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Total least squares methods

lvan Markovsky,' Diana M. Sima,? and Sabine Van Huffel?* i

Recent advances in total least squares approaches for solving various errors-
in-variables modeling problems are reviewed, with emphasis on the following

generalizations:

1. the use of weighted norms as a measure of the data perturbation size, capturing prior

knowledge about uncertainty in the data;

2. the addition of constraints on the perturbation to preserve the structure of the data
matrix, motivated by structured data matrices occurring in signal and image processing,

systems and control, and computer algebra;

3. the use of regularization in the problem formulation, aiming at stabilizing the solution
by decreasing the effect because of intrinsic ill-conditioning of certain problems.
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For extensive reviews of the total least squares (TLS)
approach and its applications, we refer the reader
to the following

o Overview papers: Refs 1-4;
o Proceedings and special issues: Refs 5-8; and
e Books: Refs 9-10.

The focus of this paper is on computational
algorithms for solving the generalized TLS problems.
The reader is referred to the errors-in-variables litera-
ture for the statistical properties of the corresponding
estimators, as well as for a wider range of applications.

WEIGHTED AND STRUCTURED
TOTAL LEAST SQUARES PROBLEMS

The TLS solution

Ry, = in|[A b]-|A D
Za=argmin|[[4 6] [3 B,

x,A,

subject to Ax=0b (1)
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of an overdetermined system of equations Ax ~ b is
appropriate when all elements of the data matrix
[A  b] are noisy and the noise is zero mean, inde-
pendent, and identically distributed. More precisely,
(under regularity conditions) Xy, is a consistent
estimator for the true parameter valueX in the
errors-in-variables (EIV) model

A=A+A,  b=b+b, Ax=0b, (2)
where the vector of perturbations vec([;{ Z]) is zero
mean and has covariance matrix that is equal to the

identity up to a scaling factor, i.e.,

E(vec([A 5]))=0  and
cor(vec([A B])) =t @)

The noise assumption (3) implies that all elements
of the data matrix are measured with equal precision,
an assumption that may not be satisfied in practice.

A natural generalization of the EIV model
(Eq. (2,3)) is to allow the covariance matrix of the
vectorized noise to be of the form o2V, where V is
a given positive definite matrix. The corresponding
estimation problem is the TLS problem (1) with the
Frobenius norm || - ||g replaced by the weighted matrix
norm

|AD|ly-1 == v/vecT (AD)V—1 vec(AD)
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Le.,
min | [A b] - [X Z] -1 subject to Ax = b.

(4)

In [Ref 11, Section 4.3] this problem is called
weighted total least squares (WTLS). Closely related
to the WTLS problem are the weighted low-
rank approximation problem'®!3 and the maximum
likelihood principal component analysis problem. 13

As opposed to the weighted least squares
problem, which is a trivial generalization of classical
least squares, the WTLS problem does not have, in
general, a closed form solution similar to the one of
the TLS problem. The most general WTLS problem
with analytic solution has a weight matrix of the
form V-1 = vy '® Vi ! where ® is the Kronecker
product, Vi is m xm, and V, is (n+ 1) x (n+ 1)
(m is the number of equations and 7 is the number of
unknowns in Ax ~ b). For general weight matrix, the
problem can be solved by local optimization methods.
However, there is no guarantee that a globally optimal
solution will be found.

There are two main categories of local optimiza-
tion methods for solving WTLS problems: alternating
projections and variable projections.'® They are based
on the observation that the constraint of the WTLS
problem (4) is bilinear, which implies that the problem
is linear in either x or A and, therefore, can be solved
globally and efficiently. Alternating projections is an
iterative optimization algorithm that on each iteration
step

1. solves a (linear) least squares problem in
an n x (n+ 1) extended parameter Xex, with A
fixed to the value obtained on the previous
iteration step:

min | [A 6] = AXexe] -1, (5)

2. solves a least squares problem in A with Xex
fixed to the optimal value of Eq. (5)

min [ [A 6] = Ay (6)

The parameter x is recovered from Xex, as follows

-1
X = Xextjlxext,Z,

Total least squares methods

In the statistical literature, the alternating projections
algorithm is given the interpretation of expectation
maximization (EM). The problem of computing the
optimal approximation A given Xex; is the expectation
step and the problem of computing Xy, given A is
the maximization step of the EM procedure.

The variable projections method uses the closed-
form solution of the expectation problem (6):

f(x)
= ATV = V1 X (X V1 X )~ X V1),
(8)

where

d:==vec([A b]) and Xexe 1= [In %] ® L.

This is a projection of the rows of [A b] on the
subspace perpendicular to [ ¥ ]. The minimization
over x is then an unconstrained nonlinear least squares
problem min, f(x), which can be solved by standard
optimization methods, e.g., the Levenberg-Marquardt
method.

Another generalization of the TLS problem (1)
is to add constraints on the approximation matrix

[K b].” Such constraints are needed in applications

where the data matrix is structured and the
approximation is required to have the same structure.
For example, in signal processing the outputy of a
finite impulse response (FIR) system to an input u
is given by multiplication of a Toeplitz matrix
constructed from # by the vector of the impulse
response samples. In an FIR system estimation
problem, where both the input and the output are
noisy, the approximation matrix is required to have
Toeplitz structure for the result to have interpretation
as a description of an FIR system.

Similar to the WTLS problems, in general,
structured total least squares (STLS) problems'!
have no analytic solution in terms of the singular
value decomposition (SVD) of the data matrix. Beck
and Ben-Tal'® solved globally STLS problems with
block-circulant structure by using the discrete Fourier
transform and the solution of standard TLS problems.
For other types of structure one has to resort to local
optimization methods. In case of linearly structured
problems, the constraint of the STLS optimization
problem is bilinear, so that the alternating projections

n 1
N N and variable projections methods, similar to the ones
where Xexr = [ Xextq Xew2 ] - (7) developed for the WTLS problem, can be used.
Volume 2, March/April 2010 © 2009 John Wiley & Sons, Inc. 213
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REGULARIZED AND TRUNCATED
TOTAL LEAST SQUARES PROBLEMS

Linear approximation problems Ax ~ b are consid-
ered ill-posed when small variations in the data A and
b lead to large variations in the computed solution
x. In the context of ordinary least squares, methods
such as ridge regression, Tikhonov regularization!® or
truncated SVD?? are often employed to stabilize the
computations. In recent years, several regularization
formulations have also been explored in the context
of the TLS problem. We distinguish between methods
based on penalties/constraints, and methods based on
truncation.

The basic idea of regularized total least squares
(RTLS) is forcing an upper bound on a weighted
2-norm of the solution vector x (although other types
of constraints can be envisaged). Several formulations
have been considered. A first formulation is the
quadratically constrained RTLS problem stated in
Refs 21-24 as

min |[4 5] - [A B

subject to Ax = Z, ||Lx||§ <82, (9)
or, equivalently,

IAx — bll3

min ————= subject to ||Lx||% <82,
x 1+ xl3

(10)

where L is a p by 7 matrix, usually the identity matrix
or a discrete difference operator, and § is a given scalar
value.

A second formulation adds a Tikhonov-like
quadratic penalty term |Lx||3 to the TLS objective

function?’:
|Ax — b3
in ————2 4 A[|Lx]|3. (11)
T+ xl3
For 8% small enough (i.e., 8% < ||[LxTtS ||% where TS is

the TLS solution), there exists a value of the parameter
A > 0 such that the solution of Eq. (10) coincides
with the solution of Eq. (11). A sufficient condition
for attainability of the minima in Eq. (10) or (11) is:
Omin([AN b)) < omin(AN), where the columns of N
form a basis for the nullspace of LT L.>%*%25

As opposed to classical regularization methods
in the context of ordinary least squares, these formu-
lations do not have closed-form solutions. Although
local optimization methods are used in practice, the
analysisin Refs 24,25 suggests that both formulations
can be recast in a global optimization framework,

214 © 2009 John Wiley & Sons, Inc.
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namely into scalar minimization problems, where each
function evaluation requires the solution of a quadrat-
ically constrained linear least squares problem.>®

The constrained formulation (10) has been
solved via a sequence of quadratic eigenvalue prob-
lems by Ref 22. Combining this approach with the
nonlinear Arnoldi method and reusing information
from all previous quadratic eigenvalue problems, a
more efficient method for large RTLS problems has
been proposed in Ref 27. Further, Renaut and Guo?3
suggested an iterative method based on a sequence
of linear eigenvalue problems, which has also been
accelerated by solving the linear eigenproblems by
the nonlinear Arnoldi method and by a modified root
finding method based on rational interpolation.?®

For the quadratic penalty formulation (11), a
complete analysis has been presented in Ref 25. A
simple reformulation into a scalar minimization makes
the problem more tractable:

min G(a), where G(a)

Ax —b|3
= min {22700 el g
o

lxl3=c—1

In Ref 29 another related formulation called dual
RTLS is proposed. It minimizes the norm ||Lx||%
subject to compatibility of the corrected system, as
well as to upper bounds on |A — A|g and ||b — b||>.

Truncation methods are another class of
methods for regularizing linear ill-posed problems
in the presence of measurement errors. In essence,
they aim at limiting the contribution of noise or
rounding errors by cutting off a certain number of
terms in an SVD expansion. The truncated total least
squares (TTLS) solution with truncation level k is
the minimum 2-norm solution of Apx = by, where
[Ar  bg]is the best rank-k approximation of [A  b].
More precisely, if USVT is the SVD of [A 5],

xrrisg = — VS (V)T = —VE(VE)T/IVE 12, (13)

where we partition V as (with =7z — k + 1):

k /
> <>

k k
V= Vii Vio| ¢ =
Vi V| v
The regularizing properties of truncated total least
squares and a filter factor expansion of the TTLS
solution have been described in Ref 30. Sima and

Van Huffel3! showed that the filter factors associated
with the TTLS solution provide more information for

(14)
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choosing the truncation level compared with trun-
cated SVD, where the filter factors are simply zeros
and ones.

APPLICATIONS AND CURRENT
TRENDS

Core problem: The concept of core problem in linear
algebraic systems has been developed by Paige and
Strakos32. The idea is to find orthogonal P and Q
such that

_[ b A ] O
PT[b AQ]_[ o0 Tan | 19

The block Ay is of full column rank, has simple sin-
gular values and b; has nonzero projections onto the
left singular vectors of Aj1. These properties guar-
antee that the subproblem A1 x1 ~ by has minimal
dimensions and contains all necessary and sufficient
information for solving the original problem Ax ~ b.
All irrelevant and redundant information is contained
in A .

Low-rank approximation: TLS problems aim
at approximate solutions of overdetermined linear
systems of equations AX ~ B. Typical application
of TLS methods, however, are problems for data
approximation by linear models. Such problems are
mathematically equivalent to low-rank approxima-
tion, which in turn is not equivalent to the AX ~ B
problem.* This suggests that from a data modeling
point of view, a low-rank approximation is a better
framework than the solution of an overdetermined
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linear system of equations. This viewpoint of the TLS
data modeling approach is presented in Ref 3.

Application of STLS in system identification and
model reduction is described in Refs 10,33,34. Fur-
ther applications of STLS include the shape from
moments problem,3’ approximate factorization and
greatest common divisor computation in computer
algebra,® and image deblurring.3”*®8 The WTLS
problem has applications in chemometrics'®!® and
machine learning.3’

Applications of RTLS: RTLS formulations,
including weighted and structured generalizations,
have been used in various ill-posed problems. A noto-
rious inverse problem—blind deconvolution of one-
or two-dimensional data—has received special atten-
tion. Restoring one-dimensional signals from noisy
measurements of both the point-spread function and
the observed data has been addressed by Refs 40,41
as a regularized structured TLS problem. A two-
dimensional generalization has been used for image
restoration in Ref 42. Interesting structured regular-
ized problem formulations and efficient algorithms for
image deblurring are analyzed in Refs 37,38,43-48.
RTLS has also been used in image reconstruction of
electrical capacitance tomography.*’

Applications of TTLS: TTLS has successfully
been applied to biomedical inverse problems such as
the reconstruction of epicardial potentials from body
surface potentials®® and imaging by ultrasound inverse
scattering.’! TTLS is also used as an alternative to
ridge regression in the estimation step of the regu-
larized EM algorithm for the analysis of incomplete
climate data.>?

Diana Sima is postdoctoral fellow of FWO (Fund for Scientific Research-Flanders). Research supported by
Research Council KUL: GOA MaNet, CoE EF/05/006 Optimization in Engineering (OPTEC), Belgian Federal
Science Policy Office IUAP P6/04 (DYSCO), and PinView (Personal Information Navigator adapting through
VIEWing), an EU FP7 funded Collaborative Project 216529.

REFERENCES

1. Van Huffel S, Zha H. The total least squares prob-
lem. In: Rao CR, ed. Handbook of Statistics: Com-
putational Statistics, volume 9. Amsterdam: Elsevier
Science; 1993, 377-408.

2. VanHuffel S. Total least squares and errors-in-variables
modeling: bridging the gap between statistics, compu-
tational mathematics and engineering. In: Antoch J, ed.

Volume 2, March/April 2010

COMPSTAT Proceedings in Computational Statistics.
Heidelberg: Physika-Verlag, 2004, 539-555.

3. Markovsky I, Van Huffel S. Overview of total least
squares methods. Signal Process 2007, 87:2283-2302.

4. Markovsky 1. Structured low-rank approximation and
its applications. Automatica 2007, 44:891-909.

© 2009 John Wiley & Sons, Inc. 215



Advanced Review

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

216

Van Huffel S, ed. Recent Advances in Total Least

Squares Techniques and Errors-in-Variables Modeling.
Philadelphia, PA: SIAM; 1997.

Van Huffel S, Lemmerling P, eds. Total Least Squares
and Errors-in-Variables Modeling: Analysis, Algo-
rithms and Applications. Dordrecht: Kluwer Academic
Publishers, 2002.

Van Huffel S, Cheng C-L, Mastronardi N, Paige C,
Kukush A. Editorial: total least squares and errors-
in-variables modeling. Comput Stat Data Anal 2007,
52:1076-1079.

. Van Huffel S, Markovsky I, Vaccaro RJ, Soderstrom

T. Guest editorial: total least squares and errors-
in-variables modeling. Signal Process 2007, 87
2281-2282.

Van Huffel S, Vandewalle J. The Total Least
Squares Problem: Computational Aspects and Analysis.
Philadelphia, PA: SIAM; 1991.

Markovsky I, Willems JC, Van Huffel S, De Moor B.
Exact and Approximate Modeling of Linear Systems:
A Behavioral Approach. Philadelphia: SIAM, 2006.

De Moor B. Structured total least squares and L,
approximation problems. Linear Algebra Appl 1993,
188(189):163-207.

Manton ], Mahony R, Hua Y. The geometry of
weighted low-rank approximations. IEEE Trans Signal
Process 2003, 51:500-514.

Markovsky I, Van Huffel S. Left vs right represen-
tations for solving weighted low rank approximation
problems. Linear Algebra Appl 2007, 422:540-552.

Wentzell P, Andrews D, Hamilton D, Faber K, Kowal-
ski B. Maximum likelihood principal component anal-
ysis. | Chemometr 1997, 11:339-366.

Schuermans M, Markovsky I, Wentzell P, Van Huf-
fel S. On the equivalence between total least squares
and maximum likelihood PCA. Anal Chim Acta 2005,
544:254-267.

Golub G, Pereyra V. Separable nonlinear least squares:
the variable projection method and its applications.
Inverse Probl 2003, 19:1-26.

Abatzoglou TJ, Mendel IM, Harada GA. The con-
strained total least-squares technique and its applica-
tions to harmonic superresolution. IEEE Trans Signal
Process 1991, 39:1070-1087.

Beck A, Ben-Tal A. A global solution for the struc-
tured total least squares problem with block circulant
matrices. SIAM | Matrix Anal Appl 2006,27:238-255.

Tikhonov AN, Arsenin V. Solutions of Ill-Posed Prob-
lems. Washington, D.C.: Winston & Sons; 1977.

Hansen P-C. Truncated singular value decomposi-
tion solutions to discrete ill-posed problems with ill-
determined numerical rank. SIAM | Sci Stat Comput
1990, 11:503-518.

© 2009 John Wiley & Sons, Inc.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

www.wiley.com/wires/compstats

Golub GH, Hansen PC, O’Leary DP. Tikhonov regu-
larization and total least squares. SIAM | Matrix Anal
Appl 1999, 21:185-194.

Sima DM, Van Huffel S, Golub GH. Regularized total
least squares based on quadratic eigenvalue problem
solvers. BIT Numer Math 2004, 44:793-812.

Renaut R, Guo H. Efficient algorithms for solution of
regularized total least squares. SIAM | Matrix Anal
Appl 2005, 26:457-476.

Beck A, Ben-Tal A, Teboulle M. Finding a global opti-
mal solution for a quadratically constrained fractional
quadratic problem with applications to the regularized
total least squares. SIAM | Matrix Anal Appl 2006,
28:425-445.

Beck A, Ben-Tal A. On the solution of the Tikhonov
regularization of the regularized total least squares
problem. SIAM ] Optim 2006, 17:98—-118.

Gander W. Least squares with a quadratic constraint.
Numer Math 1981, 36:291-307.

Lampe J, Voss H. On a quadratic eigenproblem occur-
ring in regularized total least squares. Comput Stat
Data Anal 2007, 52:1090-1102.

Lampe J, Voss H. A fast algorithm for solving reg-
ularized total least squares problems. Electron Trans
Numer Anal 2008, 31:12-24.

Lu S, Pereverzev SV, Tautenhahn U. Dual regularized
total least squares and multi-parameter regularization.
Comput Meth Appl Math 2008, 8:253-262.

Fierro RD, Golub GH, Hansen PC, O’Leary DP. Reg-
ularization by truncated total least squares. SIAM ] Sci
Comput 1997, 18:1223-1241.

Sima DM, Van Huffel S. Level choice in truncated
total least squares. Comput Stat Data Anal 2007,
52:1103-1118.

Paige CC, Strakos Z. Core problems in linear algebraic
systems. Comput Stat Data Anal 2005, 27:861-875.

Roorda B, Heij C. Global total least squares modeling
of multivariate time series. IEEE Trans Automat Contr
1995, 40:50-63.

Markovsky I, Willems JC, Van Huffel S, Moor BD, Pin-
telon R. Application of structured total least squares
for system identification and model reduction. IEEE
Trans Automat Contr 2005, 50(10):1490-1500.

Schuermans M, Lemmerling P, Lathauwer LD, Van
Huffel S. The use of total least squares data fitting in
the shape from moments problem. Signal Process 2006,
86:1109-1115.

Botting B. Structured Total Least Squares for Approx-
imate Polynomial Operations. Master’s thesis, School
of Computer Science, University of Waterloo, 2004.

Pruessner A, O’Leary DP. Blind deconvolution using a
regularized structured total least norm approach. SIAM
J Matrix Anal Appl 2003, 24:1018-1037.

Volume 2, March/April 2010



) WIREs Computational Statistics

38.

39.

40.

41.

42.

43.

44,

4S.

Mastronardi N, Lemmerling P, Van Huffel S. Fast
regularized structured total least squares problems for
solving the basic deconvolution problem. Numer Linear
Algebra Appl 2005, 12:201-209.

Srebro N. Learning with Matrix Factorizations. PhD
thesis, MIT, 2004.

Fan X. The Constrained Total Least Squares with Regu-
larization and its Use in Ill-conditioned Signal Restora-
tion. PhD thesis, Electrical, Electronic and Computer
Engineering Department, Mississippi State University,
1992.

Younan NH, Fan X. Signal restoration via the regu-
larized constrained total least squares. Signal Process
1998, 71:85-93.

Mesarovi¢ V, Galatsanos N, Katsaggelos A. Regular-
ized constrained total least squares image restoration.
IEEE Trans Image Process 1995, 4:1096-1108.

Kamm J, Nagy JG. Least squares and total least squares
methods in image restoration. WNAA *96: Proceedings
of the 1st International Workshop of Numerical Anal-
ysis and Its Applications. London: Springer-Verlag;
1997, 212-219.

Ng MK, Plemmons RJ, Pimentel F. A new approach
to constrained total least squares image restoration.
Linear Algebra Appl 2000, 316:237-258.

Chen W, Chen M, Zhou ]. Adaptively regularized con-

strained total least-squares image restoration. IEEE
Trans Image Process 2000, 9:588-596.

FURTHER READING

Beck A. The matrix-restricted total least-squares problem. Signal Process 2007, 87: 2303-2312.

Guo H. Renaut R. Parallel variable distribution for total least squares. Numer Linear Algebra Appl 2005, 12:
859-876.
Zhu W. Wang Y. Galatsanos N. P. Zhang J. Regularized total least squares approach for nonconvolutional
linear inverse problems. IEEE Trans Image Process 1999, 8: 1657-1661.

Volume 2, March/April 2010

46.

47.

48.

49.

50.

S1.

52.

© 2009 John Wiley & Sons, Inc.

Total least squares methods

Mastronardi N, Lemmerling P, Kalsi A, O’Leary D,
Van Huffel S. Implementation of the regularized struc-
tured total least squares algorithms for blind image
deblurring. Linear Algebra Appl 2004, 391:203-221.

Kalsi A, O’Leary DP. Algorithms for structured total
least squares problems with applications to blind image
deblurring. | Res Natl Inst Stand Technol 2006,
111:113-119.

Fu H, Ng MK, Barlow JL. Structured total least squares
for color image restoration. SIAM ] Sci Comput 2006,
28:1100-1119.

Lei J, Liu S, Li Z, Schlaberg H, Sun M. An image recon-
struction algorithm based on the regularized total least
squares method for electrical capacitance tomography.
Flow Meas Instrum 2008, 19:325-330.

Shou G, Xia L, Jiang M, Wei Q, Liu F, et al. Truncated
total least squares: a new regularization method for the
solution of ECG inverse problems. IEEE Trans Biomed
Eng 2008, 55:1327-1335.

Liu C, Wang Y, Heng PA. A comparison of trun-
cated total least squares with tikhonov regularization
in imaging by ultrasound inverse scattering. Phys Med
Biol 2003, 48:2437-2451.

Schneider T. Analysis of incomplete climate data:
Estimation of mean values and covariance matrices
and imputation of missing values. | Climate 2001,
14:853-871.

217



