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Abstract. We consider a setting where a consumer would like to elicit indepen-
dent but costly reports from third-party experts about the reliability of a number
of service providers. These reports can be of variable accuracy, but more accurate
reports will be more costly to produce. The consumer can fuse reports from sev-
eral experts to choose the provider with the highest probability of success. The
goal in this paper is to find a mechanism which incentivises the experts to truth-
fully reveal the accuracy of the reports, and to induce the experts to invest costly
resources in order to increase this accuracy. The challenge in doing so is that,
while we can verify the success or failure of the selected service provider, we
have no feedback about those service providers which were not selected. More-
over, we need to determine how to reward individual experts when the choice of
service provider is based on a fused report from all exeperts. We explore a num-
ber of mechanisms to address this setting, including scoring rules, and indicate
the problems in obtaining both truth telling and inducing the experts to produce
accurate reports. We present a partial solution to this problem, and discuss re-
maining challenges.

1 Introduction

We consider the problem where a consumer requires a task to be completed, and can
choose between one of several service providers to execute this task. We assume that
these service providers are unreliable and the task may fail to be completed, but the
consumer has no information about the reliability. Such a setting with execution uncer-
tainty is becoming increasingly relevant, in particular within service-oriented comput-
ing where resources can be dynamically procured from third party suppliers, but also
applies to more general settings where agents need to procure products and services
of unknown quality. In this particular work we focus on obtaining trust and reputation
information from expert agents who provide independent reports about the available
service providers. To address this problem, we make use of techniques from the field of
computational mechanism design to incentivise experts to produce accurate and truthful
reports.

In more detail, we assume a setting with several expert agents, each of whom can
obtain independent reports about the reliability of several service providers who are able
to execute the relevant task. Based on these recommendations, the best service provider
(in terms of their ability to execute the task) will then be selected. Crucially, however,
the accuracy of the reports depends on the amount of effort (i.e. resources) that the
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experts are willing to invest. For example, agencies that produce consumer advice often
rely on reports from independent sources, where the accuracy of a report depends on
the time and effort invested in testing and evaluation. Furthermore, some experts may
have considerable experience with some providers, but not with others. Given this, we
would like to design incentives to induce the agents to truthfully reveal their confidence
in their reports, so that the consumer can combine them in such a way to enable an
informed choice about which service provider to select. Furthermore, we would like to
incentivise the experts to invest effort and in doing so increase the accuracy of their
reports.

Our work is closely related to a number of papers that consider a mechanism design
solution when faced with execution uncertainty, in particular [8, 2] consider the setting
where service providers have a privately known probability of success, which needs to
be elicited together with the cost of the service. In contrast, in our case the information
about the probability of success is given by independent experts who do not benefit from
a particular provider being selected. Indeed, we argue that having third party reviews,
such as expert and user ratings, is very common in practice. Furthermore, we consider
the setting where the reports may be costly, and where the experts not only reveal the
probability of success, but also the number of ratings on which this report is based. As
we argued above, this is especially important when fusing information from various
sources into a single, combined recommendation, which forms the basis on which the
service will be selected.

Information elicitation can also be achieved through the use of scoring rules. Orig-
inally introduced in statistical analysis, these are explicitly designed to evaluate prob-
abilistic information, and we also study scoring rules as part of our mechanism in this
paper. Typically, these rules produce payments which are conditioned on the outcome
of an event, e.g. the success or failure of a task. Scoring rules have been used in related
work to elicit information and induce effort, for example in [6, 9]. Our work differs
from this and related approaches, however. First, in our case experts need to make ob-
servations about multiple service providers, but in the end only one of these providers
is selected. This means that, if the scoring rule is conditioned on the outcome, only the
information about the selected provider can be evaluated. The experts may therefore
misreport their information about other providers. This can partially be addressed using
a peer-prediction method, where a payment is not conditioned on the actual outcome,
but on the reports submitted by other agents, but we show that this approach has other
limitations in our setting.

Specifically, the contributions in this paper are as follows. First, we apply and com-
pare a mechanism design approach as well as a scoring rule approach based on peer
prediction. We show that neither of these approaches induce the agents to make ac-
curate reports in our setting. To address this, we extend existing scoring rules so that
agents are rewarded depending on the contribution that their reports have on the final
outcome. However, we show that, under certain conditions, using this payment rule ex-
perts will have an incentive to misreport in order to try and manipulate the choice of the
consumer. We argue that this effect can be mitigated by combining several approaches,
but is not completely eliminated. Finally, we discuss some more challenges that remain
to be addressed.
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The remainder of the paper is structured as follows. We first present the problem and
the desirable properties of the payment rules more formally in Section 2, and then apply
the mechanism design approach to achieve truthful revelation in Section 3. We also
show that the mechanism design approach does not induce effort and suggest instead
the scoring rule approach in Section 4. In Section 5 we discuss some open problems,
and conclude in Section 6.

2 The Problem Description

We assume that there exists a consumer C, with a single task, T , that it wants com-
pleted. The consumer derives a value V if the task is successful and zero otherwise.
The consumer, however, is not able to complete the task itself, and instead must rely on
a service provider to do the task for it. The consumer can choose from amongst a set of
service providers, SP = {∅, 1, 2, . . . ,m}, each of which are capable of performing the
task with the exception of ∅which represents the option of selecting no provider. If cho-
sen, provider k ∈ SP charges a fee ρk before attempting the task, and this fee is known
to the consumer, C. While each service provider k ∈ SP is capable of completing
task T , not all are reliable and thus may fail before completing T . We let PoSk denote
the probability that service provider k will successfully complete the task, if asked to
do so by C. While C would like to select the most reliable service provider possible,
given the fee, PoSk is private information, known only to the service provider. Finally,
we assume that PoS∅ = 0, ρ∅ = 0. That is, C can always decide to not use a service
provider (and thus get value 0 for not completing the task).

While C has no information about the reliability of the service providers, we as-
sume that it can ask for information from a group of experts, N = {e1, . . . , en}. Each
agent ei ∈ N has some experience with each service provider. In particular, we as-
sume that expert ei has interacted with provider j in the past, and thus has observed
ai(j) successes and bi(j) failures, where these successes and failures are drawn from
the true underlying distribution of the service provider. Given these observations, an
expert computes ni(j) = ai(j) + bi(j), the total number of observations made of ser-
vice provider j, and pi(j) = ai(j)/ni(j), the observed probability of success of service
provider j. We let ωi = ((ai(1), bi(1)), . . . , (ai(m), bi(m))) denote all of ei’s obser-
vations on all providers, and use the notation ωi(j) to represent expert ei’s observations
of service provider j, ω = (ω1, . . . , ωn) and ω−i = (ω1, . . . , ωi−1, ωi+1, . . . , ωn). Fi-
nally, we assume that it is costly for experts to gain expertise, and that each expert ei
incurs a cost ci ≥ 0 for each observation made, where ci is public information.1

Given the model just described, we want to design a mechanism so that the con-
sumer can gather information from the individual experts, and, using the combined
information, select the best service provider from amongst SP . That is, we would like
the center to select:

k∗ = arg max
k∈SP

(V · PoSk(ω̂)− ρk) (1)

1 For simplicity, we assume that costs are linearly increasing with the number of observations
and that costs are service-provider independent. Our results, however, apply to more general
cost functions.
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where PoSk(ω̂) is the estimated probability that provider k will successfully complete
the task, given the information provided to the consumer by the experts. If each ei
announces information ω̂i (where ω̂i may or may not be equal to ωi, the true experience
of ei), PoSk(ω̂) is computed as follows:

PoSk(ω̂) =

∑
i∈N âi(k)∑

i∈N (âi(k) + b̂i(k))
. (2)

To make our model more concrete, consider the following example. Assume there
are two service providers, A and B, and two experts, e1 and e2. Expert e1 has ob-
served service provider A a total of twenty times, fifteen of which service provider A
successfully completed the requested task. Expert e1 only observed provider B’s at-
tempt to execute a task once, on which the service provider failed. On the other hand,
expert e2 has a lot of experience with service provider B, having observed it succeed
eighty times out of eighty-five attempts. However, e2 has never interacted with ser-
vice provider A and thus has no experience to report. Thus, ω1 = ((15, 5), (0, 1)) and
ω2 = ((0, 0), (80, 5)). Assuming that both service providers have the same fee, ρ, and
that the consumer knows ω1, and ω2, the consumer selects the service provider that max-
imizes max

(
V · 1520 − ρ, V ·

80
86 − ρ, 0

)
. That is, the consumer would select provider 2.

The challenge faced by the consumer is two-fold. First, the consumer would like
the reports made by the experts to be based on their true observations, i.e. that the
mechanism is truth-revealing. In doing so, we consider mechanisms that incentivise
truthtelling in ex-post Nash equilibrium.2

Definition 1 A mechanism is truth-revealing (in ex-post Nash) if for all ei, ej ∈ N, ei 6=
ej , when ω̂j = ωj , reporting ω̂i = ωi maximises expert ei’s expected utility.

Second, the consumer would like to encourage the agents to gain as much experience
as possible since having more observations of the service providers leads to a more
accurate calculation of the true underlying PoSk for each k ∈ SP .

Definition 2 A mechanism is effort-inducing if experts receive a higher average pay-
ment by reporting a larger number of observations.

In order to create the right incentives for the mechanism to be both truth-revealing
and effort-inducing, the consumer, C, uses transfers. The transfer to expert ei ∈ N ,
τi(ω̂|x) ∈ R, depends on the reported observations of all experts (ω̂), and on whether
the service provider chosen by the consumer (i.e. k∗) is successful or not. That is x ∈
{success, fail}.

Assuming that τi(ω̂|x) is given, the utility for ei when it observes ωi, reports ω̂i and
service provider k∗ is selected is:
2 We consider ex-post Nash instead of dominant strategies since experts have interdependent

valuations, where the value of an agent depends on the chosen allocation (see Section 3 for
more details), in which case generally no efficient, dominant strategy implementation is pos-
sible [3].
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Ui(ωi, ω̂i) = PoSk∗(ωi)τi(ω̂i, ω̂−i|success)
+(1− PoSk∗(ωi))τi(ω̂i, ω̂−i|fail)
−ci

∑
k∈SP

(ai(k) + bi(k)), (3)

where

PoSk(ωi) =
ai(k)

ai(k) + bi(k)
(4)

is the expert’s private belief, based on its observations, of the true probability of success
for service provider k. We note that the utility of ei depends on several things, includ-
ing the choice of service provider k∗, the reports of other experts since their reports
influence the choice of k∗, and on the number of observations made.

Given transfer functions, we also derive the expected utility of the consumer:

UC(ω̂) = −ρk∗ + PoSk∗(ω̂)

(
V −

∑
i∈N

τi(ω̂|success)

)
− (1− PoSk∗(ω̂))

∑
i∈N

τi(ω̂|fail). (5)

The rest of the paper is devoted to the study of different transfer functions, and the
properties (i.e. truth-revealing and effort-inducing) they induce.

3 The Mechanism Design Approach

For many task-allocation problems, the Vickrey-Clarke-Groves (VCG) mechanism is
used. In the VCG mechanism, agents are asked to reveal their private information
(called their type), and given this information, the consumer (in our case) chooses an
outcome which maximizes the social welfare, based on the information provided. In
exchange, each agent is paid a transfer which is equal to their marginal contribution
to the system. This mechanism is individually rational (i.e. no agents are harmed by
participating) and truth-revealing.

Unfortunately, the VCG mechanism is not appropriate for our problem since it as-
sumes that agents have independent types. Instead, our problem domain is one where
agents have interdependent types, since the observations of a single agent only provides
a partial model of the reliability of the service providers, and the actual service-provider
model used by the consumer when making its choice is obtained by fusing the types of
all agents.

While a series of papers have illustrated that it is impossible to design an incentive-
compatible efficient (i.e social-welfare maximizing) direct mechanism for settings
where agents have interdependent types [1, 3], Mezzetti showed that it is possible to
design incentive-compatible efficient mechanisms if the mechanism works over two
stages [5]. First, the mechanism asks for agents’ types and selects the outcome based
on the reports. Then, after the outcome is realised, the agents report their actual payoffs.
The transfers are computed using both the revealed types and the realised payoffs. This
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mechanism is (weakly) truth-revealing in that agents are best-off revealing their types in
the first stage, and are weakly best-off revealing their realised payoffs once the outcome
has been selected.

We extend the framework described by Mezzetti to our setting.

Definition 3 (Two-Step Constant Mechanism) LetN be the set of agents, and SP be
the set of service providers. The two-step constant mechanism progresses as follows:

1. Each ei ∈ N announces ω̂i.
2. The consumer selects service provider k∗ where

k∗ = arg max
k∈SP

(V · PoSk(ω̂)− ρk).

3. Service provider k∗ attempts the task and either fails or succeeds.
4. Transfers to each ei ∈ N depend on k∗’s fee and on the success or failure of k∗,

τi(ω̂|x) =

K − ρk∗ if x = success
−ρk∗ if x = fail
0 if k∗ = ∅

where K is a constant chosen by the consumer so that K − ρk∗ > 0.

Theorem 1 The Two-Step Constant Mechanism is truth-revealing.

Proof. Assume that all agents in N , but ei, are reporting their observations truth-
fully. That is ω̂−i = ω−i. Since K is an arbitrarily defined constant, K > 0, if
k∗ = argmaxk∈SP (V ·PoSk(ω̂)− ρk) then k∗ = argmaxk∈SP (K ·PoSj(ω̂)− ρk).

Assume that when reporting ω̂i 6= ωi, the consumer selects service provider k′ =
argmaxk∈SP (V · PoSk((ω̂i, ω−i)) − ρk) where k′ 6= k∗, the service provider that
would have been chosen if ei revealed ωi. Note also that by revealing ω̂i, agent ei does
not change the underlying probability that a particular service provider will fail, and
that the best estimate that it will be successful is the fused estimate based on the actual
observations of all agents, PoSk(ω). Now,

Ui(ω̂i, ω−i) = PoSk′(ω)(K − ρk′) + (1− PoSk′(ω))(−ρk′)
= PoSk′(ω)K − ρk′
≤ PoSk∗(ω)K − ρk∗
= Ui(ωi, ω̂−i).

That is, if all other agents are reporting their true observations, then agent ei is also
best-off revealing its true observations. ut

While the mechanism just described is truth-revealing, it is not effort-inducing. All
expert agents receive the same transfer, independent of the quality of the information
they provide, even if the provided information was wildly inaccurate or uninformed.
This is, in some sense, unfair and we would prefer to reward agents for the quality of
their information. We believe that quality is directly related to effort in that the more
effort an agent has made in collecting observations, the more reliable its information is.
The Two-Step Constant Mechanism does not directly nor indirectly reward effort since
it does not distinguish, in terms of transfers, between accurate and inaccurate agents.
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4 The Scoring Rules Approach

As shown in the previous section, the mechanism design approach does not induce effort
when the agents have costs for producing observations. In this section we consider
alternative approaches where transfers are calculated using scoring rules, which are
explicitly designed to elicit probabilistic information. We start by providing background
on strictly proper scoring rules, and then propose two different transfer functions based
on these rules. In our first approach, the marginal-contribution scoring rule, agents’
transfers depend on the outcome (i.e. whether the chosen service provider successfully
completed the task) as well as the impact that an agent’s report had on the consumer’s
decision of service provider. In our second approach we consider a peer-prediction
method where an agent’s transfers depend only the reports of other agents, and not on
the performance of the chosen service provider.

4.1 Background On Strictly Proper Scoring Rules

In this section we briefly provide background on scoring rules which were initially
introduced in statistical analysis to evaluate expert probabilistic forecasts about some
future event, e.g. a weather forecast, but are now increasingly being applied to agent-
based applications [7, 9, 4]. In general, a scoring rule is a function which calculates a
reward for an agent based on a distribution announced by the agent (it’s prediction of
some event) and the actual materialised event. A strictly proper scoring rule is a rule
where an agent maximises its expected reward when the prediction it reveals is its actual
belief about the event in question.

While there are many different strictly-proper scoring rules, in this paper we focus
on the logarithmic scoring rule:

S(p̂i|success) = ln(p̂i),

S(p̂i|fail) = ln(1− p̂i),
(6)

where p̂i ∈ [0, 1] is agent i’s reported belief that event x = sucess will occur. Given
this scoring rule, an agent’s expected reward is Ui(p, p̂) = p ln(p̂) + (1− p) ln(1− p̂),
which is maximised when p = p̂ (i.e. the agent is best-off revealing its true prediction
of the event). We also note that if the function S(p|x) is strictly proper, then so is the
function α S(p|x) + β, where α > 0 and β ∈ R are scaling parameters.

Unfortunately, we are not able to directly use scoring rules, like the logarithmic scor-
ing rules, directly as transfer functions for our service-provider problem. First, scoring
rules, as just introduced, assume that probabilistic information for binary events (like
the success or failure of a service provider) is captured by a single value, p, the probabil-
ity of success. Thus, two agents who both reported p̂ = 1

2 would be rewarded similarly,
even though one agent may have only conducted two observations (and seen one success
and one failure) while the other agent may have observed one hundred successes out
of two hundred observations. Second, the standard scoring rules rely on observing the
realisation of the event being predicted. In our setting, we want agents to report predic-
tions on multiple service providers, only one of which is actually chosen and observed.
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In order to deal with such situations, researchers have developed peer-prediction meth-
ods which rely on generating rewards based on how well the predictions of an agent
agree with predictions of other agents [6]. We describe our proposed peer-prediction
approach in Section 4.3.

4.2 Marginal Contribution Scoring Rule Based on Reality

In this section we introduce a scoring rule which rewards agents according to the in-
formativeness of the information they provide, given the reports of other agents. Our
marginal-contribution rule is given by:

τi(ω̂|success) = αi ln

(
PoSk∗(ω̂)

PoSk∗(ω̂−i)

)
,

τi(ω̂|fail) = αi ln

(
1− PoSk∗(ω̂)

1− PoSk∗(ω̂−i)

)
,

(7)

if k∗ 6= ∅, and τi = 0 otherwise (if no provider is selected), where αi > 0 is a scal-
ing parameter. The careful reader will note that this scoring rule is actually the relative
entropy between the probability distribution determined by all agents reported observa-
tions, and the distribution when agent i’s observations are excluded. In particular, the
marginal-contribution rule measures the inefficiency in using distribution PoSk∗(ω̂−i)
to make a prediction as to the success of service provider k∗ compared to using dis-
tribution PoSk∗(ω̂). The marginal-contribution rule rewards experts whose reported
observations led to an increase in the probability of success, if the task succeeds, and
results in a negative reward if the task fails. The opposite holds for agents whose obser-
vation reports decreased the probability of success. The transfer, or reward, for an agent
who provides no new information is zero.

In order to prove various properties that arise when using the marginal-contribution
rule as a transfer function, we need to carefully define the utility of an agent. In partic-
ular, we need to specify an agent’s beliefs about the observations made by other agents
since the transfer that an agent i receives depends both on the service provider chosen
and on the total number of observations made by other agents. If there are few obser-
vations, then the observations of agent i may be more informative and thus result in a
higher transfer. However, if other agents have already reported many observations on
a particular service provider, then additional observations may be less informative, re-
sulting in lower rewards. In the following we will slightly abuse notation, and denote
by a−i(k), b−i(k), n−i(k) the aggregate observations by all providers except i, and
ω−i = ((a−i(1), b−i(1)), . . . , (a−i(m), b−i(m))).

We initially assume that agent i knows n−i(k), the aggregate number of observa-
tions for each provider by all other agents. However, they do not know whether these
observations represent successes or failures. Furthermore, we assume that the agent
maintains a probability p, which is its belief that another agent observes a success.
Typically, this belief will be based on an agent’s own experience so far, in which case
p = pi(k), but this assumption is not necessary for the proofs that follow. Given this,
the probability of exactly a−i(k) successes and b−i(k) = (n−i(k) − a−i(k)) failures
is given by the binomial distribution:
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B(a−i(k);n−i(k), p) =
n−i(k)!

a−i(k)!b−i(k)!
pa−i(k)(1− p)b−i(k).

Ignoring agent costs, and provided that all agents j 6= i are truthful, agent i’s expected
utility when provider k is selected is then given by:

Ui(ωi, ω̂i|k, n−i) =
n−i∑
j=0

B(j;n−i, p)Ui(ωi, ω̂i|k, ω−i = (j + 1, j − n−i + 1)), (8)

where:

Ui(ωi, ω̂i|k, ω−i) = PoSk(ωi, ω−i)τi(ω̂i, ω−i|success)
+ (1− PoSk(ωi, ω−i))τi(ω̂i, ω−i|fail)

= PoSk(ωi, ω−i)αiln

(
PoSk(ω̂i, ω−i)

PoSk(ω−i)

)
+ (1− PoSk(ωi, ω−i))αiln

(
1− PoSk(ω̂i, ω−i)

1− PoSk(ω−i)

)
, (9)

where PoSk(ωi, ω−i) = (ai+a−i)/(ni+n−i) is agent i’s beliefs about the probability
of success when observing ai out of ni successes, conditional on other agents observing
a−i out of n−i successes. Furthermore, PoSk(ω−i) = a−i/n−i.3

Theorem 2 For chosen service provider, k, Equation 7 is a strictly proper scoring rule.
That is, for ω 6= ω̂:

Ui(ωi, ωi|k, n−i) > Ui(ωi, ω̂i|k, n−i)

Proof. Since PoSk(ω−i) is a constant, we can ignore this part of the scoring rule. By
doing so, note that Equation 9 can be written as:

U(p, q) = p ln(q) + (1− p) ln(1− q)

Now, from Gibbs’ inequality it follows that U(p, p) ≥ U(p, q). Furthermore, U(p, p) =
U(p, q) if and only if p = q. This means that Equation 9 is maximised if and only if
PoSk(ωi, ω−i) = PoSk(ω̂i, ω−i), and therefore ω̂i = ωi is optimal. ut

We next show that the marginal-contribution scoring rule induces effort. In partic-
ular, we show that when ci = 0 and agents are truthful, then the more observations an
agent makes, the higher its expected utility.

Theorem 3 The scoring rule given by Equation 7 induces effort, that is, for any scalar
x > 1, where x ∈ N+:

Ui(xωi, xωi|k, n−i) > Ui(ωi, ωi|k, n−i)
3 While Equation 9 is not well defined for a−i = 0 and a−i = n−i, we can assume that all

agents use Laplace smoothing, thus avoiding these cases.
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Proof. We prove this by showing that dUi(xωi, xωi|k, n−i)/dx > 0 for any x >
0, ni > 0, a−i ≥ 1, b−i ≥ 1. From Equation 8 we have:

dUi(xωi, xωi|k, n−i)
dx

=

n−i∑
j=0

B(a−i;n−i, pi)
dUi(xωi, xωi|k, ω−i)

dx

It is therefore sufficient to show that dUi(xωi, xωi|k, ω−i)/dx ≥ 0 for all a−i ≤
n−i, and that this inequality is strict for at least one a−i ≤ n−i. To show that this holds,
note that we can write the first derivative as follows:

dUi(xωi, xωi|k, ω−i)
dx

= −αbia−i − b−iai
(xni + n−i)2

· ln
(
b−i(xai + a−i)

a−i(xbi + b−i)

)
(10)

Since ln(x) ≤ 1− x and α > 0, it is sufficient to show that:

−bia−i − b−iai
(xni + n−i)2

·
(
b−i(xai + a−i)

a−i(xbi + b−i)
− 1

)
≥ 0,

which simplifies to:
x(bia−i − b−iai)2

a−i(xbi + b−i)(xni + n−i)2
≥ 0

Now, clearly the above inequality is equal to zero when bi = b−i, ai = b−i (given
x > 0, ni > 0, a−i ≥ 1, b−i ≥ 1), but is strictly positive in all other cases. Hence it
follows that dUi(xωi, xωi|k, n−i)/dx > 0. ut

Clearly, if the utility increases as a function of x, then depending on an agent’s
cost ci for producing an observation, the agent will be incentivised to produce a greater
number of observations. We can set the desired level of effort by multiplying the transfer
by an appropriately chosen parameter α. Since affine transformations of strictly proper
scoring rules are also strictly proper, this does not change the properties of the transfers.

We now show that, despite Equation 8 being strictly proper, when k = k∗ is given
by Equation 1, the mechanism as a whole is no longer truth-telling. In particular, the
strictly-properness of the transfer function only holds for the observations made on the
chosen service-provider, k∗. Agents may have incentive to misreport their information
in order to affect the choice of service provider.

Theorem 4 If k∗ is given by Equation 1, and tranfers τi for i ∈ N are calculated
according to Equation 7, then there exist settings in which an agent’s expected utility is
maximised for ω̂i 6= ωi.

Proof. The proof is by example. Suppose that there are two service providers, k =
1, k = 2 and ρ1 = ρ2 = 0 (fees are zero). Furthermore, suppose that for some agent
i ∈ N , the following holds:

Ui(ω, ω̂i = ωi|k = 1) > Ui(ω, ω̂i = ωi|k = 2)

At the same time:
PoS1(ω) < PoS2(ω)
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That is, the consumer prefers service provider 2, but agent i is better off if provider 1
is selected, e.g. because it has relatively many observations for that particular service
provider. In this case, the agent could try and manipulate the outcome of k∗ by mis-
reporting. This can be done by either increasing the probability of success of provider
1, p̂i(1) (by increasing âi(1) or decreasing b̂i(1)), or decreasing p̂i(2) (by decreasing
âi(2) or increasing b̂i(2)). Note that the first type of manipulation negatively affects
Ui(·|k = 1) and thus the utility of agent i if its favourite outcome is selected, but the
second option does not. Therefore, an agent can always report âi(2) = 0, b̂i(2) =∞ to
ensure that option 1 is selected by the consumer. ut

4.3 Scoring Rule Based on Peer Prediction

In the previous section we introduced the marginal contribution mechanism and proved
that it is effort-inducing, but not necessarily truth-telling since agents may try to manip-
ulate their reports in order to influence the choice of the consumer. Since the transfers
of the agents were based only on the outcome of the chosen service provider, lying
about observations of non-selected service providers was not detected nor punished by
the mechanism.

In this section we propose a peer-prediction based method, where agents’ transfers
are determined by comparing their announced observations with the reported observa-
tions of other agents. Since agents report observations made on the same set of service
providers, their reports should be correlated, and peer-prediction methods try to detect
unexpected differences in reported observations in order to detect mis-reporting agents.

Existing approaches for peer prediction calculate the score of an agent based on the
report of a single other agent, called the reference agent [6]. Although this provides
the necessary properties, in practice the reference agent may have few observations
and the resulting score will be highly irregular. To address this, we use a virtual agent
which contains the fused observations of all other agents. The transfers are calculated
separately for reports about each provider k, and are given by:

τki (ω̂i|ω̂−i) = αPoSk(ω̂−i)ln (PoSk(ω̂i))+

α (1− PoSk(ω̂−i)) ln (1− PoSk(ω̂i)) + β (11)

We now formulate an expert’s expected utility. As before, we assume that the agents
only know the total number of observations made by other agents with service provider
k, n−i(k), and p, the beliefs about other agents observing a success. As opposed to
the marginal contribution approach, now the agents receive a separate transfer for the
observations of each service provider k ∈ SP . That is:

Ui(ωi, ω̂i|n−i) =
∑
k∈SP

Uk
i (ωi, ω̂i|n−i), (12)

where:

Uk
i (ωi, ω̂i|n−i) =

n−i∑
j=0

B(j;n−i, p)τki (ω̂i|ωi(k) = (j, n−i − j)). (13)
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Theorem 5 The transfers defined in Equation 11 result in agents truthfully revealing
their estimated probability of success for each service provider.

Proof. We now show that truth telling maximises expected utility, and that this is strict
in terms of reporting the probability of success (as opposed to number of successes and
failures). Let Uk

i (pi, p̂i)|n−i) denote the expected utility in terms of the probability of
success, where p̂i = âi/n̂i. Clearly,

Uk
i (pi, p̂i|n−i) = Uk

i (ωi, ω̂i|n−i)

Taking the first derivative results in:

dUk
i (pi, p̂i|n−i)

dp̂i
=

α

p̂i(1− p̂i)

n−i∑
j=0

B(j;n−i, pi)

(
j

n−i
− p̂i

)
=
α(pi − p̂i)
p̂i(1− p̂i)

Clearly the expected utility is maximised if and only if pi = p̂i. ut
While our peer-prediction method encourages all agents to truthfully reveal their

probabilistic estimates about all service providers, it is not able to induce effort. In
particular, any combination of observations resulting in the same probabilistic estimate
results in the same utility for the agent. For example, an agent observing one success
and one failure for a particular service provider is given the same reward as an agent
who observes fifty successes and fifty failures.

5 Challenges

In the previous sections we described three different transfer functions that could be
used by a mechanism designer in order to elicit experience information from experts.
While each transfer proposal illustrated some desirable properties, we argue that none
balanced the right combination of eliciting both truthful reports from the experts con-
cerning their experience with different service providers as well as encouraging the
experts to conduct many samples/experiments. In this section we discuss some of the
challenges which we still face.

5.1 Balancing Truth-Telling and Effort

As we have seen, of the three rules described in this paper, only the marginal contri-
bution scoring rule induces effort in our setting. However, using this scoring rule, an
expert achieves a higher expected utility if an outcome is selected for which the ex-
pert has more observations (or the other agents have fewer observations) since this will,
on average, increase the information gain and thus the score. Furthermore, an expert
is scored based only on the result of the selected outcome, and its remaining obser-
vations are not rewarded. As a result, an expert may have an incentive to manipulate
the outcome so that a suboptimal service provider k′ is chosen, but for which he holds
more observations, e.g. by making other outcomes less attractive. We note, however,
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that this is only a problem when there is a relatively large imbalance in the number of
observations from each provider.

A possible solution to the above problem is to produce a transfer which combines
the marginal contribution scoring rule with one of the other two approaches. We discuss
each of the two combinations in more detail, starting with the peer prediction method.
The peer prediction approach provides a score for probabilistic estimates from each of
the providers, independent of the selected provider and of the outcome. However, in our
setting with discrete outcomes, this approach does not reward effort. That is, a single
observation provides the same expected reward as having more than one. By having a
linear combination of the two scoring rules, however, and by scaling them appropriately,
the incentive to misreport the probability of success can be eliminated. Nevertheless,
this approach is still not foolproof, as an expert can sometimes still profit by manipulat-
ing the outcome by simply reducing the reported variance (by proportionally increasing
the number of reported successes and failures) whilst keeping the probability of success
the same. As we have seen, this will not affect the score obtained through peer predic-
tion. Although not perfect, however, the combination does reduce the number of cases
in which a deviation from truth telling is profitable.

Alternatively, we can combine the marginal contribution scoring rule with the trans-
fers from the mechanism design approach, again using a linear combination. The latter
aligns the payoffs with the consumer’s utility and therefore it is in the interest of the
experts that the optimal provider k∗ is selected. However, in the case that there is very
little difference between the expected probability of success of different providers, it
may still be profitable for an agent to try and manipulate the outcome in favour of a
provider k′, if the agent has relatively more information about k′. In such a case, how-
ever, since the providers are very similar, if an agent misreports, this will have very
little effect on the consumer’s utility (since otherwise this would also negatively affect
the agent because a significant part of the utility has been aligned with the consumer’s
utility).

5.2 The Expert’s Decision Problem: What and How Many Observations to Make

So far we have mainly focused on the mechanism design problem, and we have ignored
an important part of the expert’s decision problem: Given that an effort-inducing mech-
anism with scaling parameter α, and given the costs, how many observations should an
expert make to maximise its expected utility, if any? Moreover, which of the providers
should the expert sample from? This is a complex problem which we will not address
in this paper. Rather, we will briefly address some of the issues.

First, the expert’s expected utility needs to be adequately modeled. As we already
mentioned in Section 4.2, the expert needs to reason about the observations made by
other experts since this will affect the information gain and therefore the reward ob-
tained. In order to prove the various properties, in Section 4.3 we assumed that the
agents knew the number of observations of other agents (but not whether these were
successes or failures). In practice, however, this information may not be available since
each agent is waiting to see what other agents will do before being able to make a de-
cision. Essentially, since the optimal decision depends on the actions of other agents,
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this is a strategic problem and can be addressed game-theoretically using the notion of
Nash equilibrium.

Furthermore, even if an agent is able to determine the number of observations of
others, in the case of the marginal contribution scoring rule, only those observations
from the selected provider will be rewarded. An agent must therefore also reason about
which provider is most likely to be selected by the consumer. However, it needs to sam-
ple all providers in order to reason about which provider is most likely to be the most
successful on average. This problem is well studied in the literature and is referred as
the multi-armed bandit problem. Although solutions exist, these will need to be adapted
to this specific setting.

6 Conclusion

To conclude, we considered a setting where a consumer needs to choose a service
provider to complete a task, and approaches several independent experts for their rec-
ommendations. We presented three mechanisms for eliciting this information from the
experts: (1) a two-stage mechanism design approach based on the work by Mezzetti [5],
(2) a scoring rule based on peer prediction, and (3) a scoring rule based on KL diver-
gence. We showed that the first two approaches induce truth telling but do not induce
effort if the information is costly to produce. The third approach does induce effort,
but in some settings the experts gain by misreporting about the reliability of the service
provider for which they hold no or little information. Although not foolproof, we argue
that a combination of approaches mitigates most of the concerns and works in most
cases. At the same time, there are a number of open problems which remain to be stud-
ied. In particular, experts need to decide which producers to evaluate, and how accurate
the reports should be, given the costs and the mechanism. How to do this optimally is a
challenging problem and remains for future work.
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