
Distributed Adaptive Sampling, Forwarding, and Routing
Algorithms for Wireless Visual Sensor Networks

Johnsen Kho Long Tran-Thanh Alex Rogers Nicholas R. Jennings
School of Electronics and Computer Science,

University of Southampton,
Southampton, SO17 1BJ, UK.

{jk05r,ltt08r,acr,nrj}@ecs.soton.ac.uk

ABSTRACT
The efficient management of the limited energy resources of a wire-
less visual sensor network is central to its successful operation.
Within this context, this paper focuses on the adaptive sampling,
forwarding, and routing actions of each node in order to maximise
the information value of the data collected. These actions are inter-
related in this setting because each node’s energy consumption must
be optimally allocated between sampling and transmitting its own
data, receiving and forwarding the data of other nodes, and routing
any data. Thus, we develop two optimal decentralised algorithms to
solve this distributed constraint optimization problem. The first as-
sumes that the route by which data is forwarded to the base station
is fixed, and then calculates the optimal sampling, transmitting, and
forwarding actions that each node should perform. The second as-
sumes flexible routing, and makes optimal decisions regarding both
the integration of actions that each node should choose, and also
the route by which the data should be forwarded to the base station.
The two algorithms represent a trade-off in optimality, communi-
cation cost, and processing time. In an empirical evaluation on sen-
sor networks (whose underlying communication networks exhibit
loops), we show that the algorithm with flexible routing is able to
deliver approximately twice the quantity of information to the base
station compared to the algorithm using fixed routing (where an
arbitrary choice of route is made). However, this gain comes at
a considerable communication and computational cost (increasing
both by a factor of 100 times). Thus, while the algorithm with
flexible routing is suitable for networks with a small numbers of
nodes, it scales poorly, and as the size of the network increases, the
algorithm with fixed routing is favoured.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Intelligent agents, Multiagent systems

General Terms
Algorithms, Experimentation, Management, Performance
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Decentralised mechanism, distributed constraint optimization, in-
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formation metric, inter-related adaptive sampling and routing

1. INTRODUCTION
Due to their flexibility and ease of deployment, wireless sensor net-
works, composed of battery powered sensor nodes that wirelessly
communicate and route information sampled from the environment
through the network to a base station, are becoming increasingly
prevalent in a wide variety of applications, including environmen-
tal monitoring [8], area surveillance [1, 10], and object tracking
in battlefields [4]. In particular, the rapidly increasing computa-
tional power of the nodes deployed within such networks has al-
lowed them to perform ever more sophisticated tasks, and recently,
wireless visual sensor networks (WVSN), whose nodes consist of
spatially distributed smart camera devices, which are capable of
performing basic capturing and processing of visual data, before
forwarding it to the base station to be fused and analysed, have
received increasing attention within the research community [13].

Such networks are intended for distributed image acquisition over
large, and possibly hostile environments, and as such, are required
to operate for extended periods of time with minimal human inter-
vention. However, the increased computational power of the nodes
within a WVSN (compared to those typically deployed within a
conventional wireless sensor network), the large amounts of visual
information that they collect, and the high energy cost of wirelessly
communicating this information through the network, mean that ef-
ficient energy management is a key challenge in these networks.

To date, this challenge has been addressed through two comple-
mentary approaches: namely (i) hardware and (ii) software solu-
tions. Within the former, advances in chip manufacture have suc-
cessfully reduced the power consumption of nodes, helping to im-
prove their longevity, and, in turn, the network’s lifetime [3]. From
the latter perspective, work has addressed the two main actions that
such sensor nodes can vary in order to make their energy manage-
ment more efficient: (i) their sampling rate (i.e. how much visual
data they acquire) and (ii) their communication of data capabilities
(those include selecting the most energy efficient path between the
node and the base station given that the nodes may have different
energy constraints and communication costs).

In particular, recent work has explored decentralised coordina-
tion algorithms that enable the nodes to autonomously adapt and
adjust their sampling and communication behaviours. This coordi-
nation is computationally expensive since the sampling and com-
munication decisions are inter-dependent. This is because each
node’s energy consumption must be optimally allocated between
sampling and transmitting its own data, receiving and forwarding
the data of other nodes, and routing any data. In such a setting, the
choices of one node can potentially affect all other nodes in the net-
work. However, much of this work has specifically addressed nodes



that are assumed to be extremely low power, computationally con-
strained devices. As such, it considers simple heuristic algorithms
that allow the nodes to make local decisions to improve the overall
performance of the network (see Sect. 5 for more details).

While such approaches have proved valuable in the context in
which they were developed, when applied to WVSN they do not
fully exploit the computational power available to the nodes. Fur-
thermore, the large amounts of visual data that the nodes within
the WVSN collect and communicate means that the communica-
tion resources available to the decentralised coordination mecha-
nism are much greater than those of many conventional wireless
sensor networks. When taken together, the move to WVSN means
that there is now the possibility of deploying algorithms that can op-
timally maximise the overall effectiveness of the network through
distributed computation, rather than local heuristics. It is this chal-
lenge that we address in this paper, and to this end, we adopt an
agent-based approach in which each node is represented as an au-
tonomous agent (with private information regarding its own state),
and the complex, inter-connected, and rapidly changing network,
as a multi-agent system. The individual agents must then coopera-
tively coordinate their activities to achieve system-wide goals.

Against this background, in this paper, we develop a novel opti-
mal decentralised algorithm that varies each node’s sampling, trans-
mitting, and forwarding rates to ensure all nodes in a network fo-
cus their limited resources on maximising the information content
of the data collected at the base station. This algorithm assumes
that the route by which data is forwarded to the base station is fixed
(either because the underlying communication network is a tree, or
because an arbitrary choice of route has been made), and uses a
distributed dynamic programming approach to extensively truncate
the search space of potential allocation decisions. We then extend
this approach to deal with flexible routing, in which each node not
only makes optimal decisions regarding the sampling, transmitting,
and forwarding actions, but also determines the optimal route by
which this data should be forwarded. To ground and evaluate these
algorithms, we empirically evaluate them and show that they repre-
sent a trade-off in optimality, communication cost, and processing
time. In more detail, we show that when deployed on sensor net-
works with loopy topology (i.e. where data can follow multiple
paths to the base station), the algorithm with flexible routing is able
to deliver approximately twice the quantity of information to the
base station compared to that of the algorithm using fixed routing.
However, this gain comes at considerable communication and com-
putational cost (increasing both by a factor of 100 times).

The remainder of this paper is organized as follows. In Sect. 2
we state the formal model of our distributed constraint optimiza-
tion problem. In Sect. 3 we detail our two novel algorithms and
show how we find the optimal local allocation decisions. Our ex-
perimental results are presented in Sect. 4. We present previous
work in this area in Sect. 5 and we conclude in Sect. 6.

2. PROBLEM DESCRIPTION
Here, we formalise the generic adaptive sampling, transmitting,
forwarding, and routing problem that we face. To this end, let n
be the number of nodes within a WVSN system and the set of all
nodes (or agents) be I = {1, . . . , n}. Each node i ∈ I can sam-
ple at si different rates over a period of time. Its set of possible
sampling (or frame) rates is denoted by Ci = {c1

i , . . . , c
si
i }. Each

element of this set, cj
i , is a positive integer that describes the num-

ber of samples that the node takes during any specific time interval.
Each node has private information regarding the information con-

tent of the samples that it acquires, and this is represented by an ar-

ray of 2-tuples Fi =
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the first value of each tuple is the number of samples that the node

may take and v
c

j
i

i is the corresponding information content for those
cj

i samples. Given the fact that more samples will generally gener-

ate visual data with a higher information content, we define v
c
j
i

i =

αi ·cj
i , where αi is a weighting factor (with support [0, 1]) that mod-

els the typical situation that the sensors within the network are het-
erogeneous, having different capabilities (i.e. the resolution of their
cameras, the quality of their optics, or the sophistication of their
image processing algorithms) and fields of view, and thus, samples
from some sensors will contribute more to the total amount of in-
formation collected at the base station than others [11]. However,
we note that our algorithms are not restricted to this linear infor-
mation valuation function and, in some domains, it may be more
valid to model the information as a strictly concave function where
continuing to increase the sampling rate generates decreasing gains
in information content [2]. We assume that should the node choose
to acquire no samples, it will yield zero information value. Further-
more, we assume that the visual data captured by a node needs to
be processed at the base station with that of other nodes, and there-
fore the information content of the data will only be accounted for
if it arrives successfully at the base station.

We further assume that each node has an energy budget, Bi (also
a private value initially known only to the node), such that its to-
tal energy consumption can not exceed this budget. We consider
three specific kinds of energy consumption for each node in the
network; namely the energy required to (i) acquire, es

i , (ii) trans-
mit, eTx

i , and (iii) receive, eRx
i , a single sample. We disregard the

energy required for other types of processing since it is negligible
in comparison. Now, since the node has to transmit its own data to-
wards the base station, the total energy required for this activity is
thus ES

i = es
i + eTx

i per sample (we will later on refer to the com-
bination of these processes as sensing). Similarly, the node could
potentially spend a portion of its energy to help its neighbourhood
nodes to forward their own samples (and/or data that this node is
forwarding for another node). This incoming data forwarding pro-
cess requires a total energy of EF

i = eRx
i + eTx

i per sample.
Each node initially stores its collected samples into its local mem-

ory buffer in order to be transmitted at a later stage. The transmis-
sion period and interval are predetermined. During each transmis-
sion phase, the transmitter module of each node is turned on for
the purpose of transmitting data or message packets to the base sta-
tion in a multi-hop fashion. Battery-powered visual sensor nodes
typically offer reasonably small on-board memory and, hence, at
the end of the transmission phase, each node’s memory buffer is
flushed, reinitialized, and ready to store new sampled data [6].

We describe the route through which the samples, cj
i , will be

transmitted to the base station by the vector R(cj
i ) = (r1

i , . . . , rb
i ),

where rl
i ∈ I . The first element of this vector is the origin node that

actually takes the samples. Each subsequent element of this vector
is unique and rl

i will forward the data to rl+1
i . Thus, for the data

value of cj
i samples to be taken into account, its routing set must

contain the base station node as its last node.
Given the formal description of the problem above, we now wish

to maximise the value of the collected data that arrives at the base
station. That is, we wish to solve:

D∗
i = arg max

{Di,Fi}

nX
i=1

X
c

j
i∈Ci

d
R(c

j
i )

i v
c

j
i

i (1)

In this expression, d
R(c

j
i )

i ∈ Di ∈ {0, 1} is a decision variable



where “1” represents a state where the node carries out the cor-
responding cj

i sampling action and the samples follow the R(cj
i )

route to arrive at the base station, and “0” represents the state where
the node does not carry out the corresponding cj

i sampling action.
This objective function is maximised subject to the energy budget
constraint on each node i ∈ I , such that:

Bi ≥ cj
iE

S
i + fiE

F
i (2)

where fi represents the total incoming data (or forwarded samples
from its set of neighbourhood nodes Di) and is given by:

fi =
X

d∈Di

cj
d + fd (3)

where i ∈ R(cj
d). Note that the total outgoing number of samples

from node i is thus cj
i + fi. We must also constrain the node to

chose one and only one sampling rate, such that:X
c

j
i∈Ci

d
R(c

j
i )

i = 1 (4)

for all different possible routes in the network.
The problem, as formulated above, is similar to multiple-choice

knapsack problems1 (i.e. NP-complete resource allocation or dis-
tributed constraint optimization problems) [12], that exhibit the op-
timal substructure property2. Given this insight, we propose algo-
rithms based on the sort of computationally efficient dynamic pro-
gramming technique that are often used on such knapsack problems
for solving multi-agent distributed coordination problems.

3. THE ALGORITHMS
We now focus on the algorithms used by the nodes to make optimal
use of their energy resources in order to cooperatively sense, for-
ward, and route data to the base station. Our approach places higher
priority on those samples that have a higher information content,
and this is achieved by exchanging coordination messages between
connected nodes. To this end, we distinguish three types of mes-
sages being exchanged by the nodes; namely (i) actual data mes-
sages containing visual data sampled by the nodes, and two types
of coordination messages composed of (ii) meta-data messages de-
scribing the information content of the visual data together with

the number of samples taken to produce that data (i.e. v
c

j
i

i and cj
i

respectively), and (iii) control messages containing the allocation
decisions. In WVSNs, the size of the actual data messages over-
whelms that of the coordinations messages and, hence, exchanging
these before sending the actual data can significantly increase the
information collected at the base station by making more efficient
use of each node’s constrained energy.

The goal of the algorithms that we derive is to calculate the opti-
mal sampling and routing actions of each node. This is given by:

CmaxI ={(i, cj
i , R(cj

i ))|d
R(c

j
i )

i = 1,

∀i ∈ I,∀cj
i ∈ Ci,∀d

R(c
j
i )

i ∈ D∗
i } (5)

1There are m items and the set of all items T = {1, . . . , m}. Each
item t ∈ T has a value vt and a weight wt. The items are sub-
divided into o categories and exactly one item must be taken from
each category. The maximum weight that can be carried in a bag is
G. Given these, we need to determine which items to include in the
bag such that the total weight does not exceed its given limit, while
the total value is maximised.
2This property means that the optimal solution can be constructed
efficiently from optimal solutions to its subproblems.
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Figure 1: The flow of the algorithm in a connected and undi-
rected tree-structured WVSN. We assume that communication
is bi-directional and multiple nodes within range can thus es-
tablish a connection. Dotted node i could represent any sub-
trees in the network.

and represents a set of 3-tuples indicating for each node in the net-
work, the sensing and forwarding rates that it should adopt, and the
route that it should use to transmit its own and its forwarded data to
the base station, in order to maximise the objective function in (1),
subject to the constraints in (2) and (4). We now present our two
novel adaptive sensing, forwarding, and routing algorithms. Both
of them are efficient as they satisfy the data flow conservation of
the network where no energy is wasted by transmitting data that
later will not be forwarded to the final destination.

3.1 Algorithm With Fixed Routing
In this case, each node i ∈ I can only forward its data to ex-
actly one other node (which will later be referred as its parent).
This may be because the underlying communication network of
the WVSN is tree structured, or because it actually exhibits loops
but an arbitrary choice of route has been made (effectively turn-
ing the loopy communication network into a tree). An example of
a WVSN whose underlying network structure is a tree structure is
shown in Fig. 1. Note that in such tree-structured networks, there is
only one unique route between each node and the base station (e.g.
R(cj

4) = (4, 2,base station) and R(cj
3) = (3, 1,base station)).

In general, the nodes within a network will deplete their energy
resources at different rates since they will have different sampling
rates, and will be transmitting different quantities of visual data.
Each node i ∈ I thus needs to compute the highest information
value it can transmit by using at most bk

i ≤ Bi of its energy. As
described earlier, the energy consumption of node i only includes
ES

i and EF
i (i.e. the energy to sense and forward a sample respec-

tively). It is therefore sufficient that bk
i satisfies:

bk
i = cj

iE
S
i + fiE

F
i where cj

i , fi ≥ 0
bk
i ≤ Bi

(6)

where cj
i is its own number of samples and fi is the number of

forwarded incoming samples.
Now, let Oi =

h`
b1
i , V max1

i , Cmax1
i

´
, . . . ,

“
bKi
i , V maxKi

i ,



Algorithm 1 Optimal adaptive sensing and forwarding with fixed
routing.
1: loop
2: if sT ime = NOW then . Time to sample.

3: readings← PERFORMSAMPLING(sT ime) . Sampling action, c
j
i

.

4: SETSTIME(sT ime + sRate)
5: end if
6: if tT ime = NOW then . Time to transmit, transmission module is turned on.

7: [Bpi
, EF

pi
]← WAITMETADATA(pi) . Receives Bpi

and EF
pi

from its

unique parent node, pi .

8: for each jm
i ∈ Ji do . Iterates each child node in Ji =


j1i , . . . , j

Mi
i

ff
.

9: SENDMETADATA(jm
i , [Bi, EF

i ]) . Sends Bi and EF
i to child node jm

i .

10: end for
11: CALCFIRSTROWTABLES(readings) . Calculates the 1st rows of Ti and Ui

using (7) and (10) respectively.

12: if ¬leafNode then
13: for each jm

i ∈ J do
14: Ojm

i
← WAITMETADATA(jm

i ) . Receives Ojm
i

from child node

jm
i .

15: CALCTHERESTTABLES(Ojm
i

) . Calculates the other rows of Ti and Ui

using (8) and (11) respectively.

16: end for
17: end if
18: Oi ← CALCMETADATAARRAY() . Determines Oi which is basically the last

row of Ui .

19: SENDMETADATA(pi, Oi) . Sends Oi to unique parent node, pi .

20: CmaxI ← WAITCONTROLMESSAGE(pi) . Receives control message from

unique parent node, pi .

21: PROPAGATECONTROLMESSAGE(jm
i , CmaxI) . Sends control message to

each child node, jm
i ∈ Ji .

22: PERFORMTRANSMIT(readings, CmaxI )
23: SETNODEOPTIMALBEHAVIOUR(CmaxI ) . Sets node’s optimal sensing and

forwarding actions.

24: SETTTIME(tT ime + tRate) . Node sets its next transmitting time.

25: readings← {}
26: end if
27: end loop

CmaxKi
i

”i
denote an array of 3-tuples sorted incrementally by bk

i

where k = 1, . . . , Ki, and bk
i is the energy limit that satisfies (6)

and will later on be referred to as the labels of Oi. V maxk
i is the

maximum information value that node i can transmit to its parent
by using at most bk

i , and Cmaxk
i is the set of sensing and forward-

ing actions that will produce data with the value of V maxk
i .

The algorithm installed on each node runs in three phases (see
Fig. 1 and Algorithm 1). In the first, meta-data message propaga-
tion is initiated by the base station. To this end, messages contain-
ing the value of each node’s energy budget, Bi, and energy con-
sumption for forwarding, EF

i , are propagated down the tree (i.e. as
soon as any node receives this information from its unique parent
node, pi (see state 1 or line 7), it sends its own information to its
set of children, Ji =

n
j1
i , . . . , jMi

i

o
(line 9)). Having sent this

information each node i then enters an idle mode in which it waits
for the O meta-data arrays from its child nodes.

In the second phase, after all the O meta-data arrays have arrived
from its children (denoted by Oj1i

, . . . , O
j

Mi
i

, see state 2 or lines

14-15), node i then calculates its own Oi (line 18). To do so, it
constructs a table, Ti, which has Mi + 1 rows numbered from 0 to
Mi, and Ki columns, where Ki is the number of all the bk

i values
that satisfy (6). See Table 1 in which each column k has label bk

i .
Let Ti [x, y] denote the element of the table that is in the xth row
and the column with label by

i . As every node could choose not to
sample (yielding zero value), then Ojm

i
[0] = Ti [m, 0] = 0 for

all 0 ≤ m ≤ Mi, where Ojm
i

[x] is the xth element of Ojm
i

.
Moreover, we can assume that the set of labels in each Ojm

i
that

node i has received is the same as the set of labels in its table Ti.
We will show how we can guarantee this later on. Hence, Ti’s other

elements are filled as follows:

Ti [0, k] = max{vc
j
i

i } (7)

Ti [m, k] = max
0≤r≤k

n
Ti [m− 1, r] + V maxk−r

jm
i

o
(8)

for all 1 ≤ k ≤ Ki and 1 ≤ m ≤ Mi, where (cj
i , v

c
j
i

i ) ∈ Fi, and
Fi is the array of 2-tuples defined in the previous section.

According to (7), we can see that Ti [0, k] stores the maximum
information value of data that can be delivered to node i’s parent by
sensing only (with the energy consumption not exceeding the en-
ergy limit bk

i ). Due to the fact that each of the sets of labels in Ojm
i

is equivalent to the set of labels of table Ti, (8) gives the maximum
value of data that node i can deliver to its parent (noting that this
data does not only include its own sensed data but also its children’s
data that will potentially be forwarded through it). Hence, Ti [1, k]
is the maximum value that can be sent by taking into account the
sensed data and the data from j1

i , with respect to the bk
i energy

limit. Ti [2, k] stores the maximum value when the data from child
node j2

i is also included. In general, Ti [m, k] is the maximum in-
formation value that node i can transmit to its parent, given the bk

i

energy limit. The data considered is the potential forwarded data
from child nodes j1

i ,. . . ,jm
i and node i’s own sensed data.

Note that while it is necessary to construct the entire table, as
in conventional dynamic programming solutions to the multiple-
choice knapsack problem, it is only the last row that provides useful
meta-data regarding the maximum information values of data that
can be transmitted given different feasible values of bk

i . Indeed,
it is only the last element of this row that represents the maximal
information value that node i can transmit to the parent node.

To illustrate how the elements of the table are calculated in a
clearer way, consider Tables 1 and 2 in which the information val-
ues of node i’s sensed data and the V maxk

jm
i

values of Ojm
i

ar-
riving from its child nodes jm

i respectively are chosen arbitrarily
for illustrative purposes. The rows of Table 1 represent the set of
nodes whose data has been taken into account. For instance where
row = i, if node i has b0

i , b1
i , b2

i , b3
i , or b4

i amount of energy limit,
in return it will be able to sense it own data with the maximum
value of 0, 12.34, 14.56, 28.25, or 50.98 correspondingly. These
values are calculated using (7). Oj1i

then arrives (see Table 2 where
row = Oj1i

) from its child node j1
i containing the maximum val-

ues that this node could potentially forward to node i.
The elements of Ti’s second row (i.e. row = {i ∪ j1

i }) can thus
be calculated using (8). These elements represent the maximum
information that node i could send by taking into account not only
its own sensed data, but also the data that could be potentially for-
warded from its child node j1

i . For instance where column = b1
i ,

node i could allocate all its b1
i energy resources to either sense and

transmit its own data or to forward data from its child node j1
i . In

this case, the node chooses to sense and transmit its own data since
it has a higher value. Where column = b2

i , however, the node
again allocate all its b2

i energy resources to either sense its own data
or to forward its child node j1

i ’s data. Alternatively it could as well
divide its b2

i energy resources by allocating a portion of b1
i energy

resources to its own and another b1
i to its child node. In this case,

it turns out that the latter alternative yields the highest information
value of 19.32. Ti’s other elements are calculated in a similar way.

Now, the next step of the algorithm is to calculate Oi. To do
so, let Ui denote a table similar to Ti. However, its labels bl

i, now,
satisfy the following:

bl
i = (cj

i + fi)E
F
pi

where cj
i , fi ≥ 0

bl
i ≤ Bpi

(9)



Table 1: The Ti table of node i. Its Oi meta-data array is rep-
resented by the dotted rectangle.

0 12.34

0 12.24

14.56 28.95
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28.78

45.89
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1 Mi
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0
bi

1
bi

2
bi

3
bi

4
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k

50.98

}{  Ui ji

1

Table 2: Ojm
i

meta-data arrays that have arrived from each
child nodes j1

i , . . . , jMi
i .

b
i

0

b
i

2

b
i

3

b
i

4

b
i

k

0 6.98 15.67 45.89

51.8835.89

48.99

0 6.79 28.78

b
i

1

where Bpi is the energy budget of i’s unique parent node, pi, and
EF

pi
is the value of energy consumption of the parent for forward-

ing a sample. Recall that these values were delivered to node i in
the first stage. Let Li denote the number of all bl

i that satisfy (9).
Similarly, we can calculate table Ui’s elements in a similar fashion
to those of Ti as described earlier, but with the new labels:

Ui [0, l] = min

„
max{vc

j
i

i }, Ti [0, Ki]

«
(10)

Ui [m, l] = min

„
max

0≤r≤l

n
Ui [m− 1, r] + V maxl−r

jm
i

o
, Ti [m, Ki]

«
(11)

for all 1 ≤ l ≤ Li and 1 ≤ m ≤ Mi, where (cj
i , v

c
j
i

i ) ∈ Fi.
We can now construct the meta-data array of node i such that

Oi =
h`

b1i , Ui [Mi, 1] , Cmax1
i

´
, . . . ,

“
b
Li
i , Ui [Mi, Li] , Cmax

Li
i

”i
,

where Ui [Mi, l] is the maximum information value that node i can
transmit to its parent node (by using at most bk

i energy) which can
subsequently forward the received i’s data by using at most bl

i en-
ergy. Cmaxl

i is the set of sensing actions that will produce data
with the value of Ui [Mi, l]. Hence, once Oi is sent to the parent
node, its labels will be the same as those in table Tpi of the parent
node. This second phase meta-data message containing Oi propa-
gates up the network arriving back at the base station (line 19).

In the third phase of the algorithm, each parent node will have
received meta-data arrays from all of its children. The base station
will be able to calculate the highest information value it can poten-
tially receive from all the nodes beneath it in the network. Based on
the structure of Oi, each node i can easily determine what amount
of data it should receive from each child node and, hence, how
many samples it should acquire and transmit itself. A control mes-
sage containing this set is then propagated down the network (see
state 3 or lines 20-21), and this control message informs each node
of its optimal decisions (lines 22-23). In this way, there is a guar-
antee that all of the data transmitted by each node will reach the
base station. The control message eventually reaches the leaf nodes
which then start to acquire and transmit visual data as planned.

3.2 Algorithm with Flexible Routing
Next, we consider the algorithm which assumes flexible routing,
and makes optimal decisions regarding both the sensing and for-
warding actions that each node should perform, and also the route
by which data should be forwarded to the base station (see Fig. 2
for an illustration of this case). In order to make the routing de-
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Figure 2: The flow of the algorithm that assumes flexible rout-
ing and makes optimal decisions regarding both sensing, for-
warding, and next-hop (or routing) decisions. The phases in-
volved in this algorithm are similar to those in the algorithm
for fixed routing.

cision tractable, we place one minor restriction on the routes that
our algorithm can consider. Specifically, we assume that the nodes
always forward their data toward the base station; that is, they will
not forward data to a node that is further from the base station (in
terms of hop count) than themselves. We believe this is a reason-
able assumption. There may be cases where several nodes are bet-
ter off taking longer paths. However, in general such paths will
deplete the energy resources of a greater number of nodes, and are
thus unlikely to be optimal solutions. Furthermore, we assume that
the data samples of a node can only be sent as a bundle (i.e. they
are indivisible). The data readings of different nodes can, however,
be sent through different routes to the base station.

With these assumptions, we now need to organize the nodes into
different levels. The first consists of all the nodes that have a 1-hop
shortest path to the base station (nodes 1 and 2 in Fig. 2). Nodes
that belong to the second level have a 2-hop shortest path to the
base station (nodes i, 3, and 4). Nodes 5 and 6 have a 3-hop shortest
path. Now, according to this hierarchy, each node can only forward
its data to higher level nodes within its transmission range. In Fig.
2, for example, node i has two potential shortest routes to choose
from; namely (i) node 1 which results in route R(cj

i ) = (i, 1,base
station) and (ii) node 2 which results in route R(cj

i ) = (i, 2,base
station). Node i does not consider routing through node 6 since 6
is a greater hop count away from the base station than it is. Fur-
thermore, as we can see from the figure, node i has potentially two
bundles of data to consider (its own and data that it is forwarding
for node 6). In addition, it has two possible shortest paths to choose
between (either through node 1 or 2 for each of the bundled data).
Thus, a number of routing options exist for this node. It could
send both bundles of data through node 1, such that both R(cj

i )

and R(cj
6) contain (i, 1, . . . ), or it could send them through node

2. Other alternatives are to send each of them separately through
each possible route, such that R(cj

i ) contains (i, 1, . . . ) and R(cj
6)

contains (i, 2, . . . ), or the other way around.
Now, let Pi denote the set of parent nodes (which are nodes with

a one hop shorter shortest path to the base station) of node i and Ci

denote the set of its descendants. Thus, at each node i ∈ I , there
are at most |Pi||Ci|+1 possibilities to forward the bundled data,
where |Pi| and |Ci| are the sizes of Pi and Ci respectively. This
is because each node has to forward |Ci|+ 1 bundles through |Pi|
different shortest paths. Next, let Li denote the set of these possibil-



Algorithm 2 Optimal adaptive sensing and forwarding with flexi-
ble routing.
1: loop
2: if sT ime = NOW then . Time to sample.

3: readings← PERFORMSAMPLING(sT ime) . Sampling action, c
j
i

.

4: SETSTIME(sT ime + sRate)
5: end if
6: if tT ime = NOW then . Time to transmit, transmission module is turned on.

7: for each pn
i ∈ Pi do . Iterates each parent node, pn

i ∈ Pi .

8: [Bpn
i

, EF
pn

i
]← WAITMETADATA(pn

i ) . Receives Bpn
i

and EF
pn

i
from

parent node pn
i .

9: end for
10: for each jm

i ∈ Ji do . Iterates each child node in Ji = {j1i , . . . , j
Mi
i

}.

11: SENDMETADATA(jm
i , [Bi, EF

i ]) . Sends Bi and EF
i to child node jm

i .

12: end for
13: CALCFIRSTROWTABLES(readings) . Calculates the 1st rows of Ti and

U
pn

i
i

(for each parent node, pn
i in Pi) using (7) and (10) respectively.

14: Ci ← {i} . Adds this node to the set of descendants Ci .

15: if ¬leafNode then
16: for each jm

i ∈ Ji do
17: Oi

jm
i
← WAITMETADATA(jm

i ) . Receives Oi
jm
i

from child node

jm
i .

18: CALCTABLESWITHIDENTIFIER(Oi
jm
i

) . Calculates the other rows of

Ti using (8) by identifying the same forwarding partition with the same unique identifier.

19: Ci ← Ci ∪ jm
i . Adds child node jm

i to the set of descendants Ci .

20: end for
21: end if
22: for each pn

i ∈ Pi do
23: Li ← PARTITIONPOSSIBLEFORWARDING(Ci) . Partitions

the possible forwardings using a mapping function that decides the direction of each bundle, u
j
i

, from one of its

descendants in Ci .

24: O
pn

i
i ← CALCMETADATAARRAY(Li) . Calculates the other rows of

U
pn

i
i

using (11) to forms its own O
pn

i
i

meta-data for parent node pn
i .

25: SENDMETADATA(pn
i , O

pn
i

i ) . Sends O
pn

i
i

to parent node pn
i .

26: end for
27: CmaxI ← WAITCONTROLMESSAGE(pn

i ) . Receives control message from

parent node pn
i in Pi .

28: PROPAGATECONTROLMESSAGE(jm
i , CmaxI) . Sends control message to

each child node, jm
i ∈ Ji .

29: PERFORMTRANSMITINCROUTING(readings, CmaxI )
30: SETNODEOPTIMALBEHAVIOURINCROUTING(CmaxI ) . Sets node’s

optimal sensing, forwarding, and next-hop decisions.

31: SETTTIME(tT ime + tRate) . Node sets its next transmitting time.

32: readings← {}
33: end if
34: end loop

ities (with |Li| = |Pi||Ci|+1) and each lti ∈ Li, a possible partition

of forwarding at node i. That is, lti =
h
F

`
u1

i

´
, . . . , F

“
u
|Ci|+1
i

”i
where uj

i is the jth bundle that might arrive at node i from one of
its descendants, F

`
uj

i

´
is a mapping function that decides the for-

warding direction (or path) for this particular bundle, and u
|Ci|+1
i

is node i’s own bundle of samples.
Given this, our algorithm with flexible routing is similar to that

with fixed routing, and as before, it runs in three phases (see Algo-
rithm 2). The first, in which the parent nodes send their information
regarding Bpn

i
and EF

pn
i

to their child nodes (where pn
i ∈ Pi), is

identical (see lines 7-13). There are, however, slight modifications
in the next phase. These modifications are needed to keep track of
all the possible partitions of forwarding for nodes which have more
than one shortest path routes to the base station. In more detail,
in the second phase, instead of sending one Oi to a unique par-
ent (as in the case of tree-structured networks), here, each node i

has to calculate all the O
pn

i
i

`
lti

´
meta-data arrays for each lti ∈ Li

partition of forwarding for each pn
i ∈ Pi (see lines 23-25). Specif-

ically, this is achieved by first calculating the Ti table as we did for
the first algorithm (line 17). In this case, however, we join each of

i

Base Station

(a)

i

Base Station

(b)

Figure 3: (a) A randomly created and connected WVSN (of
60 nodes) whose underlying communication network exhibits
loops. (b) The resulting tree-structured network formed when
each node makes an arbitrary choice of the route that its data
will take toward the base station. The dotted circle in each
graph represents the wireless range of node i. In both these
networks, all nodes are set with the same transmission range.

the arriving Oi
jm
i

“
ltjm

i

”
from its children j1

i , . . . , jMi
i with those

that belong to the same forwarding partition with the same unique
identifier (line 18). The unique identifier is formed and attached
to a particular partition of forwarding when there are more than
one possible routes to forward to (line 23). As in Fig. 2, a feasible
unique identifier could be the index of ltjm

i
. Next, we calculate U

pn
i

i

tables for each pn
i ∈ Pi as in the first algorithm (line 24). The rest

of the second phase and third phase remain the same as that of the
algorithm with fixed routing described previously (see lines 27-30).

4. EMPIRICAL EVALUATION
We now seek to evaluate their performance and effectiveness when
applied to typical WVSN whose communication networks exhibit
loops. Our goal in this empirical evaluation is to quantify the per-
formance of the algorithms in terms of the quantity of information
that they deliver to the base station, and the communication and
computational costs of the coordination. We expect the algorithm
with flexible routing to deliver more information, but make greater
demands of computation and communication resources (because of
the large number of alternative routes for the data that it must eval-
uate). However, given that the algorithm with fixed routing can
always be applied in this setting by ignoring the fact that there exist
alternative routing options, and just making an arbitrary choice, we
are interested in the trade-off between the loss in information and
the saving in resources that results. We first describe the experi-
mental setup and then go onto the actual evaluation.

In our experiments, we create instances of a WVSN by randomly
deploying the nodes within a unit square, and connecting them ac-
cording to a randomly determined radio transmission range (ex-
tending this range as necessary to ensure that there are no uncon-
nected nodes). Each resulting WVSN exhibits a loopy communica-
tion network such that for each node there are multiple alternative
routes to the base station. We consider twenty different sampling
actions for each node such that the possible sampling rates, Ci, of
each node are initialized to Ci = {1, . . . , 20}. The correspond-

ing information content v
c

j
i

i for each cj
i ∈ Ci sample is generated

using the generic information metric (defined in Sect. 2), with the
factor, αi, randomly drawn from a uniform distribution with sup-
port [0, 1]. The energy budget of each node is randomly generated
with a predetermined maximum value that ensures the network as
a whole is energy constrained. We scale this predetermined max-
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Figure 4: Simulation results showing the performance of the algorithms with flexible, fixed (with maximum and minimum perfor-
mance), and uniform non-adaptive routing against (a) total information collected at the base station, (b) total communication cost
for coordination, and (c) average computation time at each node.

imum value with the number of nodes in the network since larger
networks require sensors to forward data for a larger number of
nodes. We assume that each real valued number inside a coordi-
nation message (e.g. the value of Bi or cj

i ) occupies 4 bytes of
communication cost, and the energy consumption for sensing and
forwarding a sample is fixed throughout the entire experiment3.

We apply our algorithm with flexible routing just once, directly
on the loopy communication network of the WVSN (see Fig. 3(a)
for an exemplar scenario), such that it determines both the opti-
mal sensing and forwarding actions, as well as the routes. Prior
to applying our algorithm with fixed routing, we allow each node
to make an arbitrary choice of the route that its data (and any data
that it forwards for other nodes) will take toward the base station.
This effectively turns the loopy communication network into a tree-
structured one, with each node effectively selecting their parent in
the tree (see Fig. 3(b)). We then apply our algorithm with fixed
routing to calculate the optimal sensing and forwarding decisions
of each node. For each instance of the WVSN, we repeat this pro-
cess 100 times, averaging over the unique instances of trees that
result. We perform repeated experiments by creating 100 instances
of the WVSN with 6, 9, . . . , 60 nodes for the algorithm with fixed
routing, and only up to 21 nodes for the algorithm with flexible
routing (due to its increased computational cost).

We also benchmark our two algorithms against a uniform non-
adaptive algorithm with fixed routing. This algorithm dictates that
each sensor i ∈ I in the network should simply choose to allo-
cate its energy budget, Bi, equally to itself and each of its descen-
dants such that it will naïvely sample and transmit the minimum of„

Bi

|Ci|·ES
i
,

Bpi

|Cpi |·ES
pi

«
times regardless of whether the samples will

eventually be forwarded towards the base station. |Ci| and |Cpi |
are the numbers of descendants of node i and node i’s parent, pi,
respectively, and Bpi is the energy budget of node pi. ES

i and ES
pi

are the energy required by node i and pi correspondingly in order
to sense a sample.

We present the results of the simulation process described above
in Fig. 4. The error bars shown represent the standard error in
the mean, and we note that in some cases, the error bars are smaller
that the plotted symbol size. Considering first Fig. 4(a), we observe

3Note that we do not consider the failure, addition, or removal of
nodes. Also, we do not consider the dropping or corruption of
meta-data or control message packets, and hence assume that mes-
sage packets are always transferred successfully to the destination.

that the algorithm with flexible routing delivers close to twice the
quantity of information to the base station as does the fixed rout-
ing algorithm. This is as expected since in loopy communication
networks, there are typically many alternative routes available for
routing data, and the flexible algorithm is able to exploit them4. The
uniform non-adaptive algorithm, however, performs poorly as it has
no intelligence of adapting the nodes’ actions. In the same figure,
we also show the mean maximum and minimum performance of the
algorithm with fixed routing (averaged over different trees for the
same loopy network). Note that by making an appropriate choice
of parent, we can derive performance close to that of the algorithm
with flexible routing (without incurring any additional computation
or communication cost as will be explained shortly).

However, the increased information delivered by the algorithm
with flexible routing comes at considerable communication and
computational cost. Figures 4(b) and 4(c) show the total size of co-
ordination messages exchanged by the nodes and the average com-
putation time of each node (both are presented on a logarithmic
scale). Specifically, Fig. 4(b) shows that typically only a few tens
of kilobytes of coordination message packets are required by the
algorithm with fixed routing, while the algorithm with flexible rout-
ing exhibits approximately two orders of magnitude more; with a
few megabytes of coordination message packets being exchanged.
Likewise, Fig. 4(c) shows that the average computation time of a
node required by the algorithm with fixed routing is typically less
than 1 millisecond, while that of the algorithm with flexible routing
approaches 100 milliseconds (a two orders of magnitude increase)5.
The increase in terms of computation time is due to the additional
time which the flexible routing algorithm requires in order to enu-
merate each possible partitions of forwarding.

More generally, these results indicate that the algorithm with
flexible routing is able to deliver significantly more information
to the base station, but incurs considerable additional computation
and communication costs in doing so. The choice of algorithm
thus depends on the application domain. If the network is small,
and the size of the actual data messages is large, then the algorithm

4We remark that the quantity of information delivered does not in-
crease monotonically. This is an artifact of the experimental setup
since the scaling of the nodes’ energy budget does not fully account
for the necessary increase in sample forwarding.
5Measurements were performed on a 3GHz desktop PC. Typically,
the nodes within a WVSN will use much lower powered processors
and, thus, while we would expect the ratio between the algorithms
to be the same, the overall computation time is likely to be longer.



with flexible routing is most appropriate. However, this algorithm
scales poorly as the size or connectivity of the network increases
(due to the exponential growth in the number of possible combi-
nations of routing options that it must evaluate). In such cases,
the size of the coordination messages may rapidly approach that of
the actual data messages and, hence, coordination may not actually
yield any energy saving. To address this, the algorithm with fixed
routing may be run on the original loopy network by having each
node make an arbitrary choice of route. While the quantity of infor-
mation delivered to the base station will be reduced (by up to 50%
in our experiments), this solution will scale well and use minimal
communication and computational resources.

5. RELATED WORK
The work that is most closely related to ours is that of Padhy et al.
who developed a decentralised adaptive sampling and routing pro-
tocol named Utility-based Sensing and Communication Protocol
[8]. Within this mechanism, each node adjusts its sampling rate de-
pending on a valuation function that assigns a value to newly sam-
pled data. This protocol is intended for low power, computationally
constrained devices, and as such, relies on a heuristic approach to
estimate the opportunity energy cost used by each sensor for sam-
pling, forwarding, and routing data. The protocol is not efficient
and the integration of the node’s actions is very limited since there
is no guarantee that the transmitted data will actually be forwarded
to the base station. For instance, there might be cases where nodes
with data of a high value are unable to send their data to the base
station because intermediate nodes have depleted their energy. The
protocol could thus result in no data collection.

In a somewhat similar setting, Mainland et al. present a market-
based approach for determining efficient node resource allocations
[5]. Rather than manually tuning node resource usage, or providing
specific algorithms as we do here, their approach defines a virtual
market in which nodes sell goods (e.g. data sampling, listening, or
forwarding) in response to global price information that is estab-
lished by the end user. However, this approach involves an external
coordinator to set prices in order to induce any particular global be-
haviour, and it is not clear how this price determination should be
performed in order to elicit desirable system-wide properties.

Within the multi-agent systems literature, another useful tech-
nique that has emerged for solving distributed coordination prob-
lems is that of distributed constraint optimization (DCOP). A num-
ber of algorithms in the area of DCOP have been developed; in-
cluding asynchronous distributed optimization (ADOPT) [7] and
distributed pseudotree optimization procedure (DPOP) [9]. Both
are guaranteed to converge to the optimal solution while using only
localized communication and computation. However, they are not
specifically tailored to the specific problem that we address here,
and since these algorithms are complete, they require an exponen-
tial increase in the total message size being exchanged (unlike the
case of our algorithm with fixed routing). This is unrealistic for
WVSNs in which the nodes are typically installed with limited
computational, storage, and memory resources.

6. CONCLUSIONS
In this paper, we have considered the problem of adaptive sampling,
forwarding, and routing within WVSNs in order to manage the lim-
ited energy resources of nodes in an effective and efficient way. We
have developed two novel optimal decentralised algorithms: one
which assumes fixed routing and calculates the optimal sensing and
forwarding actions that each node should perform, and one which
assumes flexible routing, and makes optimal decisions regarding

both the integration of actions that each node should choose, and
also the route by which this data should be forwarded to the base
station. In an empirical evaluation, we showed that the algorithm
with flexible routing delivered approximately twice the quantity of
information to the base station, but at considerably higher commu-
nication and computational cost. Thus, while the algorithm with
flexible routing is suitable for networks with a small numbers of
nodes, it scales poorly, and as the size of the network increases, the
algorithm with fixed routing is favoured.

Our ongoing work in this area includes relaxing the restriction
that the nodes may only forward data to nodes that are closer to the
base station (in terms of hop count) than themselves and, in par-
ticular, we would like to characterise the circumstances in which
this may yield some benefit. More significantly, we would also like
to develop a principled algorithm for making the choice of route
when applying the algorithm with fixed routing to loopy WVSNs
(rather than having the nodes make an arbitrary choice of parent in
order to convert the loopy network into a tree-structured network
as we have done here). Our empirical results indicate that the per-
formance of the algorithm with fixed routing is very close to that of
the algorithm with flexible routing if the appropriate fixed route is
selected (see Fig. 4)6, and thus, there is great potential in doing so.
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