barometric pres-
sure, and wind speed and direction 
measurements every second. A wire-
less adapter, connected to the Pasta 
USB interface, provides standard IEEE 
802.11b Wi-Fi communication (which 
is turned off much of the time to con-

serve battery power). This hardware 
and a 12 V battery are packaged in 
a PVC housing that positions the Wi-
Fi antenna and sensors 1.3 m above 
ground level. The housing is intention-
ally oversized to enable easy access 
during testing and field deployment.

Effective CNAS operation requires 
the sensor agents to make intelligent, 
proactive decisions regarding how to 
best use their limited power and com-
munication resources to achieve mis-
sion objectives. Specifically, each agent 
decides what activities it should per-
form and when to perform them in the 
context of its own current and projected 
situation as well as the overall status of 
the network (the agent organization). 
For example, the agents must coor-
dinate when they activate their Wi-Fi 
adapters in order that the high-priority, 
mission-critical data collected by one 

agent can be relayed to the 
base station by a number 
of other agents. This con-
textual application and or-
ganizational awareness is 
developed and maintained 
as part of the GBBopen- 
based opportunistic rea-
soning system, and can 
even be used to improve 
the network-routing pro-
tocols’ performance by al-
lowing agents to determine 
whether they should reini-
tiate the network discov-
ery process or use stored 
routing tables, depending 
on the observed dynamism 
of the network and the pri-
ority and quantity of data 
to be transmitted. Simi-
larly, this application and 
organizational awareness 
allows detailed informa- 
tion regarding network-
level communication char-
acteristics such as packet 
loss and power expendi-
ture to inform high-level 
operational decision mak-

ing (by identifying periods of poor 
communication and delaying the trans-
mission of nonessential data). 

This sharing of information, both 
between sensor agents and at differ-
ent levels of decision making within a 
single sensor agent (from the low-level 
network routing protocol to the high-
est strategic operational and organiza-
tional decisions), is critical to the effec-
tiveness of CNAS and illustrates how 
these novel approaches depart from 
more conventional protocols where 
the application and networking layers 
are distinct.

To date, CNAS deployments in the 
field have included one at the 2006 Pa-
triot Exercise at Fort McCoy, Wiscon-
sin,2 and two (drop zone and urban) 
at the 2007 Talisman Saber Combined 
Exercise in Queensland, Australia.3 
Such operational deployments present 

Figure 2. Hardware implementation of the max-sum algorithm 
and the graph-coloring benchmark problem using the Texas 
Instruments CC2430 System-on-Chip. The seven-segment display 
indicates the number of neighbors that each sensor has located, 
and the three LEDs indicate their respective sensor’s chosen color.
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their own challenges. At the Patriot ex-
ercise, unseasonably high air temper-
atures and humidity levels produced 
transient hardware failures in nearly 
half of the sensors. These sensor agents 
returned to full functionality when the 
temperature dropped, demonstrating 
how the CNAS sensor agent organiza-
tion was able to autonomously adapt to 
dynamic network conditions. The sen-
sor agents encountered extremely poor 
Wi-Fi communication conditions dur-
ing the Talisman Exercise because of 
tall native vegetation at the drop-zone 
deployment and reflection and interfer-
ence in the urban deployment. How-
ever, as before, no direct intervention 
was required, because the CNAS sen-
sor agent software was sufficiently ro-
bust to recover gracefully during inter-
ference-free periods with no data loss, 
and CNAS was able to provide hourly 
ground-level weather observations to 
the Air Force Weather Agency and the 
Australian Bureau of Meteorology.

Information Agents for 
Pervasive Sensor Networks
Finally, researchers are also apply-
ing agent technology to handle the in-
creasing quantity of real-time sensor 
data that the pervasive deployment 
of such sensor networks will provide. 

In this context, we need information 
agents that can support operational 
decision making by autonomously ac-
quiring and presenting relevant infor-
mation to the task at hand. While the 
notion of such agents isn’t new, deal-
ing with real-time sensor network data 
introduces novel challenges. In partic-
ular, these agents must be able to au-
tonomously handle missing or delayed 
data (perhaps due to network out-
ages), detect faulty sensors, fuse noisy 
measurements from several sensors, 
and efficiently manage bandwidth by 
deciding how often sensor readings 
must be acquired. Because additional 
sensors can be deployed at any time, 
and existing sensors can fail or be re-
positioned, information agents must 
perform these processing tasks with 
minimal prior domain knowledge and, 
as much as possible, infer details such 
as a sensor’s reliability and accuracy 
from the data itself.

Against this background, the Aladdin 
(Autonomous Learning Agents for De-
centralized Data and Information Net-
works) project (www.aladdinproject. 
org) has demonstrated an informa-
tion agent that can perform a number 
of such information-processing tasks.4 
The agent uses a novel iterative formu-
lation of a multi-output Gaussian pro-

cess to build a probabilistic model of 
the environmental parameters the sen-
sors are measuring.5 A Gaussian pro-
cess enables the agent to apply princi-
pled Bayesian inference to functions (in 
this case, the changing environmental 
parameters over time), and the proba-
bilistic model that the agent builds lets 
it infer the sensor readings’ accuracy. In 
this way, the prototype agent can pre-
dict both the value of missing sensor 
readings and how the monitored en-
vironmental parameters will evolve in 
the near future. It also autonomously 
performs active sampling by automati-
cally determining which sensor to ac-
quire readings from and when.

Researchers at the University of 
Southampton have evaluated this pro-
totype agent on a permanent network 
of weather sensors located on England’s 
southern coast. These sensors mea-
sure a range of environmental param-
eters such as wind speed and direction, 
air temperature, sea temperature, and 
tide height. While some of the sensors 
form part of an oceanographic network 
used to gather long-term coastal data 
(www.channelcoast.org), other sensors 
form part of an operational weather 
sensor network (see Figure 4) used 
by port authorities for planning ship-
ping movements in the Port of South-
ampton (see www.southamptonvts.co. 
uk). Such weather sensors are attrac-
tive because scientists can verify the 
resulting probabilistic model against 
known meteorological and hydrologi-
cal phenomena. Furthermore, the sen-
sors are subject to network outages 
because of extreme weather events, so 
real instances of missing sensor read-
ings occur, against which the research-
ers can evaluate the agent’s prediction 
capabilities. A live implementation of 
this prototype agent is currently avail-
able online at www.aladdinproject.org/ 

Figure 3. A CNAS sensor agent at the 
2006 Patriot Exercise at Fort McCoy, 
Wisconsin, deployed to collect real-time 
weather data at a landing strip. (photo 
courtesy of the US Air Force)
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situation. This implementation applies 
the Gaussian process predictions to 
several measured environmental pa-
rameters; it also makes available the 
data collected from the various sensors 
through an interactive Web-based map 
(see Figure 5).

The examples described here illus-
trate that even experimental sensor 
agent technology has become suffi-
ciently reliable for operational use in 
the field. Ongoing developments in so-
lar harvesting, coupled with new low-
cost processing and sensing hardware, 
will soon allow the permanent deploy-
ment of sensor-agent networks in ar-
eas where the economic cost of los-
ing a sensor agent due to damage or 
theft becomes tolerable. In these cases, 
many of the information-processing 
tasks we’ve outlined can also be del-
egated to the sensor agents them-
selves. Doing so will no doubt intro-
duce novel challenges; however, as the 
CNAS work shows, providing system-
level information to individual sensor 

agents will allow them to make more 
informed decisions and lead to sensor 
networks that exhibit more flexibility, 
robustness, and autonomy.
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Figure 4. The Bramble Bank weather 
station, located in the Solent. 
The sensor measures a range of 
environmental parameters including 
tide height, wind direction and speed, 
and air and water temperature.

Figure 5. Screenshot of an information agent. A live implementation is available at 
www.aladdinproject.org/situation.


