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As multiagent systems scale up, an individual’s influence o
the agents’ interactions becomes ever smaller, and the r
sulting outcome depends on the aggregated actions taken
groups of agents (players). Now, the formal framework to
model such situations is that ghmes with a continuum of
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Abstract

Recently, efficient approximation algorithms for
finding Nash equilibria have been developed for
the interesting class ainonymous gamesvhere

a player’s utility does not depend on the identity of
its opponents. In this paper, we tackle the prob-
lem of computing equilibria in such games with
continuous player typegxtending the framework
to encompass settings with imperfect information.
In particular, given the existence result for pure
Bayes-Nash equilibiria in these games, we gener-
alise thefictitious play algorithmby developing a
novel procedure for finding a best response strat-
egy, which is specifically designed to deal with con-
tinuous and, therefore, infinite type spaces. We
then combine the best response computation with
the general fictitious play structure to obtain an
equilibrium. To illustrate the power of this ap-
proach, we apply our algorithm to the domain of
simultaneous auctions with continuous private val-
ues and discrete bids, in which the algorithm shows
quick convergence.

Introduction

players which are also referred to darge games Typ-

ically, such games aranonymousthat is, the preferences
of a player do not depend on the identities of its opponent
Rather, they only depend on action distributions over the po
ulation and the player’s own action. This, in turn, is redate
to the assumption of perfect competition in large economie
and multiagent systems with many participants, where an

single individual has a negligible global effect. Relevapt
plications include the Internet, traffic routing and cortges
settings, and auctions and markets.

The informal intuition behind the terminology is that themu
ber of players is starge that the set of players is viewed asan-
tinuousmass, rather than discrete, separable individuals.

S.

Against this background, in this paper we investigate
games with a continuum of anonymous playéGAPS).
Games with a continuum of players were first analysed in a
pioneering paper by Schmeidler (1973) who proved the exis-
tence of pure strategy equilibria in these games. Later,-Mas
Colell (1984), Rathet al. (1995) and Kharet al. (1997)
found an alternative formulation for Schmeidler’s modet an
simplified the existence proof. Interestingly, these rssale
also applicable to games with a finite set of players with con-
tinuous types, extending the framework to capture gamés wit
imperfect information, e.g. auctions with private evaioas.

However, besides these existence results, there are very
few characterisation results for CAPs in the literatureorBl
ski (2001) provides necessary and sufficient conditions for
an equilibrium distribution in CAPs with a finite action set.
Daskalakis and Papadimitriou (2007) tackle the problem of
computing Nash equilibria in anonymous games and develop
efficient approximation algorithms for games with a finitée se
of players. However, the computation of equilibria in CAPs
remains a relatively uncharted research direction, which i
nevertheless important to the multiagent systems communit
because of the generality of CAPs and their relevance to the
abovementioned applications.

To this end, our paper generalises flatitious play(FP)
algorithm (Brown, 1951), an iterative procedure whose con-
vergence results in an equilibrium. In so doing, we develop
"he first FP-based algorithm which is applicable to CAPs. In
%’i‘articular, we present a hovel procedure that efficientip-co

tes a player’s best response against a continuum of anony-
mous opponents, under some weak assumptions on the struc-
ture of the space of the players’ utilities. We then combine
the best response computation with the general FP structure
to obtain an equilibrium.

Building on this, we apply our generalised FP algorithm to
simultaneous auctions (Gerdiatal.,, 2007), where it quickly
gonverges, producing a pure Bayes-Nash equilibrium. We
ghoose this particular domain for its practical importance

nd theoretical interest, as this domain has been proven to
be resistant to other computational techniques. In more de-
tail, Reeves and Wellman (2004) provided a procedure to ef-
fectively compute best response strategies in two-playéf e
ronments with utilities fully linear in player types and iacts.
While allowing both the private value and the action space to
be continuous, the linearity assumption is extremely i@str



tive, and does not necessarily hold in many settings. In factwherer;,, 74 are the marginals af on &/ and A respectively.

as we show in this paper, linearity in actions is explicitly v The intuition behind this definition is that, given a glob&-d
olated in our simultaneous auctions example. Furthernitore, tribution 7, selecting the best action in response to this distri-
is shown that the simple iterative best response procedute e bution itself would not change &n masse

ployed in (Reeves and Wellman, 2004) to compute the equi- The important result of (Mas-Colell, 1984) is the proof of

librium, does not converge in our example domain. - existence of aymmetric equilibriurnwhere each player type
For more complex domains, several approximation algois assigned exactly one action to follow.

rithms have been developed. For example, Jorelaal.

(2008) formulated computation of a Nash equilibrium as apefinition 2 A CNE distributionr for a CAP game is sym-
search problem and provided an estimation procedure for getric if there is a measurable functioh : 4 — A such
pure equilibrium in games with large strategy spaces. ThelfhatT({(u,a)|a = h(u)}) = 1. i.e., players with the same

solution, however, is not directly applicable to games withcharacteristics play the same actiqiMas-Colell, 1984)
private information. This shortcoming has been addressed

by the work of Vorobeychik and Wellman (2008) who ex- The conditions for the existence of symmetric equilibria

tended search based computation to simulation based gamese that the gamg is non-atomic, giving zero probability to

In their paper, simulated annealing was applied to computany specific player type to appear, and that the action space

approximated equilibria in games with private information is discrete and finite. In the following sections we will atlop

However, their algorithm, together with more amenable asthese conditions to simplify the material exposition, bt w

sumptions, required domain specific parameter selectidn amote that only the best response calculation requires tixem e

function design. In contrast, our FP based approach is generplicitly. Notice also that the existence of a functibnmakes

and domain independent. this form of Cournot-Nash Equilibrium equivalent to a pure
The rest of the paper is organised as follows. In Section Bayes-Nash equilibrium of typed games. For the remainder

we formally define the class of games with a continuum ofof the paper we will use these two terms interchangably.

anonymous players. In Section 3 we present our generalised

fictitious play algorithm for computing equilibria in CAPs. o

Section 4 is devoted to our experimental setting of simettan 3~ Fictitious Play for CAPs

ous auctions, and the results are presented in Section 5. We ) ) ) )
conclude in Section 6. In this section we outline the basics of FP algorithms (Brown

1951; von Neumann and Brown, 1950) and introduce our

2 Continuum of Anonymous Players generalised version for CAPs. _ .
In more detail, the standard algorithm consists of com-

Here we formally define the class of CAPs, closely follow- puting and applying a best response to a frequency estimate
ing the model of (Mas-Colell, 1984). Let denote a com- &ermedFP belie} of the opponent's actions. The underly-
pact metric space of actions available to each player, anfhq assumption of the FP beliefs is that an opponent samples
let M = M(A) denote the space of all probability mea- jis"actions from some fixed distribution, i.e. opponents are
Sures Q.nA endowed W.'th thg weak convergence tc)pobgy'assumed to play a fixed mixed strategy. Under this assump-
The utility of a player is defined by a continuous function tion, keeping score of the relative appearance frequefmies

u: Ax M — R, mapping the player's action and the action gitferent actions provides a good estimate of the oppohents
distribution induced by choices of other players into a melva strategy, and justifies the application of the best resptmse

The space of all continuous functions of the above form is defhe Fp pelief.” The algorithm, however, dictates performing
noted byl/ and equipped with the supremum norm. the belief updates for all agents of the game, with the iiwtoit

_ Notice that a player type can be viewed as just an altemnay, ¢ the agents will continually adapt to each other, evahytu
tive (symbolic) name for the utility function, since the spa arriving at an equilibrium.

of the former maps into the space of the latter. Following thi
intuition, a game with a finite number of players and a distri-
bution over private types can be alternatively defined imger
of a distribution over the space of utility functions.

The FP algorithm has two types of convergence. First, it
may converge in terms of th&trategy i.e. after a number
of iterations, the best response strategy of each agent may
stabilise. In this case, the collection of the players’ rest
Definition 1 A CAP is given by a probability distribution ~ sponse strategies constitutes a pure Nash Equilibrium. Un-

over the spacé/ of continuous functions of the form :  fortunately, it is quite easy to construct a game where this
A x M — R, where M is the space of distributions over best response stabilisation will not occur, which brings us
a compact space of actions (Mas-Colell, 1984) to the second type of convergence. A game is said to have

thefictitious play propertfFPP), if FP beliefs converge (see
convenient to formalise equilibrium in terms of distritmrts e.9. (Monderer and Shapley, 1996)). The set of converged FP

as well. Namely, an equilibrium of a gamey, termed a beliefs then constitutes a mix.ed Nash quilibrium. .
Cournot-Nash Equilibriun{CNE), is a distribution over the ~ However, the standard notion of FP belief does not include

space of type-action paité x A, that satisfies the following: tyPes. This renders the existing FP algorithm inapplicable
typed games. In what follows, we introduce the necessary
1L u=p changes (including the relationship between best response
2. 7({(u,a)||u(a,74) > u(A,74)}) =1, and type) and generalise FP to CAPs.

Following this line of thought even further, it becomes



3.1 The Generalised FP Algorithm account. Specifically, any € U hasM as its domain, i.e.

Before we formally define FP as it relates to CAPs, let ushe best response is not based on the entire betiefbut

make some preliminary observations to clarify its struetur rather on its action space margina,. This aIIows us to
First, the concept of beliefs needs to be generalised. IIlieduce the supported beliefs from the space of distribation

the standard FP, a belief maps the identity of the opponent iﬁ\i/el:% >2< égoézgﬁ pﬁffi\fe()t;i'itﬁfﬁ tlgri]r? I(i)r:/ee r?)r’):lctlons (see
an empirical frequency of action appearance. But in CAP 9 » €SP y 9 '

the opponent identities are represented by their utilitycfu ETTIY

tions, furthermore the_re is a continuum of such utiIities._ | qSet iteration count = 0

then follows that a belief has to map from the space of utilityy  Setr} = m for somem € M

functions to the space of action frequencigs: U — M. %3 'OO%Om e best response function:: 1 — A
Alternatively, the belief can be represented as a disiobut | 5 Compute thenarginaldistibution:
measure- over the spacéf x A with the limitation thatr,, Th,a(a) = p(h ™' (a))

the marginal o/, will coincide with ., the game itself. Now, | 4 Update beliefs: (et 4 (1 a(®)

: H H i T =a(t)*x74 + (1 —a(t)) *Th,a
if the beliefs converge, they converge to a CNE, in a simi 5 i (Converg/;nce orecision rgachm)en

6 .
7
8:
9:

lar fashion to the convergence of the standard FP beliefs to|ag. retum 74 — 7%
Nash equilibrium. Although the resulting CNE is not neces- end if
sarily symmetric, if the action space is finite, the equilibr Sett — t+1
can be symmetrised (or purified) (see e.g. (Radner and Rosenend100p
thal, 1982)) giving rise to a pure Bayes-Nash equilibrium.
Second, we need to reconsider the update of beliefs. In- Figure 2: Compact version of generalised FP.
stead of taking the distributed view of the standard FP com-
putation, in which every player maintains an independeint se We note that the algorithm presented in Figure 1 directly
of beliefs and performs the update independently, in CAPgroduces an equilibrium (line 6 returnscampletedistribu-
we have to compute the best response to the current belief®n), while the compact version (Figure 2) may require an ad
(distribution) for all types of players and update all bidiem  ditional step (line 6 returns marginaldistribution). In more
the system to incorporate the best response. detail, if the algorithm converges in strategies, then the s
We are now ready to introduce the generalised FP algoplified update procedure may be used directly to compute the
rithm for CAPs (see Figure 1). The algorithm begins by ini-equilibrium: we simply need to compute the best response,
tialising the beliefsy°, to an arbitrary choice of actions per- h4, to the distributionr4, and then CNE is well defined by
formed by the population. For example, players of all typesrene(u,a) = p(h;'(a) Nu). If, however, the algorithm
may select actions uniformly. The algorithm then enters aconverges in beliefs, then an additional procedure is reces
loop that continually computes a best response and updatesry to lift74 to 7c . This procedure is similar to the CNE
the beliefs. At iteration, the best response is computed (line purification of Radner and Rosenthal (1982) and is based on
2) with respect to the population wide distribution of aoso  the inclusion-exclusion principle. Notice, however, tirat
expressed by the marginal distributior,, of the beliefr!.  both cases the final outcome is a symmetric CNE.
The detailed procedure for computation of the best response .
function,h : U — A, is presented in Section 3.2. Once the 3.2 Best Response Computation Procedure

response is obtained, its inherent joint type-action distribu- et us now introduce the specific procedure for computing the
tion is calculated (line 3), and the beliefs of the next i@  best response functiol  Although, in general, computing
7'*1 absorb it accordingly (line 4), with the standard updatethe best response may be complex, if the dependence of the

rate ofa(t) = . Finally, if the beliefs indicate conver- players utility on its type is analytically simple, an eféat

gence (lines 5-6), the resulting distributions returned. procedure can be composed. For ease of exposition, we begin
by considering linear utilities; we then proceed and contmen
Rquirte;t . L on more general cases.
o G aon court = In this context, the utility is linear in type if there is a fn
1: f)i: = @ mforsomem € M tion, ugen : R x A x M — R, such that for all\ € R
%‘ Compute best response functioh:: U — A the utility function of the player with type\ is given by
Compute Inheref;i‘gﬁt’f)““:"’:;(h,l(a) ) Ugen (N, +,+) € U, and the utilityuge, (X, a, m) is linear in
4:  Update beliefts+:1 ’ . A .Now, i_f.the action space is _discrete anq fir_wite, th_en the
5 if (Convergence ;e?:(i(si;()):r;a Jéu}.)eﬁ a(t)) * Th optimal utility, as a function of private value, is piecea/l&-
6 retum ¢ — 2t ear. This is since, when computing the best response to the
7. endif distribution of actions 4, the latter is considered to be fixed,
8; endslﬁtgp‘_ t+1 and the value of an action,,, becomes a linear function of

the private value. More specifically, (\) = ugen (A, a,74).
Figure 1: Generalised FP algorithm for CAPs. The best utility that a player with a given private valuean
achieve, is them;,(\) = maicua(A), i.e. an upper envelope
aec
The generic algorithm (Figure 1) can be simplified furtherof a finite set of linear functions, and thus is piecewisedime
if the domain of the players’ utility functions is taken into  As a result, the best response functioh()\) =



arg maxqe 4 uq(\), can be written as a step function. In other thus the utility, of other players can be obtained. It is com-
words, it is possible to create a set of distinct interJalhat  mon to assume that private values of all the players are inde-
cover the type space, i.e) ,.; « = R, and also: pendently sampled from some continuous distribution, tvhic
. is known to all auction participants.
o Foranya € 1,if A1, Az € arthenh(Ar) = h(2z) Under this assumption, a transformation occurs to the way
e For any distincloy,ap € 1, if Ay € oy, A2 € az then  aplayer considers its opponents. They stop being indivédua
h(A1) # h(A2) and become a sample of a utility function’s population, each

The set of intervals corresponds to the set of linear segmen@PP€aring with respect to the probability density of the pri
of the optimal utility functionuy,, and the value of the best vate value. As the opponent values are hidden, the agent has

response is the action that creates the corresponding segmeto consider the entire range of possible value assignmaats.
Notice that, although the number of intervals may changé 'ésult, even though the factual number of opponents may be
over the course of a FP run, the maximum number of interliNite, the player's decision is computed in response tora (vi
vals|I| only depends ohA| and the shape of utility functions, tual) continuum of players formed by the range of possible

and thus remains boundeded by a constant. In particular, fgivate values. _ _
linear utility functions|I| is bounded byA. Given this, auctions may be captured using the notation

This piece-wise linear representation allows efficient com 2nd terminology of games with a continuum of anonymous

putation of the global action frequency induced by the bespPl@yers described earlier. Specifically, the action spage,
response. Given type distribution, the probability that the 1N @uction settings is the space of all possible bids a player
agent will actually have type in € I is u(a). Then, if can place. Since the setting is anonymous, a utility fumctio

all players use their best response, the action frequency irpf @n agent will have the form : A x M — R, whereM
duced by the group of players i 4(a) = u(I,), where IS the space of dlstnbutlons_qver bids placed t_)_y the plgyer
I, = U . ' opponents. In turn, the specific shape of the utility functo

ael,h(a)=a determined by the private value, and the distribution ofgig

In a general setting with non-linear utilities, a similappr  values will shape the game a distribution over the space
cedure can be used. In fact, as long as we can efficiently conf-his observation allows us to apply CNE existence theorems
pute the maximisation envelope of the setgf)) functions ~ and our generalised FP algorithm to auctions in a generic way
and inverse them to obtain interval division, the specific de @lmost independently of the specifics of the auction process
pendency ofi,., (1}, -, -) on the player’s typa is superfluous. - .

For example;qth((e progedure works equally well for quadrati-2  The Specific Setting
ugen, OF it would also be applicable for multidimensionaltype We consider a market consisting ofn auctions
spaces, as would appear, for instance, in multi-item anstio A;, Ao, ..., A, selling a single item each, and bid-
(where a player’s type is represented by a vector of valuegjers competing in these auctions. The items are complete
one for each item). substitutes, that is the bidders are indifferent betweemth
and derive no additional utility from winning more than one

4 Simultaneous Auctions item. A bidder derives a valuefrom obtaining one or more

. ] ) . ) items, and these valuations are i.i.d. drawn froooatinuous
In this section we describe the simultaneous auctions probyistribution with cumulative functiod and densityy.
lem, and show how the algorithm discussed earlier can be \\e assume that the bids atiscreteand that the size of the
applied to this model. We choose this setting because, tgjid space (i.e., the allowable bids) is finite. For simpyicite
date, there is no known pure Nash equilibrium solution. Furassume that the bids are equally spaced, and, without loss
thermore, related research has shown that simple iterativgs generality, that bids consist of integer values in thegean

approaches do not converge in this domain (Gerdihgl. [0 : %]. In the following, letB = [0 : k] denote the bid space
2007). At the same time, simultaneous auctions appear igf a single auction3™ = [0 : k]™ the joint bid space over all
many practical settings such as online auctions, where typgyctions, and = (by,ba, ..., by) € B™ a bid vector which

ically many similar goods are being sold at the same timegpecifies a bid for each auction. Furthermore, we assume that
and, furthermore, such auctions are an effective way to alpidder valuations range betweéd v]. Finally, throughout
locate resources between agents and achieve coordinationyye 3ssume that bidders are risk neutral.
multi-agent systems. We focus on second-price sealed Isithultaneous auc-

. tions in which the bidders need to submit all their bids before
4.1 Auctions, CAPs and CNE the outcome of any auction is observed. Without loss of gen-
Auctions are usually anonymous in the sense that their outerality, we assume that all bidders place bids (possiblg)zer
come does not depend on the identity of the bidders, but onlin all auctions. In this setting, a bidding strategy is a fiorc
on the bids themselves. That is, practically any auctiomis aS : (0,v] — B™ that maps a value into a vector of bids.
anonymous game. In addition, they possess another featuidow, in order to calculate a bidder’s expected utility given
that is of special interest to us — namely, the fact that thee au its bids and valuation, a bidder requires information athoeit
tioned item has a valuation that is personal and privatedb ea actions of other players. However, although the actions are
of the agents. If in a generic anonymous game a player magot known to the bidder, a bidder maintains beliefs about the
know the exact set of utility functions that drive its oppotse  bids of others. That is, a bidder maintains the probabititit t
in an auction only an estimate about the private value, and certain bid occurs in an auction.



Notice that in our setting the bids placed in different auc-

tions are correlated, and hence we are required to consider ny Tl
joint beliefs, i.e. joint probability distributions. We use the ; = =20 agents
following notation. LetX;, X5, ..., X,, denote discrete af- oorf i\

filiated random variables representing the bids placed by a
player, and let”(b) denote their joint distribution. Similarly,
we useP;(b;) to denote the bid distribution for a single auc-
tion i, and P;(b) the joint distribution of bids in a subset
I C[A;: A, ofauctions.

The player’s utility function consists of two parts: the ex- SRR o ™
pected benefits, which is the valuation multiplied by thebpro
ability of winning at leastone auction, minus the expected — 10 agents
costs, the latter being the sum of the expected payments for T 20 agents
each individual auction conditional on winning that auctio s

Convergence Error
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U(v,b) = v Py (U, Ailb) = > P (Ai|b)C/(A;]by),

i=1 2
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w

wherePy, (-) stands for a probability of winning, ar@(-) is
the expected cost paid in case of winning. Note that this cost R
only depends on the bid in auctiot}, and not on the bids in

other auctions:
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Figure 3: Convergence error (top) and average regret (bot-
1 b _— - tom) for 4 auctions.
Wz(x—l)[l’i(w) —Pi(z—1)"""],

x=1

C(Ailb;) =

identical, many equivalent equilibria may occur, only @iff
where P;(-)"~! stands for the highest order statis- ing by the order of the auctions (clearly, in the case of two
tics, which, in fact, defines the probability of win- auctions, bidding high in one auction and low in the other re-
ning in auction A; as a function of the bid placed sults inthe same payoff to a player as for doing the reverse).
in the auctior® Thus, Py (A;[b) = P;(b;))"!, and To eliminate such repetitions, we assume that different-pla
Pw (NicrAilb) = xa,erPi(b;))"t = Pr(b)"~! is the ers may have different orderings for the auctions. Thus, for
probability of winning all of the auctions in subsktFinally,  any individual bidder, it appears as though other playees ar

placing their bids randomly between the auctions. Anonymis

m i 1 el ing the auctions in this way, besides eliminating equivalen
P (UL, Ai[b) = Z (=1) Z Pr(b)", equilibria, has the advantage of reducing the action space,
j=1 IC[tim] s.t.|I|=] which, in turn, makes the calculation of the best response

where|I| is the cardinality off. Clearly, the utility function ~more efficient. Namely, without loss of generality, the spac
is linear in the continuous valuation, and our generalised ©f actions can be replaced by the space of nondecreasing bid
FP algorithm can be applied directly to this problem. vectors, i.e. vectors in which a bid in auctieh is greater
than a bid in auctio; only if ¢ > j.

. . Furthermore, we assume that the players’ private values for
5 Empirical Evaluation an auctioned item are uniformly distributed in floe1] inter-
To demonstrate the effectiveness of the generalised FP algwal, and that the bid space is discretised to form 10 distiect
rithm we performed a set of experiments and applied oubid levels. Even though the number of distinct bids seems
algorithm to the simultaneous auctions domain describetb be small, the space of all possible joint bids is very large
above. The success of FP in these experiments is threggmely( (LZL”) wherem is the number of auctions and
fold. First, the algorithm converged in this non-triviattigg, . )
which makes it a viable solution to a set of complex auction B i number of bid levels. _ _
domains. Second, the algorithm showed quick convergence, 10 evaluate the performance of our algorithm, we simu-
which makes it an empirically efficient solution, in spite of late and run the_smultanequs auctions domain with a varying
its weak theoretical convergence properties. Third, thté ~ number of auctions and bidders, and measure convergence
first time a pure Bayes-Nash equilibrium could be obtainef the algorithm using two indicators. First, we measure the
for simultaneous auctions with continuous private values. convergence in beliefs, by calculating thenvergence error

We now proceed and present our experimental setting and 2+ Which is determined by the infinity norm of the differ-
results in more detail. Since the auctions in our setting ar€MCe between two consecutive action distribution estigate
74 andrfjl: CE = maxgca |Tz+1(a)—7'§‘(a)|. If CE < L,
2The tie breaking rule we employ in cases where two or moreth€ algorithm converges in beliefs.
players place the same highest bid in an auction, are onfitbeul Second, we compute tlaverage regregtwhere regret s the
this version of the paper, due to space limitations. difference between the utility obtained by a bidder if every
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Figure 4: Convergence error (top) and average regret (bo{-

tom) for 15 bidders.

one is playing the same strategy at timend the utility of

a player who ‘deviates’ and plays a best response given th@

current beliefs. This difference is then averaged over the e

tire range of player types to produce the average regret. The

average regret serves as an indicator of the convergence
strategies (as opposed to the convergence in beliefs).

6 Conclusions

In this paper we presented a generic procedure for determin-
ing the best response computation in anonymous games with
continuous player types. Specifically, we constructed a gen
eralised version of the FP algorithm for this setting. Wenthe
used the fact that CAPs encompass a significant number of
games with private information and applied our generalised
FP algorithm to the setting of simultaneous auctions. The al
gorithm experimentally showed quick convergence and pro-
vided, for the first time, a pure Bayes-Nash equilibrium solu
tion for simultaneous auctions with continuous privatereal

For the future, we seek to extend this work in the following
directions. First, although we have shown convergence em-
pirically for a specific domain, it remains to be seen whether
it is possible to derive theoretical guarantees for the FP al
gorithm to converge in the auction domain, or rather that FP
converges generally in CAPs. Our preliminary studies show
that, if types can be grouped based on the best response equiv
alence, FP may not converge, which suggests that additional
conditions are needed to obtain convergence. Second, we in-
tend to extend our algorithm to capture continuous (anctther
ore, infinite) action spaces.

References

M. Blonski. Equilibrium characterization in large anonyuso
games. Working paper, University of Manheim, 2001.

. W. Brown. lIterative solutions of games by fictitious plain
Activity Analysis of Production and AllocatioWiley, 1951.

. Daskalakis and C. H. Papadimitriou. Computing equiibri
anonymous games. FOCS 2007.

H. Gerding, R. K. Dash, D. C. K. Yuen, and N. R. Jennings - Bid
ding optimally in concurrent second-price auctions of eettfy

c
i

In more detail, Figures 3 and 4 depict the convergence er- substitutable goods. INAMAS pages 267-274, 2007.
ror and average regret for a varying number of bidders in 4 H. Gerding, Z. Rabinovich, A. Byde, E. Elkind, and N.R. Jen
simultaneous auctions, and for a varying number of auctions Nings. Approximating mixed nash equilibria using smooti-fic

with 15 bidders, respectivefy. These figures show that the
convergence error drops exponentially fast as the algarith

proceeds. Furthermore, it converges even faster with céspey,;

to the regret factot. We conjecture that the relative speedup

tious play in simultaneous auctions. AAMAS 2008.
P. R. Jordan, Y. Vorobeychik, and M. P. Wellman. Searching fo
approximate equilibria in empirical games. AAMAS 2008.
A.Khan, K. P. Rath, and Y. Sun. On the existence of pureesgsa
equilibria in games with a continuum of playeik. of Economic

of the regret factor convergence follows from the fact that Theory 76(1):13-46, 1997.
similar, though distinct, policies may produce the same reA. Mas-Colell. On a theorem of Schmeidled. of Mathematical
gret. As a result, the policy continues to change gradually, Economics13:201-206, 1984.

still keeping the beliefs error CE away from zero, while the
regret has already reached low values.

Additional data analysis confirms that the generalised FR

algorithm convergesin our setting in the strong sense -ighat
it convergesto a best response strategy, and the corrasgond
response functioh results in a pure Bayes-Nash equilibrium.

D. Monderer and L. S. Shapley. Fictitious play property fanmgs
with identical interests.J. of Economic Theory68(1):258-265,
1996.

. Radner and R. W. Rosenthal.
strategy equilibria.
7(3):401-409, 1982.
K. P. Rath, Y. Sun, and S. Yamashige. The nonexistence of ggmm

Private information and pure-
Mathematics of Operations Research

Moreover, it confirms and expands upon previous conjectures ric equilibria in anonymous games with compact action sgpate

(such as Gerdingt al. (2008)) on the quality and properties
of equilibria in simultaneous auctions. For instance, eath
than forming completely distinct graphs, bidding stragsgi

exhibit bifurcation behaviour, holding the same bid valoe f

large intervals in the private value space.

3We obtain similar results in other settings.

“The variance of convergence rate across the experimemisl ru
was below105.

SWe omit the details due to space limitations.

of Mathematical Economic24:331-346, 1995.

D. M. Reeves and M. P. Wellman. Computing best-responstestra
gies in infinite games of incomplete information. WAI, 2004.

D. Schmeidler. Equilibrium points of nonatomic gamésof Statis-
tical Physics 7(4):295-300, 1973.

J. von Neumann and G. W. Brown. Solutions of games by differ-
ential equations. Ii€ontributions to the Theory of Gamesges
73-79. Princeton University Press, 1950.

E. Vorobeychik and M. P. Wellman. Stochastic search metifmds
Nash equilibrium approximation in simulation-based gamies
AAMAS pages 1055-1062, 2008.



