Flexible Procurement of Services with Uncertain Durations

Sebastian Stein
School of Electronics and
Computer Science
University of Southampton
Southampton, SO17 1BJ, UK
ss2@ecs.soton.ac.uk

Kate Larson
Cheriton School of Computer
Science
University of Waterloo
200 University Avenue West
Waterloo, ON, N2L 3G1,
Canada

klarson@cs.uwaterloo.ca

ABSTRACT

Emerging service-oriented technologies allow software agents
to automatically procure distributed services to complete
complex tasks. However, in many application scenarios,
service providers demand financial remuneration, execution
times are uncertain and consumers have deadlines for their
tasks. In this paper, we address these issues by develop-
ing a novel approach that dynamically procures multiple,
redundant services over time, in order to ensure success by
the deadline. Specifically, we first present an algorithm for
finding optimal procurement solutions, as well as a heuris-
tic algorithm that achieves over 99% of the optimal and is
capable of handling thousands of providers. Using experi-
ments, we show that these algorithms achieve an improve-
ment of up to 130% over current strategies that procure only
single services. Finally, we consider settings where service
costs are not known to the consumer, and introduce several
mechanisms that incentivise providers to reveal their costs
truthfully and that still achieve up to 95% efficiency.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent agents, multiagent systems

General Terms
Algorithms, Economics, Reliability

Keywords

Service-oriented computing, service procurement, mechanism
design, optimisation

Cite as: Title, Author(s), Proc. of 8th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 302009, Bu-
dapest, Hungary, pp. XXX-XXX.

Enrico Gerding
School of Electronics and
Computer Science
University of Southampton
Southampton, SO17 1BJ, UK

eg@ecs.soton.ac.uk

Alex C. Rogers
School of Electronics and
Computer Science
University of Southampton
Southampton, SO17 1BJ, UK
acr@ecs.soton.ac.uk

Nicholas R. Jennings
School of Electronics and
Computer Science
University of Southampton

Southampton, SO17 1BJ, UK

nrj@ecs.soton.ac.uk

1. INTRODUCTION

Increasingly, participants in large distributed systems are
able to discover and automatically procure the services of
others. This allows service consumers to complete complex
computational tasks on demand, but without the need to
invest in and maintain expensive hardware. Already, such
a service-oriented approach is gaining popularity in a large
range of application areas, including Grids, peer-to-peer sys-
tems, cloud and utility computing [7].

Despite its benefits, flexible service procurement poses
new challenges that have not been addressed satisfactorily
by current research. In particular, services offered by exter-
nal providers are beyond the consumer’s direct control and
may therefore display uncertainty in their behaviour. Thus,
the execution time of services can be highly uncertain, due
to concurrent access by other consumers, hardware or net-
work problems and the provider’s scheduling policies. This
is particularly problematic when services take a long time to
complete, as is common for many computationally-intensive
tasks, and when consumers need to obtain their results by a
certain deadline. Furthermore, in large systems, many dif-
ferent providers may offer functionally equivalent services
that are heterogeneous in their quality and costs. This re-
quires consumers to make appropriate decisions about which
services to procure, balancing the probability of success with
the overall cost. It also necessitates the design of appropriate
economic mechanisms that incentivise providers to truth-
fully reveal their private information, such as their costs
and the estimated execution time, thus resulting in good
procurement decisions and removing the need for strategic
behaviour.

Related to this work is the literature on task allocation
under execution uncertainty such as [6]. Here, researchers
have studied problems where providers have private infor-
mation about both their costs for executing tasks, as well
as the probability that they will successfully complete their
tasks. However, this and similar works do not consider re-
dundancy to increase the overall success probability of task.
Now, there is some work that employs redundancy, combin-

Copyright(©) 2009, International Foundation for Autonomous Agents and ing several unreliable services to achieve a higher probability

Multiagent Systems (www.ifaamas.org). All rights reserved.

of success. This includes deployed systems, such as Google’s
MapReduce [2], but the techniques used for determining how
many services to procure are typically ad hoc, and they also
do not consider costs. A decision-theoretic approach for ad-
dressing the latter is described in [8], but this work assumes
that costs are known and focusses on heuristic techniques for
complex workflow scenarios. A slightly different approach is
taken by work on restarting Web queries, which examines
when such queries should be timed out and re-issued (pos-
sibly to a different provider) to ensure timely completion
[1, 4]. However, such work typically assumes that only one
query is active at any time and the costs of multiple queries
are not explicitly balanced with the resulting benefit.

To address these shortcomings, we present an abstract
model of a procurement scenario with service execution un-
certainty. We begin by outlining a generic approach for find-
ing an optimal procurement strategy when service costs and
duration distributions are known. This approach is the first
to employ redundancy in a flexible and optimal manner as
to balance the probability of completing within its deadline
and the costs for doing so. More specifically, our approach
allows a consumer to invoke multiple services in parallel for
executing the same task, and it can dynamically procure fur-
ther services during execution as the deadline draws closer.
To find the optimal strategy, we combine analytical expres-
sions with computational search methods. As brute force
is computationally intractable, we present a novel branch-
and-bound algorithm that reduces the search, on average,
by over 99.9%. We also discuss a heuristic algorithm capa-
ble of handling problems with thousands of heterogeneous
service providers, and we show that its solutions are, on av-
erage, within 0.12% of the optimal. For a range of settings
we then experimentally demonstrate that dynamic redun-
dancy achieves an improvement of up to 130% over current
approaches.

Next, we examine settings where service costs are private
and known only by the providers. For this scenario, we pro-
pose a VCG-like mechanism that is incentive-compatible,
i.e., that incentivises rational, self-interested participants to
reveal their true costs. In this context, it is the first such
mechanism that allows consumers to procure multiple, re-
dundant services to increase its probability of success. More-
over, we show that this mechanism can achieve an average
95% efficiency when some prior information about service
cost distributions is known to the consumer. To address
settings where this is not available, we propose two further
novel mechanisms, which have lower information require-
ments, but still achieve an average 86% efficiency.

In the remainder of this paper, we first present the pro-
curement problem (Section 2) and discuss its optimal solu-
tion (Section 3). This is followed by our mechanisms (Sec-
tion 4) and an empirical evaluation (Section 5). Section 6
concludes.

2. PROBLEM SPECIFICATION

We consider a single service consumer A, which needs to
complete a task 7. The consumer derives a utility V' € R
if the task is successfully completed within a given dead-
line D € RY, and 0 otherwise. Furthermore, there are m
service providers, given by the set M = {1,...,m}, which
can complete the task on the consumer’s behalf. A con-
sumer can invoke a provider ¢ € M at any time in the in-
terval [0, D]. We assume that, once invoked, the provider

remains committed to the task until it is completed (pos-
sibly beyond the deadline), and incurs an (expected) cost
¢;, where this cost may represent both the running costs of
its computational resources and opportunity costs from not
being able to use these resources for other tasks. To com-
pensate for these costs, the consumer pays the provider a
transfer 7; € R™ on invocation of ¢, which is paid regardless
of whether the task is completed by the deadline D. Al-
though a provider will always successfully complete the task,
the execution time is uncertain, and is given by a continu-
ous cumulative distribution function F;(¢). This denotes the
probability that provider i completes the task within time ¢,
and we assume this includes any time needed for pre-/post-
processing, queueing and data transfers. We also assume
that the execution times of different service providers are
independently drawn.

Although we only consider a single task in this paper, cru-
cially we allow multiple providers to execute it concurrently
and independently. In this case, the task is considered suc-
cessful if at least one provider completes it by time D. We
assume that all participants are expected utility maximisers.

Now, the key problem is to find an optimal procurement
strategy that determines which providers should be invoked
and when, such that the consumer’s utility is maximised. We
compactly represent such a strategy as a vector p = ((s1, 1),

.y (8n,tn)) with n < m, where each element represents
the invocation time t; € [0, D] of a provider s; € M. A
provider 7 is then only invoked at time ¢; (and only receives
7;) if no provider has so far completed the task. Without
loss of generality, we assume that t; < t;41, and s; # sj
if ¢ # j. For example, assume there are four providers
and p = ((2,0),(3,0),(1,2.5)), i.e., providers 2 and 3 are
invoked immediately. Then, if the task has not been com-
pleted by ¢t = 2.5, provider 1 is also invoked, causing the
three providers to run concurrently. Provider 4 is never in-
voked.

Given a strategy p, the consumer’s expected utility is:

Us(p) = V- (1 ~[a-ruo- m))

,Z <T . 1:[(1 — F,,(t; tj))> (D

Furthermore, the expected utility of each provider s; is:

i—1
Us, (P) = (Tsi - cSi) : (1 - st (ti -

j=1

tj)),)

if s; is included in p, and zero otherwise. Furthermore,
although our main concern is maximising the customer’s
utility, as a measure of how well the available services are
utilised, we define the overall efficiency, also referred to as
the social welfare, of a procurement strategy as:

Ul(p)

I
S
S
Jr

™
3
S

This measures the overall quality of a strategy for all par-
ticipants and therefore ignores any transfers, as these only
re-distribute utility between the agents.

3. OPTIMAL SERVICE PROCUREMENT

We now consider the problem of finding the optimal pro-
curement strategy that maximises the consumer’s expected
utility, given that the consumer has full information about
both the providers’ costs ¢; and the duration distributions
F;. This corresponds to a service-oriented system where
providers advertise their services at a fixed price, and thus
¢; denotes the advertised price. In this case, we set the
transfers to the providers so that they equal these prices,
i.e., Ti = C4.

More formally, let p* = argmax, Ua(p). Finding the opti-
mum, p*, is non-trivial since it involves selecting an appro-
priate subset of providers, ordering them and then deter-
mining invocation times. To solve this, we initially assume
that the optimal subset of providers and their ordering is
given. That is, we are given an ordered set of providers

ps = (s1,...,8n) where s; is invoked before s;11. To com-
pute the optimal procurement schedule, we must determine
pi = (t1,...,tn), where t; is the invocation time of s;. To

this end, we compute the gradient of the expected welfare,
VU (p;), and find its root, i.e., VU (p;) = 0. This results
in a system of n simultaneous equations, with one equa-
tion for each t¢;, with constraints, Vi : 0 < ¢; < D, and
Vi,j 11 < j < t; < t;. Solving these equations depends
on the family of duration distributions and can be done ei-
ther analytically or numerically using standard optimisation
software. In what follows, we focus on the exponential dis-
tribution as this is commonly used for modelling uncertain
service durations [9].

3.1 Exponentially Distributed Durations

We now derive analytical expressions for the invocation
times pf, given p; and given that the duration distributions
of providers ¢ € M are given by F;(t) = 1 — e it where
Ai > 0 is a rate parameter. Re-writing Equation 1 with
these distributions, and computing the gradient, allows us
to compute the optimal invocation time ¢; of provider s; by
solving:

n n i—1 7
—Xs. D Xs.tj —Aspt;
O:fV~)\SiHe i HeSJJJrciE)\S_jHe Sk

j=1 j=i+1 j=1 k=1

m j—1 j—1
—Asp tj Xsj th
— As; Cs; H e "ekY H e ok (4)
k=1

j=i+1 k=i+1

Here, we note that ¢; is independent of any t;,j < i, i.e.,
the invocation time of a provider does not depend on the
invocation time of those already running. This is a result of
the exponential function being memoryless, i.e., the proba-
bility of completing the task within the next time interval
At is independent of when it was invoked. Hence, we can
calculate each t; by backward induction, starting with the
last provider, n. The invocation time of this can be ob-
tained directly by taking the derivative with respect to t,

(as in Equation 4):

R (con Gt A) = DT A
" 2 s

(5)

Furthermore, we can obtain a simpler closed-form solu-

tion for the remaining invocation times by combining and

manipulating the partial derivatives for ¢; and t;41, result-
ing in:

i—1 i—1 m j—1
Cs; A H e Nsp (i —ty) _ Z c. H e~ s (85— tg)
.. Z 23 S5
si j=1 k=1 k=1

j=it1

p . .
Csit1 - sy (i1 —tg) -] —Xg, (ti—tp)
Gy i1 —tr) _ oy (ti—tp,
= st s e (e, T e
k=1 k=1

Si41 j=1 Jj=i+2

Then, using algebraic manipulations, we isolate ¢;, and
derive an expression that is based solely on t;1:

Corpr Asy D01 A,
- 1 h’l < i+1 i erl J > (6)
Dim1 sy CsiAsigr 2ojo1 As;

Note that Equation 6 is not well defined for t1, and the
optimal here is to set t; = 0. This is because the cost will
be incurred in any case and any delays would only reduce
its probability of success by the deadline. Furthermore, we
note that the equations can yield negative values for some t;,
indicating that the optimal values lie outside the constraints
of the problem (i.e., before the task can be started). In
this case, as t; does not influence the procurement times of
later providers, the optimal choice is to set ¢; = 0, i.e., the
provider is invoked at the earliest possible time. Finally,
the equations can sometimes yield inconsistent values, i.e.,
ti > D or t; > t;41 for some i, but this only occurs when
the ordering and/or the set of providers was non-optimal in
the first place.

So far, Equations 5 and 6 allow us to efficiently calculate
the optimal procurement times for a given, optimal ordered
sequence of service providers p;. However, it is not obvious
how to find this order. Related work on economic search,
such as [10], does not apply to this case, due to the overlap of
concurrently invoked providers. Furthermore, our problem
includes a fixed time constraint, by which the task has to
be completed. Other greedy approaches that order services
by increasing costs, decreasing rate parameters, the ratio
of these, or approaches that first select providers who indi-
vidually yield a higher expected utility, also do not always
find optimal solutions. This is because it is often best to se-
lect cheaper, slower providers first and only invoke the more
expensive and faster ones later, to ensure that the task is
completed successfully. However, when the deadline of the
task is particularly short, the consumer may be forced to
immediately invoke the faster, expensive providers.

As a simple example of this, we consider a set of two pro-
viders, M = {1, 2}. The first is cheap and slow with ¢; = 0.2
and A1 = 0.1, while the second is expensive and fast with
c2 = 5 and A2 = 10. If we then assume that a consumer
has a task T" with deadline D = 1.5 and utility V = 100,
the optimal procurement strategy is p* = ((1,0), (2,0.75)).
However, if we decrease the deadline slightly to D = 1, the
optimal strategy becomes p* = ((2,0), (1,0.84)), thereby re-
versing the order of invoked providers.

This observation suggests that a simple greedy search for

t; =tiy1 —

Algorithm 1 Branch-And-Bound Algorithm.

ot — () > Best ordering found so far
I Ulower <— 0 > Best current lower bound

Q—{p:} > Unexpanded orderings

: while Q # (0 do > More unexpanded?
ps + argmax, co LOWER(ps) > Pick best

Q — Q\{ps} > Remove ps from @

P! —EXPAND(ps) > Expand ps

P! «—FILTERDOMINATED(P}) > Remove dominated
for all p, € P, do

U «—LOWER(pY)

4 <—UPPER(p})

if 4 > ujower then

if 4 > ujower then

> Find lower bound

> Find upper bound

> Sufficient upper bound?
> Better lower bound?

= e e
D URWNHROOXTO ULk WD =

pE— pl > Keep as current best
Ulower < U
Q—QuU{p.} > Keep for future expansion

17: Q «— {z € Q| UPPER(%) > Ujower}
18: return FINDTIMES(p})

> Filter orderings
> Return best strategy

the optimal strategy is insufficient. Hence, in the follow-
ing sections, we present an optimal branch-and-bound al-
gorithm. As this becomes slow when there are dozens of
providers, we also discuss a fast heuristic algorithm.

3.2 TheBranch-And-Bound Algorithm

Finding an optimal subset and ordering of providers p; us-
ing a brute-force search is clearly infeasible when the number
of providers rises beyond a handful, as the number of pos-
sible orderings for m providers is given by Y7 () - il =
> (mL—lz)' However, it is possible to significantly reduce
the number of provider orderings that need to be searched
by noting that we can use information about some exam-
ined orderings to exclude others. For example, assume we
have three providers, and we have just considered the order-
ing ps = (2,1). This already promises a high utility, and,
in fact, we note it is higher than what could possibly be
achieved by invoking provider 3 first (e.g., if V — c3 is low).
Hence, we can immediately discard all five orderings starting
with 3.

This intuition is generalised in our branch-and-bound tech-
nique given by Algorithm 1. In more detail, we begin with
an empty ordering pi = () (line 1), and then repeatedly con-
sider any new ordering that can be created by appending a
single provider to the end of an existing ordering. This is
implemented by keeping a set of orderings, @ in line 3, that
have not yet been expanded in this manner. During each
iteration of the main loop of the algorithm (lines 4-17), we
then remove one' ordering ps from Q (lines 5 and 6) and
expand it. Here, EXPAND in line 7 takes an ordering ps and
returns the set of all orderings that can be obtained by ap-
pending a single remaining service provider from M to ps.
From this set of new orderings, we then remove any that in-
clude providers that are dominated by others not currently
in the ordering (line 8).2

For each new ordering p’,, we now find both a lower bound

"We remove the ordering that promises the highest lower
bound on the expected utility. This allows us to quickly
increase the best lower bound, thereby pruning the search
space more effectively.

2A provider i dominates j if and only if (¢; < ¢; A X >
Aj) V(e < ¢j AN > Aj). Clearly, it is suboptimal to invoke
j before 1.

and an upper bound for the expected utility that is achiev-
able by any procurement strategy beginning with the pro-
viders in p, (lines 10 and 11). Finding these allows us to
exclude any orderings starting with p} if the associated up-
per bound is less than the best lower bound found so far.
This pruning and updating of the lower bound is performed
in lines 12-16.

We now describe LOWER(p}) and UPPER(p}). To find the
lower bound, we simply restrict ourselves to the providers in
0%, and find the optimal times p} for this ordering and re-
turn the associated utility, i.e., Ua (FINDTIMES(p}))), where
FINDTIMES returns the optimal procurement strategy using
the Equations from Section 3.1. Calculating an upper bound
is less obvious, because we may be able to derive significantly
higher utility by invoking further services. To this end, we
let M’ be the remaining service providers that are not in
p. If M’ = (), then the upper bound is equal to the lower
bound discussed above. Otherwise, we create a virtual ser-
vice provider s, with cs, = min;ear ¢; and As, = >3, Aie
This is based on the rationale that if any providers from M’
are invoked in any order, their cost is bound to be at least cs,,
and their combined probability of success within any given
time interval after invocation will never be higher than when
immediately invoking all in parallel. With this reasoning, we
obtain a new ordering p, by appending s, to p} and then
calculate the upper bound as U(FINDTIMES(p})). If that is
less than the lower bound, this indicates that it is not possi-
ble to achieve a higher utility by invoking further providers,
and we can set the upper bound equal to the lower bound.

At the end of each iteration, only unexpanded orderings
with an upper bound that is higher than the currently high-
est lower bound are retained (line 17). This limits the size
of @ (which we implemented using a priority queue), and
also ensures that it is empty when all necessary orderings
have been searched. When this happens, the best ordering
and associated optimal times are returned (line 18). This fi-
nal procurement strategy is optimal, because the algorithm
searches all orderings, except for those that are known to
have a lower expected utility than those already considered.
Hence, the optimal ordering will never be discarded from
the search.

However, while significantly reducing the search space in
most realistic settings, this algorithm still searches for the
optimal solution and may sometimes consider a large pro-
portion of the entire search space. This may be the case,
for example, when there are large numbers of highly similar
providers and when the value of the task is very large in
relation to the service costs. To address such scenarios, we
introduce a fast heuristic approach in the following section.

3.3 TheHeuristic Algorithm

Although we argued in Section 3.1 that a greedy approach
does not generally result in an optimal strategy, it can still
achieve good results in practice and is more scalable than
exhaustive approaches. Hence, we present such an algo-
rithm that starts with an empty ordering and then greedily
adds, removes or switches providers until a local optimum
is reached.

In more detail, given a current ordering ps and a set of
providers M’ that are currently not in ps, the greedy ap-
proach picks one of the following three actions, in order to
maximise the expected utility of its next ordering: (1) it
selects a provider x € M’ and adds it to ps at position

1€ {1,2,...,n+ 1} (shifting other providers as necessary),
(2) it selects a provider s; in ps and removes it, or (3) it se-
lects two providers s; and s; in ps and swaps their positions.
This continues until the algorithm cannot find another bet-
ter ordering. In this case, the current best is returned.

4. MECHANISMSFORELICITING COSTS

Whereas so far we have assumed that the consumer, A,
has complete information about both the costs and the dura-
tion distributions of the providers, here we consider a setting
where the cost information is private and unknown to the
consumer. Instead, the consumer has to provide incentives
so as to induce the providers to reveal this information truth-
fully. Note that we still assume that the providers’ duration
distributions are known by the consumer, as this informa-
tion may be obtained from past and shared experiences, e.g
using a trust or reputation system, or simply given by the
provider.®

4.1 (k+1)* Price Mechanism

Typically, when mechanism design is applied to task al-
location problems, the well-known Vickrey-Clarke-Groves
(VCG) mechanism is used. Providers are asked to reveal
their private information (called their ¢type) and in exchange
are paid a transfer equal to their marginal contribution to
the system. This payment structure provides the correct
incentives so that each provider willingly reveals their type
truthfully [5].

Unfortunately, however, the VCG mechanism is not ap-
plicable in our setting, since it is only suited for situations
where the types (i.e. the costs) of the providers are indepen-
dent. In our domain, this property does not hold, since the
cost incurred by a provider depends significantly on which
other providers are selected in the procurement strategy.
Thus, our problem falls into the class of interdependent types,
and it is well known from the literature that providers no
longer have an incentive to reveal their private information
truthfully if the VCG mechanism is used [5]. Moreover, any
mechanism which ensures that providers truthfully reveal
their costs is inefficient [3].

Our first mechanism is the (k + 1) mechanism which
works as follows. First, the consumer, A, announces k,
1 < k < m. Then, each of the m providers reports a cost,
¢;, which may differ from their true cost ¢;. We assume
that providers are ordered so that ¢; < é;4+1, and we define
K ={i|i€ Mandé& < ékxq1}. That is, K is the set
of k providers with the lowest reported costs. These form
the candidate providers for the procurement strategy. After
finding the set K, the payment value 7; of each candidate
provider is set to 7; = ¢x4+1. Now, the procurement strategy
used by A is calculated by finding p’ = argmax . c x Ua(p)
where only providers in K are (potentially) selected to be
part of the strategy. It is important to notice that the pay-
ment 7; for i € K is conditional. That is, a payment or
transfer to agent ¢ € K only occurs if the candidate provider
is both selected as part of the procurement strategy p’, and
is subsequently invoked. Otherwise, it receives no payment
(and incurs no cost).

3To verify these distributions in the latter case, a payment
scheme based on scoring rules could be used in conjunction
with our mechanism, see [11], but we leave a more detailed
investigation of this issue for future work.

THEOREM 1. Let M be the set of service providers, |M| =
m. For any k such that 1 < k < m, the (k + 1)*" mech-
anism is incentive compatible in dominant strategies (i.e.,
truthtelling is optimal, irrespective of what other agents do)
and (ex-post) individually rational (i.e., the providers always
receive zero or positive utility).

Proof Sketch. Since the probability of being invoked and
the resulting payment are independent of an agent’s report,
there is no incentive to overreport the cost. Nor is there
an incentive to underreport, since this could only result in
a situation where ¢; > €41, in which case agent ¢ would
make a loss. Individual rationaility holds when ¢; = é; since
Ty = Cry1 > ¢ for i € K, and thus 7; —¢; > 0. [

While this mechanism has desirable properties, it also suf-
fers from some key limitations. First, it selects providers
based solely on their cost information, ignoring the dura-
tion distributions, leading to the possibility that expensive
providers with fast completion times are excluded. Second,
the parameter k£ must be announced before providers reveal
their costs. To set k optimally requires a prior: information
about the distribution of the costs, and expensive calcula-
tions and/or simulations (as done in Section 5). To address
this last problem, we now introduce two variations of our
mechanism.

4.2 Grouping Mechanisms

We introduce two new mechanisms: Pairing and Halving.
These mechanisms differ from the (k + 1)** mechanism in
both the provider-selection process and the calculation of
the (conditional) payment, 7.

In the Pairing mechanism, every provider ¢ € M reports
a cost, ¢;. Then, all providers are randomly paired with
another provider (if |M| = m is odd, then a single triplet
is formed). For each pair, the provider with the lower an-
nounced cost is placed in the set K and the conditional
payment is set equal to the announced cost of the other
provider (in the case of a triplet, the provider with the low-
est announced cost is placed in K and the conditional pay-
ment is equal to the second lowest announced cost in the
triplet). All providers not in K are not selected and there-
fore receive no payment. This results in |K| = |m/2] and
p = argmax, ., Ua(p) as before.

In the Halving mechanism all providers in M announce
costs as is done in the Pairing mechanism. Then, |m/2]
providers are randomly selected and placed into a set G.
All other providers are randomly paired and are then treated
identically to those in the Pairing mechanism. For members
of GG, the provider with the lowest announced cost is placed
in K and its conditional payment is equal to the cost of
the second lowest announced cost from G, while all other
providers are discarded. The procurement strategy is com-
puted as before.

THEOREM 2. The Pairing and Halving mechanisms are
incentive compatible and (ex post) individually rational.

Proof Sketch. Since the pairs and G are formed indepen-
dently of the agents’ reported costs, the proof follows di-
rectly from Theorem 1. []

We note that there are many possible variations of these
mechanisms, but all would share some key features. First,

the size of K is solely determined by the number of providers,
and thus does not rely on the consumer choosing an appro-
priate value. Second, the mechanisms require no a priori
information about the cost distributions. Finally, they im-
plement discriminatory pricing (i.e., different providers re-
ceive different payments), information which is then used to
form the optimal procurement strategy (given K). On the
other hand, the payments are always based on the higher
costs (except in the Halving mechanism), and it is therefore
not clear whether these variations offer any real benefits in
practice. To this end, we experimentally evaluate them in
the next section.

5. EVALUATION

We now evaluate our proposed approaches in a variety of
simulated environments, to determine if they provide ben-
efits over existing techniques, and to investigate the cost
of incentivising providers to reveal their private informa-
tion. Throughout this section, we randomly generate each
provider ¢ by drawing its cost ¢; and duration rate A; inde-
pendently and uniformly at random from [0, 1]. To consider
a range of settings, tasks have either a low (Miow = 2) or a
high value (Viigh = 8) and their deadline is either normal
(Dnormal = 2) or urgent (Durgent = 0.5). Furthermore, we
repeat experiments 1000 times and use ANOVA and t-tests
to ensure statistical significance at the p < 0.05 level. As
the associated confidence intervals are small, we omit these
here for clarity.

5.1 Optimal Service Procurement

First, we consider environments where providers charge
their true costs, i.e., 7x = ck, and compare the average
utility obtained by the optimal procurement strategy* de-
scribed in Section 3 (Optimal) to a strategy that always
selects the single provider that individually maximises the
consumer’s expected utility (Single). This latter strategy
represents current task allocation approaches that do not
include redundancy.

The results are shown in Figure 1. Here, we vary the num-
ber of providers in the system and plot the average expected
consumer’s utility, which is equal to the overall efficiency in
this setting, as a proportion of V. Observing these trends, it
is obvious that using redundancy can significantly improve
the consumer’s utility and does so in almost all settings con-
sidered. In fact, when averaging over all cases considered,
the Optimal approach achieves more than a 35% improve-
ment over the Single approach. In particular, when the
deadline is small (Durgent) and the task value high (Viigh),
the Optimal strategy is able to employ high redundancy to
ensure the task is completed within the deadline, while the
higher task utility justifies the additional investment. For
example, when there are 50 providers, the Single approach
achieves 35.87% of V, while the Optimal achieves 82.65% —
a 130% improvement.

4This is found using our branch-and-bound algorithm when
there are up to ten providers. We then use the heuristic
algorithm to obtain a lower bound for the optimal when
there are more providers. However, as we show later, the
heuristic obtains near-optimal results.

100 ‘ :
Optimal
75 L Single -]
50
05 [e T
urgent Viow
0

Average Consumer’s Utility JJV (in %)

D,

hormat Viow Dnormat Vhigh

0
1 10 20 30 40 50 1 10 20 30 40 50

Number of Available Providers (m)

Figure 1: Performance in full information setting.

Next, we note that when solving the above problems, our
branch-and-bound approach significantly reduces the com-
putational time required when compared to a brute-force al-
gorithm. For example, when there are 12 providers and we
consider Vhignh and Duyrgent, & brute force approach searches
over 1.3 billion provider ordering, which takes an average 3.3
hours (using a Java implementation on a Windows-based
Intel 2.2 GHz laptop with 4 GB RAM). By contrast, the
branch-and-bound algorithm searches an average 42000 or-
derings (0.003% of the total search space), finding the op-
timal in half a second. While the latter still finds solutions
for 18-23 providers in minutes (where the brute-force would
take over 2 - 10" years — longer than the age of the uni-
verse), our heuristic approach is better suited for larger set-
tings with hundreds or thousands of providers. To investi-
gate how its performance compares to the optimal, we have
applied both to all settings described above with ten or less
providers. Over these, the heuristic achieved 99.88% of the
optimal.

5.2 Incentive Compatible Mechanisms

Now we consider the mechanisms described in Section 4
and investigate how close the resulting procurement deci-
sions are to the optimal (both in terms of the consumer’s
utility and the overall efficiency). To this end, Figure 2 com-
pares the performance of a range of (k + l)th price mecha-
nisms with varying k, and our Halving and Pairing mecha-
nisms to the optimal (for brevity, we consider only two rep-
resentative scenarios here, but similar results are obtained
in other settings).

It is immediately obvious here that all mechanisms suffer
from a loss in utility for the consumer — a cost that re-
sults from incentivising providers to report truthfully. More
specifically, the best (k + 1)”” price mechanism in each case
achieves an average 85% of the optimal, while Pairing and
Halving both achieve over 70%. We also note that the per-
formance of the (k+ 1)*" depends heavily on the choice of k
and can be as low as 25% of the optimal if the wrong param-
eter is chosen. Furthermore, the best parameter depends on
the scenario. For example, for the task with Viow, K = 3 is
the best choice, achieving over 83% of the optimal. However,

100

90 -

Mechanism Utility/Efficiency (in % of V)

2L ENTAELLLELD G QG %Y
. SR A CIRE S
%%‘9{6\)\;\)@\)\)@\)\)?&)\()&)&)&
2O o

50 providers, RQygent Vhigh

&

Consumer’s Utility L)\ . |
Efficiency U ===

[CI.- OO0V AL X QR O R Q &Y

o ° X Vx_ ox_ x_ x_ x_ x_x_ x_ 0% X »

% %%%\)\)\)\)\)\)\)\)\))\()GT))\())\C)
2o o

15 providers, Rormar Viow

Figure 2: Performance of incentive-compatible mechanisms.

for Vhign, it is one of the worst, achieving only 58%. Hence,
these results indicate that a consumer can achieve a good
utility by using appropriate k parameters. However, when
insufficient information is available to set k, it can obtain
good results by using a Pairing or Halving mechanism.

Next, we consider the overall efficiency, or social welfare.
This ignores utility transfers between the consumer and the
providers, and therefore gives a better indication of how ef-
fectively the available services are used to complete the task
at hand. Here, we note that the mechanisms consistently
achieve a good overall efficiency. The best (k + 1)** mech-
anism now reaches, on average, over 95% of the optimal ef-
ficiency while the Pairing and Halving mechanisms achieve
86% and 84%, respectively.

6. CONCLUSIONS

In this paper, we considered a setting where multiple pro-
viders can be redundantly procured to perform a single task
which has to be completed within a given deadline. The
providers have uncertain execution times, which are given
by probability distributions, and incur different costs for ex-
ecuting the task. We first considered the setting with known
costs and introduced an algorithm for calculating the opti-
mal procurement strategy, as well as a near-optimal heuristic
algorithm for settings with a large number of providers. We
then introduced several incentive-compatible mechanisms for
eliciting the costs when these are unknown, and we evalu-
ated our approaches empirically. The results showed that re-
dundancy significantly outperforms the standard approach
where only a single provider is selected for each task, and
it continues to perform well in the incomplete information
setting.

In future work, we are interested in investigating a setting
where the execution duration distributions are also privately
known, and need to be elicited by a consumer. Furthermore,
we intend to apply this approach to larger settings with mul-
tiple, interdependent tasks.

7. ACKNOWLEDGMENTS

This research was undertaken as part of the ALADDIN
(Autonomous Learning Agents for Decentralised Data and
Information Systems) project and is jointly funded by a
BAE Systems and EPSRC (Engineering and Physical Re-
search Council) strategic partnership (EP/C548051/1). The

research was also undertaken as part of the EPSRC (Engi-
neering and Physical Research Council) funded project on
Market-Based Control (GR/T10664/01).

8. REFERENCES

[1] P. Chalasani, S. Jha, O. Shehory, and K. Sycara.
Query restart strategies for web agents. In Proc.
AGENTS 98, pages 124-131, 1998.

J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107-113, 2008.

P. Jehiel and B. Moldovanu. Efficient design with
interdependent valuations. Econometrica,
69(5):1237-1259, 2001.

R. M. Lukose and B. A. Huberman. A methodology
for managing risk in electronic transactions over the
internet. Netnomics, 2(1):25-36, 2000.

A. Mas-Colell, M. Whinston, and J. Green.
Microeconomic Theory. Oxford University Press, 1995.
R. Porter, A. Ronen, Y. Shoham, and M. Tennenholtz.
Fault tolerant mechanism design. Artificial
Intelligence, 172(15):1783-1799, 2008.

M. P. Singh and M. N. Huhns. Service-Oriented
Computing : Semantics, Processes, Agents. John
Wiley & Sons, Inc., USA, 2005.

S. Stein, N. R. Jennings, and T. R. Payne. Flexible
service provisioning with advance agreements. In Proc.
AAMASOS, pages 249-256, 2008.

K. Trivedi. Probability and Statistics with Reliability,
Queuing, and Computer Science Applications. John
Wiley & Sons, Inc., USA, 2nd edition, 2001.

M. L. Weitzman. Optimal search for the best
alternative. Econometrica, 47(3):641-654, 1979.

A. Zohar and J. S. Rosenschein. Mechanisms for
information elicitation. Artificial Intelligence,
172(16-17):1917-1939, 2008.

2]

3

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

