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Abstract. We consider a setting where a consumer would like to elicit indepen-
dent but costly reports from third-party experts about the reliability afimlver

of service providers. These reports can be of variable accunaicyydre accurate
reports will be more costly to produce, and the consumer can fusetsepam
several experts to choose the provider with the highest probability oésacWe
explore a number of mechanisms to address this setting, including scolisy

and indicate the problems in obtaining both truth telling and inducing the experts
to produce accurate reports. We present a partial solution to this probhem
discuss remaining challenges.

1 Introduction

We consider the problem where a consumer requires a taskdorbpleted, and can

choose between one of several service providers to exdustéask. We assume that
these service providers are unreliable and the task mayofd&ie completed, but the
consumer has no information about the reliability. Suchtérggewith execution uncer-

tainty is becoming increasingly relevant, in particulathin service-oriented comput-
ing where resources can be dynamically procured from thartlysuppliers, but also

applies to more general settings where agents need to prgcaducts and services
of unknown quality. In this particular work we focus on olpiiaig trust and reputation

information from expert agents who provide independenomspabout the available
service providers. To address this problem, we make uselohigues from the field of

computational mechanism design to incentivise expertsadyce accurate and truthful
reports.

In more detail, we assume a setting with several expert ageath of whom can
obtain independent reports about the reliability of theviser providers who are able
to execute the relevant task. Crucially, however, the amyuof the reports depends on
the amount of effort (i.e. resources) that the experts allangiito invest. For example,
agencies that produce consumer advice often rely on refportsindependent sources,
where the accuracy of a report depends on the time and effiested in testing and
evaluation. Given this, we would like to design incentive#niduce the agents to invest
effort and produce and reveal accurate reports that theuoogrscan combine in order
to make an informed choice about which service provider liecse

Our work is closely related to a number of papers that consigeechanism design
solution when faced with execution uncertainty, in pattc(B, 2]. Consider the setting



where service providers have a privately known probabiftguccess, which needs to
be elicited together with the cost of the service. In comtiasour case the information
about the probability of success is given by independergiggpvho do not benefit from
a particular provider being selected. Indeed, we arguehtiang third party reviews,
such as expert and user ratings, is very common in practig¢ghérmore, we consider
the setting where the reports may be costly, and where therexpot only reveal the
probability of success, but also the number of ratings orclwthis report is based. As
we argued above, this is especially important when fusifigrination from various
sources into a single, combined recommendation, whichddha basis on which the
service will be selected.

Information elicitation can also be achieved through theafsscoring rules. Orig-
inally introduced in statistical analysis, these are i designed to evaluate prob-
abilistic information, and we also study scoring rules ag paour mechanism in this
paper. Typically, these rules produce payments which amditoned on the outcome
of an event, e.g. the success or failure of a task. Scorimg have been used in related
work to elicit information and induce effort, for example [®, 9]. Our work differs
from this and related approaches, however. First, in our eaperts need to make ob-
servations about multiple service providers, but in the @mlgt one of these providers
is selected. This means that, if the scoring rule is conai#tibon the outcome, only the
information about the selected provider can be evaluathd. ékperts may therefore
misreport their information about other providers. This partially be addressed using
a peer-prediction method, where a payment is not conditi@methe actual outcome,
but on the reports submitted by other agents, but we shovithilsadpproach has other
limitations in our setting.

Specifically, the contributions in this paper are as follokisst, we apply and com-
pare a mechanism design approach as well as a scoring ruleagppbased on peer
prediction. We show that neither of these approaches intheagents to make ac-
curate reports in our setting. To address this, we exterstiegiscoring rules so that
agents are rewarded depending on the contribution thatrdyedrts have on the final
outcome. However, we show that, under certain conditiosisguthis payment rule ex-
perts will have an incentive to misreport in order to try anahipulate the choice of the
consumer. We argue that this effect can be mitigated by aoimipseveral approaches,
but is not completely eliminated. Finally, we discuss sonmeerthallenges that remain
to be addressed.

2 The Problem Description

We assume that there exists a consufiemwith a single tasky’, that it wants com-
pleted. The consumer derives a valdeif the task is successful and zero otherwise.
The consumer, however, is not able to complete the task, itsed instead must rely on
aservice provideto do the task for it. The consumer can choose from amongstcd se
service providersSP = {),1,2,...,m}, each of which are capable of performing the
task with the exception d@f which represents the option of selecting no provider. If-cho
sen, providek € SP charges a feg;, before attempting the task, and this fee is known
to the consumer. While each service providér € SP is capable of completing



taskT', not all are reliable and thus may fail before completingNe let PoS;, denote
the probability that service providérwill successfully complete the task, if asked to
do so byC'. While C would like to select the most reliable service provider gues
given the fee PoS, is private information, known only to the service providenally,

we assume thaPoSy = 0, py = 0. That is,C can always decide to not use a service
provider (and thus get value O for not completing the task).

While C has no information about the reliability of the service pdevs, we as-
sume that it can ask for information from a groupesperts N = {e;,...,e,}. Each
agente; € N has someexperiencewith each service provider. In particular, we as-
sume that expert; has interacted with providerin the past, and thus has observed
a;(j) successes arg(j) failures, where these successes and failures are drawn from
the true underlying distribution of the service provideivéh these observations, an
expert computes,;(j) = a;(j) + b;(j), the total number of observations made of ser-
vice providerj, andp;(j) = a:(j)/ni(j), the observed probability of success of service
providerj. We letw; = ((a;(1),b;(1)), ..., (a;(m),b;(m))) denote all ofe;’s obser-
vations on all providers, and use the notatiq(yj) to represent expeet’s observations
of service providelj, w = (w1, ...,w,) aNdw_; = (W1,...,wWi—1,Wit1,.-.,wp). Fi-
nally, we assume that it is costly for experts to gain expertand that each expert
incurs a cost; > 0 for each observation made, wheses public informationt

Given the model just described, we want to designechanisiso that the con-
sumer can gather information from the individual expertsd,ausing the combined
information, select the best service provider from amog3t That is, we would like
the center to select:

k* = arg max (V- PoSk(@) — pr) (1)

wherePoSy (@) is the estimated probability that providemwill successfully complete
the task, given the information provided to the consumerhgy déxperts. If eacl;
announces informatian; (wherel; may or may not be equal to;, the true experience
of ¢;), PoS (@) is computed as follows:

SienGilkh)
ZiGN(&i(k) + bz(k’))

To make our model more concrete, consider the following etanAssume there
are two service providersd and B, and two expertsg; ande,. Experte; has ob-
served service providet a total of twenty times, fifteen of which service providér
successfully completed the requested task. Expednly observed provideB’s at-
tempt to execute a task once, on which the service providedfaOn the other hand,
experte; has a lot of experience with service providey having observed it succeed
eighty times out of eighty-five attempts. Howeves, has never interacted with ser-
vice providerA and thus has no experience to report. Thus= ((15,5), (0,1)) and
we = ((0,0), (80,5)). Assuming that both service providers have the samepfesnd

POSk(a) =

(2)

! For simplicity, we assume that costs are linearly increasing with the nunfiladsservations
and that costs are service-provider independent. Our results, Bovegply to more general
cost functions.



that the consumer knows , andws, the consumer selects the service provider that max-
imizesmax (V . % -p, V- % -p, 0). That is, the consumer would select provider 2.

The challenge faced by the consumer is two-fold. First, thresamer would like
the reports made by the experts to be based on their truevaliseis, i.e. that the
mechanism idruth-revealing In doing so, we consider mechanisms that incentivise
truthtelling inex-postNash equilibriunt.

Definition 1 A mechanism isuth-revealingin ex-post Nash) if for akt;,e; € N, e; #
ej, when; = wj;, reporting; = w; maximises expet;'s expected utility.

Second, the consumer would like to encourage the agentsnagamuch experience
as possible since having more observations of the servimédars leads to a more
accurate calculation of the true underlyiRgS), for eachk € SP.

Definition 2 A mechanism igffort-inducingif experts receive a higher average pay-
ment by reporting a larger number of observations.

In order to create the right incentives for the mechanismedobth truth-revealing
and effort-inducing, the consumet,, usestransfers The transfer to expedt; € N,
7:(@]z) € R, depends on the reported observationalb&xperts §), and on whether
the service providechoserby the consumer (i.e:*) is successful or not. That is €
{success, fail }.

Assuming that; (&|x) is given, the utility fore, when it observes;, reportss; and
service providek* is selected is:

Ui(wi,@;) = PoSk+(w;)7:(W;,0—;|success)
+(1 = PoSk+(w;)) (@i, 04| fail)

—ci Y (ai(k) + bi(k)), 3
kesSP
where
PoSy(w;) = ai(k) (4)

ai(k) + bi(k)
is the expert’s private belief, based on its observatiofihietrue probability of success
for service providek. We note that the utility oé; depends on several things, includ-
ing the choice of service providér*, the reports of other experts since their reports
influence the choice of*, and on the number of observations made.

Given transfer functions, we also derive the expectedytili the consumer:

Uc(©) = —pg= + PoSi«(©) <V - Z Ti(@|success)>
iEN
— (1= PoSy+(@)) Y _ 7i(®| fail). (5)
iEN
2 We consider ex-post Nash instead of dominant strategies since ekpeesnterdependent
valuations, where the value of an agent depends on the chosen allosa#n8ection 3 for

more details), in which case generally no efficient, dominant strategy ingpitation is pos-
sible [3].



The rest of the paper is devoted to the study of differentsfemfunctions, and the
properties (i.e. truth-revealing and effort-inducinggytinduce.

3 The Mechanism Design Approach

For many task-allocation problems, the Vickrey-Clarkes@&s (VCG) mechanism is
used. In the VCG mechanism, agents are asked to reveal theditepinformation
(called their type), and given this information, the consuifin our case) chooses an
outcome which maximizes the social welfare, based on tr@nmdtion provided. In
exchange, each agent is paid a transfer which is equal tortr@iginal contribution
to the system. This mechanism is individually rational.(ne agents are harmed by
participating) and truth-revealing.

Unfortunately, the VCG mechanism is not appropriate forgablem since it as-
sumes that agents hairelependent typesnstead, our problem domain is one where
agents haventerdependent typesince the observations of a single agent only provides
a partial model of the reliability of the service provideaad the actual service-provider
model used by the consumer when making its choice is obtdipéasingthe types of
all agents.

While a series of papers have illustrated that it is imposedibldesign an incentive-
compatible efficienti(e social-welfare maximizing) direct mechanism for settingeere
agents have interdependent types [1, 3], Mezzetti showerdittis possible to design
incentive-compatible efficient mechanisms if the mechamisrks over two stages [5].
First, the mechanism asks for agents’ types and selectsitberne based on the reports.
Then, after the outcome is realised, the agents reportadbaial payoffs. The transfers
are computed using both the revealed types and the realisedfg. This mechanism
is (weakly) truth-revealing in that agents are best-ofesding their types in the first
stage, and are weakly best-off revealing their realisedfigynce the outcome has
been selected.

We extend the framework described by Mezzetti to our setting

Definition 3 (Two-Step Constant Mechanism)Let NV be the set of agents, aist be
the set of service providers. Theo-step constant mechanigrogresses as follows:

1. Eache; € N announce$;.
2. The consumer selects service providewhere

k* = arg grelzg%()(v - PoSk(©) — pr)-

3. Service providek* attempts the task and either fails or succeeds.
4. Transfers to each; € N depend ork*’s fee and on the success or failureidf,

K — pp~ if © = success
7i(@|x) = —p= if z = fail

0 if k* =10

whereK is a constant chosen by the consumer so fiat py« > 0.



Theorem 1 The Two-Step Constant Mechanism is truth-revealing.

Proof. Assume that all agents iV, but e;, are reporting their observations truth-
fully. That is@_; = w_;. Since K is an arbitrarily defined constanfl > 0, if
k* = argmaxgesp(V - PoSk (W) — pi) thenk* = argmaxgesp (K - PoS; (@) — pg).

Assume that when reporting; # w;, the consumer selects service providér=
argmaxyesp(V - PoSk((W;,w—;)) — pr) wherek’ # k*, the service provider that
would have been chosendf revealedv;. Note also that by revealing;, agente; does
not change the underlying probability that a particulavieer provider will fail, and
that the best estimate that it will be successful is the festithate based on the actual
observations of all agent®0S(w). Now,

Ui(@i,w-4) = PoSir(w)(K — i) + (1~ PoSi(w))(—pi)
= PoSi (w)K — pi
< PoSk+ (w)K — pg=
= Uj(wi, W)

That is, if all other agents are reporting their true obsgowa, then agent; is also
best-off revealing its true observations. a0

While the mechanism just described is truth-revealing, ritdseffort-inducing. All
expert agents receive the same transfer, independent gutliy of the information
they provide, even if the provided information was wildlyagturate or uninformed.
This is, in some sensenfair and we would prefer to reward agents for tingality of
their information. We believe that quality is directly redd toeffort in that the more
effort an agent has made in collecting observations, themaiable its information is.
The Two-Step Constant Mechanism does not directly noréatly reward effort since
it does not distinguish, in terms of transfers, between @teland inaccurate agents.

4 The Scoring Rules Approach

As shown in the previous section, the mechanism design apbtoes not induce effort
when the agents have costs for producing observations.idnséittion we consider
alternative approaches where transfers are calculated ssoring rules, which are
explicitly designed to elicit probabilistic informatioWe start by providing background
on strictly proper scoring rules, and then propose two difietransfer functions based
on these rules. In our first approach, tmarginal-contribution scoring ruleagents’
transfers depend on the outcome (i.e. whether the choseioesprovider successfully
completed the task) as well as the impact that an agent'strepd on the consumer’s
decision of service provider. In our second approach weidens peer-prediction
method where an agent’s transfers depend only the repodihef agents, and not on
the performance of the chosen service provider.

4.1 Background On Strictly Proper Scoring Rules

In this section we briefly provide background on scoring suléhich were initially
introduced in statistical analysis to evaluate expert gbilistic forecasts about some



future event, e.g. a weather forecast, but are now increlgsbeing applied to agent-
based applications [7, 9, 4]. In general, a scoring rule igretion which calculates a
reward for an agent based on a distribution announced bygibet dit's prediction of
some event) and the actual materialised everdtristly properscoring rule is a rule
where an agent maximises its expected reward when the poediaeveals is its actual
belief about the event in question.

While there are many different strictly-proper scoring syl this paper we focus
on thelogarithmic scoring rule

S (pi|success) = In(p;),
S(pil fail) = In(1 = p;),

wherep; € [0, 1] is agenti's reported belief that event = sucess will occur. Given
this scoring rule, an agent’s expected rewartl;i®, p) = p In(p) + (1 — p) in(1 — p),
which is maximised whep = p (i.e. the agent is best-off revealing its true prediction
of the event). We also note that if the functiSi(ip|z) is strictly proper, then so is the
functiona S(p|z) + 5, wherea > 0 andg € R are scaling parameters.

Unfortunately, we are not able to directly use scoring rulks the logarithmic scor-
ing rules, directly as transfer functions for our servicemMider problem. First, scoring
rules, as just introduced, assume that probabilistic mé&dion for binary events (like
the success or failure of a service provider) is captureddiygle valuep, the probabil-
ity of success. Thus, two agents who both repoﬁted% would be rewarded similarly,
even though one agent may have only conducted two obsemggtiad seen one success
and one failure) while the other agent may have observed ondrld successes out
of two hundred observations. Second, the standard scarlag rely on observing the
realisation of the event being predicted. In our settingywaet agents to report predic-
tions on multiple service providers, only one of which isuadly chosen and observed.
In order to deal with such situations, researchers havd @e»@peer-prediction meth-
odswhich rely on generating rewards based on how well the ptiedis of an agent
agree with predictions of other agents [6]. We describe oapgsed peer-prediction
approach in Section 4.3.

(6)

4.2 Marginal Contribution Scoring Rule Based on Reality

In this section we introduce a scoring rule which rewards&gaccording to thén-
formativenes®f the information they provide, given the reports of othgefts. Our
marginal-contributiorrule is given by:

PoS)- ()
POSk* (@,z) ) ’
1 — PoSj- ()

1- PoSk*(@i)) ’

7;(@]success) = a; In <
(7)
7i(@|fail) = a; In (

if k* # 0, andr; = 0 otherwise (if no provider is selected), whete > 0 is a scal-
ing parameter. The careful reader will note that this sgpririe is actually the relative
entropy between the probability distribution determingdlh agents reported observa-
tions, and the distribution when agerg observations are excluded. In particular, the



marginal-contribution rule measures the inefficiency imgslistribution Po Sy« (&0_;)

to make a prediction as to the success of service provitl@ompared to using dis-
tribution PoSy-+(@). The marginal-contribution rule rewards experts whosenteg
observations led to aimcreasein the probability of success, if the task succeeds, and
results in a negative reward if the task fails. The oppogtd$ifor agents whose obser-
vation reports decreased the probability of success. Eimsfer, or reward, for an agent
who provides no new information is zero.

In order to prove various properties that arise when usiagihrginal-contribution
rule as a transfer function, we need to carefully define tiligyudf an agent. In partic-
ular, we need to specify an agent’s beliefs about the obBengamade by other agents
since the transfer that an agemeceives depends both on the service provider chosen
and on thetiotal number of observationwade by other agents. If there are few obser-
vations, then the observations of agémtay be more informative and thus result in a
higher transfer. However, if other agents have alreadyrteganany observations on
a particular service provider, then additional observegtimay be less informative, re-
sulting in lower rewards. In the following we will slightlybaise notation, and denote
by a_;(k),b_;(k),n_;(k) the aggregateobservations by all providers exceptand
woi = ((a=i(1),b=i(1)), ..., (a—s(m),b_s(m))).

We initially assume that agentknowsn_;(k), the aggregate number of observa-
tions for each provider by all other agents. However, theyadioknow whether these
observations represent successes or failures. Furtheymer assume that the agent
maintains a probabilityy, which is its belief that another agent observes a success.
Typically, this belief will be based on an agent’s own expede so far, in which case
p = p;(k), but this assumption is not necessary for the proofs th&violGiven this,
the probability of exactly:_;(k) successes and ; (k) = (n_;(k) — a—;(k)) failures
is given by the binomial distribution:

a-i(k)(1 — p)b-i(k)
P I (oTLA

Bla_i(k);n_i(k),p) =

Ignoring agent costs, and provided that all aggnis are truthful, agent’s expected
utility when providerk is selected is then given by:

n—_q

Ui(wi, Wilk,n—i) = ZB(j§n—i,p)Ui(wi7@i|/€aw—z‘ =({+Lj-ni+1)), (8)
=0

where:

Ui(wi, 0|k, w—;) = PoSk(w;i,w—_;) 7 (W;, w—_;|success)
+ (1 - PoSk(wi,w,i))n(@hw,ﬂfail)
POSk(@‘Mi))

= PoSy(wi, w—i)ailn ( PoSk(w_;)

1— PoSk(@;,w—;)
+ (1 = PoSk(wi,w—;))asln ( 1 — PoSi(w_;) ) -



wherePoSy(w;,w_;) = (a;+a—;)/(n;+n_;) is agent’s beliefs about the probability
of success when observiagout of n; successes, conditional on other agents observing
a_; out ofn_; successes. Furthermo@oSy (w_;) = a_;/n_;.3

Theorem 2 For chosen service providet, Equation 7 is a strictly proper scoring rule.
That is, forw # @:
Ui(wi,wilk,n_;) > U;(ws, ik, n—;)

Proof. SincePoSj(w—;) is a constant, we can ignore this part of the scoring rule. By
doing so, note that Equation 9 can be written as:

Up,q) =plin(g) + (1 —p)In(l—q)

Now, from Gibbs’ inequality it follows thal/ (p, p) > U(p, q). Furthermorel (p, p) =
U(p,q) if and only if p = ¢. This means that Equation 9 is maximised if and only if
PoSk(wi,w—;) = PoSk(&;,w—;), and therefor&,; = w; is optimal. |

We next show that the marginal-contribution scoring ruuiceseffort. In partic-
ular, we show that when;, = 0 and agents are truthful, then the more observations an
agent makes, the higher its expected utility.

Theorem 3 The scoring rule given by Equation 7 induces effort, thafidsany scalar
x > 1, wherex € N*:

Ui(zw;, xwilk,n_;) > U;(wy, wilk,n_;)

Proof. We prove this by showing thatU; (zw;, zw;|k,n_;)/dx > 0 for any z >
0,n; >0,a_; > 1,b_; > 1. From Equation 8 we have:

n_;

dU; (wwq, zwilk,n_;) ) AU, (zw;, zw; |k, w_;)
dx N Z Bla—in—i,p:) dz

Jj=0

It is therefore sufficient to show thal; (zw;, zw;|k,w_;)/dz > 0 for all a_; <
n_;, and that this inequality istrict for at least one_; < n_;. To show that this holds,
note that we can write the first derivative as follows:

dU; (zw;, zwilk,w_;) _abia,i —b_ia; l (bi((x(;:— iz?) (10)
a—i(xb; + b_;

dx (xn; +n_;)?

Sincein(z) <1 —z anda > 0, it is sufficient to show that:

_bia; —b_ja;i  (b_i(za;+a_;) D >0,
(xzn; +n_;)? a—;(xb; +b_;)

8 While Equation 9 is not well defined far_; = 0 anda_; = n_;, we can assume that all
agents use Laplace smoothing, thus avoiding these cases.



which simplifies to:

:U(bia_,; — b_iai)Q
>0
a—_i(xb; +b_;)(zn; +n_;)% —

Now, clearly the above inequality is equal to zero witen= b_;,a; = b_; (given
x> 0,n; >0,a_; > 1,b_; > 1), butis strictly positive in all other cases. Hence it
follows thatdU, (xw;, zw;|k,n_;)/dx > 0. O

Clearly, if the utility increases as a function of then depending on an agent’s
coste; for producing an observation, the agent will be incentidiseproduce a greater
number of observations. We can set the desired level oftdffonultiplying the transfer
by an appropriately chosen parametesSince affine transformations of strictly proper
scoring rules are also strictly proper, this does not chémgeroperties of the transfers.

We now show that, despite Equation 8 being strictly prop&emk = £* is given
by Equation 1, the mechanism as a whole is no longer trulimgelin particular, the
strictly-properness of the transfer function only holdstfee observations made on the
chosen service-providek; . Agents may have incentive to misreport their information
in order to affect the choice of service provider.

Theorem 4 If k* is given by Equation 1, and tranfers for i € N are calculated
according to Equation 7, then there exist settings in whitlagent’s expected utility is
maximised fot; # w;.

Proof. The proof is by example. Suppose that there are two servioadars, k. =
1,k = 2 andp; = po = 0 (fees are zero). Furthermore, suppose that for some agent
i € N, the following holds:

Ui(w,@i = wl\k = 1) > Ui(w,@i = w1|/€ = 2)

At the same time:
PoS;(w) < PoSa(w)

That is, the consumer prefers service provider 2, but agenbetter off if provider 1
is selected, e.g. because it has relatively many obsengfar that particular service
provider. In this case, the agent could try and manipulageotiticome oft* by mis-
reporting. This can be done by either increasing the prdibabf success of provider
1, p;(1) (by increasingi;(1) or decreasin(j}i(l)), or decreasing;(2) (by decreasing
a;(2) or increasingb;(2)). Note that the first type of manipulation negatively aféect
U;(-]k = 1) and thus the utility of agentif its favourite outcome is selected, but the
second option does not. Therefore, an agent can always ggdy = 0, b;(2) = oo to
ensure that option 1 is selected by the consumer. O

4.3 Scoring Rule Based on Peer Prediction

In the previous section we introduced the marginal contidioumechanism and proved
that it is effort-inducing, but not necessarily truth-ite since agents may try to manip-
ulate their reports in order to influence the choice of thesaomer. Since the transfers
of the agents were based only on the outcome of the choseitesgmovider, lying



about observations of non-selected service providers wagatiected nor punished by
the mechanism.

In this section we proposepeer-predictiorbased method, where agents’ transfers
are determined by comparing their announced observatighgive reported observa-
tions of other agents. Since agents report observations wrathe same set of service
providers, their reports should be correlated, and pesgliption methods try to detect
unexpected differences in reported observations in ocdéetect mis-reporting agents.

Existing approaches for peer prediction calculate theesoban agent based on the
report of a single other agent, called the reference aggnA[though this provides
the necessary properties, in practice the reference ageythawve few observations
and the resulting score will be highly irregular. To addribgs, we use a virtual agent
which contains the fused observations of all other agerts.tifansfers are calculated
separately for reports about each providlgand are given by:

TF(@]©—) = aPoSk(&_;)In (PoSk(&;)) +
a(l = PoSg(@—;))In(1—PoSk(@;))+ 5 (11)

We now formulate an expert’s expected utility. As before assume that the agents
only know the total number of observations made by othertsgeith service provider
k, n_;(k), andp, the beliefs about other agents observing a success. Aseggo
the marginal contribution approach, now the agents reeiseparate transfer for the
observations of each service providee SP. That is:

Ui(wi, Wiln—;) = Z Uf (wi, @iln—s), (12)
keSP
where:
U (wi, @iln—s) ZBJ iy )7} (@ilwi (k) = (j,n—s = 5))- (13)

Theorem 5 The transfers defined in Equation 11 result in agents trighfevealing
their estimated probability of success for each serviceiger.

Proof. We now show that truth telling maximises expected utilitygl éhat this is strict
in terms of reporting the probability of success (as opposedimber of successes and
failures). LetU¥ (p;, p;)|n—;) denote the expected utility in terms of the probability of
success, wherg, = a;/n;. Clearly,

Ulk(puf)l|n—2) = Ulk(wiﬂai|n—i)
Taking the first derivative results in:

dUF (p; ﬁi|n—*) — J a(p; — pi)
t : - - B _L 2 7 :Li
dpi 1—pz Z Gin—ipd \ 37 01 ) = 50—




Clearly the expected utility is maximised if and onlyif = p;. O

While our peer-prediction method encourages all agentsutbftrily reveal their
probabilistic estimates about all service providers, i@ able to induce effort. In
particular,any combination of observations resulting in the same proisdigilestimate
results in the same utility for the agent. For example, amfgbserving one success
and one failure for a particular service provider is givea $ame reward as an agent
who observes fifty successes and fifty failures.

5 Challenges

In the previous sections we described three different fearfanctions that could be
used by a mechanism designer in order to elicit experierfoenvation from experts.
While each transfer proposal illustrated some desirablpgsties, we argue that none
balanced the right combination of eliciting both truthfaports from the experts con-
cerning their experience with different service providasswell as encouraging the
experts to conduct many samples/experiments. In thisogeuate discuss some of the
challenges which we still face.

5.1 Balancing Truth-Telling and Effort

As we have seen, of the three rules described in this paplsrtloe marginal contri-
bution scoring rule induces effort in our setting. Howewesing this scoring rule, an
expert achieves a higher expected utility if an outcome liscsed for which the ex-
pert has more observations (or the other agents have fewenations) since this will,
on average, increase the information gain and thus the .sEarthermore, an expert
is scored based only on the result of the selected outcongeit@memaining obser-
vations are not rewarded. As a result, an expert may havecamtive to manipulate
the outcome so that a suboptimal service provideés chosen, but for which he holds
more observations, e.g. by making other outcomes lesctra\WWe note, however,
that this is only a problem when there is a relatively largbatance in the number of
observations from each provider.

A possible solution to the above problem is to produce a teanghich combines
the marginal contribution scoring rule with one of the ottves approaches. We discuss
each of the two combinations in more detail, starting with pleer prediction method.
The peer prediction approach provides a score for prolséibikstimates from each of
the providers, independent of the selected provider anueodtitcome. However, in our
setting with discrete outcomes, this approach does notrceeféort. That is, a single
observation provides the same expected reward as having thmam one. By having a
linear combination of the two scoring rules, however, anddaling them appropriately,
the incentive to misreport the probability of success carlbeinated. Nevertheless,
this approach is still not foolproof, as an expert can soamei still profit by manipulat-
ing the outcome by simply reducing the reported variance(byportionally increasing
the number of reported successes and failures) whilst Rgepée probability of success
the same. As we have seen, this will not affect the score médathrough peer predic-
tion. Although not perfect, however, the combination da=tuce the number of cases
in which a deviation from truth telling is profitable.



Alternatively, we can combine the marginal contributioorig rule with the trans-
fers from the mechanism design approach, again using & lio@abination. The latter
aligns the payoffs with the consumer’s utility and therefdris in the interest of the
experts that the optimal providér is selected. However, in the case that there is very
little difference between the expected probability of ssscof different providers, it
may still be profitable for an agent to try and manipulate thecame in favour of a
providerk’, if the agent has relatively more information ab&utIn such a case, how-
ever, since the providers are very similar, if an agent rpisres, this will have very
little effect on the consumer’s utility (since otherwiséstivould also negatively affect
the agent because a significant part of the utility has bagnead with the consumer’s
utility).

5.2 The Expert’s Decision Problem: What and How Many Observaibns to
Make

So far we have mainly focused on the mechanism designedgmmolaind we have ig-
nored an important part of the expert’s decision problemeGihat an effort-inducing
mechanism with scaling parameter and given the costs, how many observations
should an expert make to maximise its expected utility, f2aMoreover, which of
the providers should the expert sample from? This is a comgtablem which we will
not address in this paper. Rather, we will briefly addressesofthe issues.

First, the expert's expected utility needs to be adequatelgieled. As we already
mentioned in Section 4.2, the expert needs to reason abewttbervations made by
other experts since this will affect the information gairdaherefore the reward ob-
tained. In order to prove the various properties, in Secidhwe assumed that the
agents knewthe numberof observations of other agents (but not whether these were
successes or failures). In practice, however, this inftionanay not be available since
each agent is waiting to see what other agents will do befeirggtable to make a de-
cision. Essentially, since the optimal decision dependtheractions of other agents,
this is a strategic problem and can be addressed game-icatiyeusing the notion of
Nash equilibrium.

Furthermore, even if an agent is able to determine the numbelbservations of
others, in the case of the marginal contribution scoring,rohly those observations
from the selected provider will be rewarded. An agent mustafore also reason about
which provider is most likely to be selected by the consutdewever, it needs to sam-
ple all providers in order to reason about which provider ashiikely to be the most
successful on average. This problem is well studied in tieedliure and is referred as
the multi-armed bandit problem. Although solutions extsése will need to be adapted
to this specific setting.

6 Conclusion

To conclude, we considered a setting where a consumer neettgbse a service
provider to complete a task, and approaches several indepeexperts for their rec-
ommendations. We presented three mechanisms for eli¢iiingnformation from the



experts: (1) a two-stage mechanism design approach basbd mork by Mezzetti [5],
(2) a scoring rule based on peer prediction, and (3) a scoulegbased on KL diver-
gence. We showed that the first two approaches induce trlitigtbut do not induce
effort if the information is costly to produce. The third appch does induce effort,
but in some settings the experts gain by misreporting alheutdliability of the service
provider for which they hold no or little information. Altlugh not foolproof, we argue
that a combination of approaches mitigates most of the coscand works in most
cases. At the same time, there are a number of open problerols wemain to be stud-
ied. In particular, experts need to decide which produeeevaluate, and how accurate
the reports should be, given the costs and the mechanismtdidavthis optimally is a
challenging problem and remains for future work.
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